Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
/*
 * ---------------------------------------------------------------------------
 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software is allowed (with or without
 * changes) provided that:
 *
 *  1. source code distributions include the above copyright notice, this
 *     list of conditions and the following disclaimer;
 *
 *  2. binary distributions include the above copyright notice, this list
 *     of conditions and the following disclaimer in their documentation;
 *
 *  3. the name of the copyright holder is not used to endorse products
 *     built using this software without specific written permission.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 * Issue 20/12/2007
 *
 * I am grateful to Dag Arne Osvik for many discussions of the techniques that
 * can be used to optimise AES assembler code on AMD64/EM64T architectures.
 * Some of the techniques used in this implementation are the result of
 * suggestions made by him for which I am most grateful.
 *
 * An AES implementation for AMD64 processors using the YASM assembler.  This
 * implementation provides only encryption, decryption and hence requires key
 * scheduling support in C. It uses 8k bytes of tables but its encryption and
 * decryption performance is very close to that obtained using large tables.
 * It can use either MS Windows or Gnu/Linux/OpenSolaris OS calling conventions,
 * which are as follows:
 *               ms windows  gnu/linux/opensolaris os
 *
 *   in_blk          rcx     rdi
 *   out_blk         rdx     rsi
 *   context (cx)     r8     rdx
 *
 *   preserved       rsi      -    + rbx, rbp, rsp, r12, r13, r14 & r15
 *   registers       rdi      -      on both
 *
 *   destroyed        -      rsi   + rax, rcx, rdx, r8, r9, r10 & r11
 *   registers        -      rdi     on both
 *
 * The convention used here is that for gnu/linux/opensolaris os.
 *
 * This code provides the standard AES block size (128 bits, 16 bytes) and the
 * three standard AES key sizes (128, 192 and 256 bits). It has the same call
 * interface as my C implementation.  It uses the Microsoft C AMD64 calling
 * conventions in which the three parameters are placed in  rcx, rdx and r8
 * respectively.  The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
 *
 * OpenSolaris Note:
 * Modified to use GNU/Linux/Solaris calling conventions.
 * That is parameters are placed in rdi, rsi, rdx, and rcx, respectively.
 *
 *     AES_RETURN aes_encrypt(const unsigned char in_blk[],
 *                   unsigned char out_blk[], const aes_encrypt_ctx cx[1])/
 *
 *     AES_RETURN aes_decrypt(const unsigned char in_blk[],
 *                   unsigned char out_blk[], const aes_decrypt_ctx cx[1])/
 *
 *     AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
 *                                            const aes_encrypt_ctx cx[1])/
 *
 *     AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
 *                                            const aes_decrypt_ctx cx[1])/
 *
 *     AES_RETURN aes_encrypt_key(const unsigned char key[],
 *                           unsigned int len, const aes_decrypt_ctx cx[1])/
 *
 *     AES_RETURN aes_decrypt_key(const unsigned char key[],
 *                           unsigned int len, const aes_decrypt_ctx cx[1])/
 *
 * where <NNN> is 128, 102 or 256.  In the last two calls the length can be in
 * either bits or bytes.
 *
 * Comment in/out the following lines to obtain the desired subroutines. These
 * selections MUST match those in the C header file aesopt.h
 */
#define	AES_REV_DKS	  /* define if key decryption schedule is reversed */

#define	LAST_ROUND_TABLES /* define for the faster version using extra tables */

/*
 * The encryption key schedule has the following in memory layout where N is the
 * number of rounds (10, 12 or 14):
 *
 * lo: | input key (round 0)  |  / each round is four 32-bit words
 *     | encryption round 1   |
 *     | encryption round 2   |
 *     ....
 *     | encryption round N-1 |
 * hi: | encryption round N   |
 *
 * The decryption key schedule is normally set up so that it has the same
 * layout as above by actually reversing the order of the encryption key
 * schedule in memory (this happens when AES_REV_DKS is set):
 *
 * lo: | decryption round 0   | =              | encryption round N   |
 *     | decryption round 1   | = INV_MIX_COL[ | encryption round N-1 | ]
 *     | decryption round 2   | = INV_MIX_COL[ | encryption round N-2 | ]
 *     ....                       ....
 *     | decryption round N-1 | = INV_MIX_COL[ | encryption round 1   | ]
 * hi: | decryption round N   | =              | input key (round 0)  |
 *
 * with rounds except the first and last modified using inv_mix_column()
 * But if AES_REV_DKS is NOT set the order of keys is left as it is for
 * encryption so that it has to be accessed in reverse when used for
 * decryption (although the inverse mix column modifications are done)
 *
 * lo: | decryption round 0   | =              | input key (round 0)  |
 *     | decryption round 1   | = INV_MIX_COL[ | encryption round 1   | ]
 *     | decryption round 2   | = INV_MIX_COL[ | encryption round 2   | ]
 *     ....                       ....
 *     | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
 * hi: | decryption round N   | =              | encryption round N   |
 *
 * This layout is faster when the assembler key scheduling provided here
 * is used.
 *
 * End of user defines
 */

/*
 * ---------------------------------------------------------------------------
 * OpenSolaris OS modifications
 *
 * This source originates from Brian Gladman file aes_amd64.asm
 * in http://fp.gladman.plus.com/AES/aes-src-04-03-08.zip
 * with these changes:
 *
 * 1. Removed MS Windows-specific code within DLL_EXPORT, _SEH_, and
 * !__GNUC__ ifdefs.  Also removed ENCRYPTION, DECRYPTION,
 * AES_128, AES_192, AES_256, AES_VAR ifdefs.
 *
 * 2. Translate yasm/nasm %define and .macro definitions to cpp(1) #define
 *
 * 3. Translate yasm/nasm %ifdef/%ifndef to cpp(1) #ifdef
 *
 * 4. Translate Intel/yasm/nasm syntax to ATT/OpenSolaris as(1) syntax
 * (operands reversed, literals prefixed with "$", registers prefixed with "%",
 * and "[register+offset]", addressing changed to "offset(register)",
 * parenthesis in constant expressions "()" changed to square brackets "[]",
 * "." removed from  local (numeric) labels, and other changes.
 * Examples:
 * Intel/yasm/nasm Syntax	ATT/OpenSolaris Syntax
 * mov	rax,(4*20h)		mov	$[4*0x20],%rax
 * mov	rax,[ebx+20h]		mov	0x20(%ebx),%rax
 * lea	rax,[ebx+ecx]		lea	(%ebx,%ecx),%rax
 * sub	rax,[ebx+ecx*4-20h]	sub	-0x20(%ebx,%ecx,4),%rax
 *
 * 5. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
 * /usr/include/sys/asm_linkage.h, lint(1B) guards, and dummy C function
 * definitions for lint.
 *
 * 6. Renamed functions and reordered parameters to match OpenSolaris:
 * Original Gladman interface:
 *	int aes_encrypt(const unsigned char *in,
 *		unsigned char *out, const aes_encrypt_ctx cx[1])/
 *	int aes_decrypt(const unsigned char *in,
 *		unsigned char *out, const aes_encrypt_ctx cx[1])/
 * Note: aes_encrypt_ctx contains ks, a 60 element array of uint32_t,
 * and a union type, inf., containing inf.l, a uint32_t and
 * inf.b, a 4-element array of uint32_t.  Only b[0] in the array (aka "l") is
 * used and contains the key schedule length * 16 where key schedule length is
 * 10, 12, or 14 bytes.
 *
 * OpenSolaris OS interface:
 *	void aes_encrypt_amd64(const aes_ks_t *ks, int Nr,
 *		const uint32_t pt[4], uint32_t ct[4])/
 *	void aes_decrypt_amd64(const aes_ks_t *ks, int Nr,
 *		const uint32_t pt[4], uint32_t ct[4])/
 *	typedef union {uint64_t ks64[(MAX_AES_NR + 1) * 4]/
 *		 uint32_t ks32[(MAX_AES_NR + 1) * 4]/ } aes_ks_t/
 * Note: ks is the AES key schedule, Nr is number of rounds, pt is plain text,
 * ct is crypto text, and MAX_AES_NR is 14.
 * For the x86 64-bit architecture, OpenSolaris OS uses ks32 instead of ks64.
 */

#if defined(lint) || defined(__lint)

#include <sys/types.h>
/* ARGSUSED */
void
aes_encrypt_amd64(const uint32_t rk[], int Nr, const uint32_t pt[4],
	uint32_t ct[4]) {
}
/* ARGSUSED */
void
aes_decrypt_amd64(const uint32_t rk[], int Nr, const uint32_t ct[4],
	uint32_t pt[4]) {
}


#else

#define _ASM
#include <sys/asm_linkage.h>

#define	KS_LENGTH	60

#define	raxd		eax
#define	rdxd		edx
#define	rcxd		ecx
#define	rbxd		ebx
#define	rsid		esi
#define	rdid		edi

#define	raxb		al
#define	rdxb		dl
#define	rcxb		cl
#define	rbxb		bl
#define	rsib		sil
#define	rdib		dil

// finite field multiplies by {02}, {04} and {08}

#define	f2(x) [[x<<1]^[[[x>>7]&1]*0x11b]]
#define	f4(x) [[x<<2]^[[[x>>6]&1]*0x11b]^[[[x>>6]&2]*0x11b]]
#define	f8(x) [[x<<3]^[[[x>>5]&1]*0x11b]^[[[x>>5]&2]*0x11b]^[[[x>>5]&4]*0x11b]]

// finite field multiplies required in table generation

#define	f3(x) [[f2(x)] ^ [x]]
#define	f9(x) [[f8(x)] ^ [x]]
#define	fb(x) [[f8(x)] ^ [f2(x)] ^ [x]]
#define	fd(x) [[f8(x)] ^ [f4(x)] ^ [x]]
#define	fe(x) [[f8(x)] ^ [f4(x)] ^ [f2(x)]]

// macros for expanding S-box data

#define	u8(x) [f2(x)], [x], [x], [f3(x)], [f2(x)], [x], [x], [f3(x)]
#define	v8(x) [fe(x)], [f9(x)], [fd(x)], [fb(x)], [fe(x)], [f9(x)], [fd(x)], [x]
#define	w8(x) [x], 0, 0, 0, [x], 0, 0, 0

#define	enc_vals(x)	\
   .byte x(0x63),x(0x7c),x(0x77),x(0x7b),x(0xf2),x(0x6b),x(0x6f),x(0xc5); \
   .byte x(0x30),x(0x01),x(0x67),x(0x2b),x(0xfe),x(0xd7),x(0xab),x(0x76); \
   .byte x(0xca),x(0x82),x(0xc9),x(0x7d),x(0xfa),x(0x59),x(0x47),x(0xf0); \
   .byte x(0xad),x(0xd4),x(0xa2),x(0xaf),x(0x9c),x(0xa4),x(0x72),x(0xc0); \
   .byte x(0xb7),x(0xfd),x(0x93),x(0x26),x(0x36),x(0x3f),x(0xf7),x(0xcc); \
   .byte x(0x34),x(0xa5),x(0xe5),x(0xf1),x(0x71),x(0xd8),x(0x31),x(0x15); \
   .byte x(0x04),x(0xc7),x(0x23),x(0xc3),x(0x18),x(0x96),x(0x05),x(0x9a); \
   .byte x(0x07),x(0x12),x(0x80),x(0xe2),x(0xeb),x(0x27),x(0xb2),x(0x75); \
   .byte x(0x09),x(0x83),x(0x2c),x(0x1a),x(0x1b),x(0x6e),x(0x5a),x(0xa0); \
   .byte x(0x52),x(0x3b),x(0xd6),x(0xb3),x(0x29),x(0xe3),x(0x2f),x(0x84); \
   .byte x(0x53),x(0xd1),x(0x00),x(0xed),x(0x20),x(0xfc),x(0xb1),x(0x5b); \
   .byte x(0x6a),x(0xcb),x(0xbe),x(0x39),x(0x4a),x(0x4c),x(0x58),x(0xcf); \
   .byte x(0xd0),x(0xef),x(0xaa),x(0xfb),x(0x43),x(0x4d),x(0x33),x(0x85); \
   .byte x(0x45),x(0xf9),x(0x02),x(0x7f),x(0x50),x(0x3c),x(0x9f),x(0xa8); \
   .byte x(0x51),x(0xa3),x(0x40),x(0x8f),x(0x92),x(0x9d),x(0x38),x(0xf5); \
   .byte x(0xbc),x(0xb6),x(0xda),x(0x21),x(0x10),x(0xff),x(0xf3),x(0xd2); \
   .byte x(0xcd),x(0x0c),x(0x13),x(0xec),x(0x5f),x(0x97),x(0x44),x(0x17); \
   .byte x(0xc4),x(0xa7),x(0x7e),x(0x3d),x(0x64),x(0x5d),x(0x19),x(0x73); \
   .byte x(0x60),x(0x81),x(0x4f),x(0xdc),x(0x22),x(0x2a),x(0x90),x(0x88); \
   .byte x(0x46),x(0xee),x(0xb8),x(0x14),x(0xde),x(0x5e),x(0x0b),x(0xdb); \
   .byte x(0xe0),x(0x32),x(0x3a),x(0x0a),x(0x49),x(0x06),x(0x24),x(0x5c); \
   .byte x(0xc2),x(0xd3),x(0xac),x(0x62),x(0x91),x(0x95),x(0xe4),x(0x79); \
   .byte x(0xe7),x(0xc8),x(0x37),x(0x6d),x(0x8d),x(0xd5),x(0x4e),x(0xa9); \
   .byte x(0x6c),x(0x56),x(0xf4),x(0xea),x(0x65),x(0x7a),x(0xae),x(0x08); \
   .byte x(0xba),x(0x78),x(0x25),x(0x2e),x(0x1c),x(0xa6),x(0xb4),x(0xc6); \
   .byte x(0xe8),x(0xdd),x(0x74),x(0x1f),x(0x4b),x(0xbd),x(0x8b),x(0x8a); \
   .byte x(0x70),x(0x3e),x(0xb5),x(0x66),x(0x48),x(0x03),x(0xf6),x(0x0e); \
   .byte x(0x61),x(0x35),x(0x57),x(0xb9),x(0x86),x(0xc1),x(0x1d),x(0x9e); \
   .byte x(0xe1),x(0xf8),x(0x98),x(0x11),x(0x69),x(0xd9),x(0x8e),x(0x94); \
   .byte x(0x9b),x(0x1e),x(0x87),x(0xe9),x(0xce),x(0x55),x(0x28),x(0xdf); \
   .byte x(0x8c),x(0xa1),x(0x89),x(0x0d),x(0xbf),x(0xe6),x(0x42),x(0x68); \
   .byte x(0x41),x(0x99),x(0x2d),x(0x0f),x(0xb0),x(0x54),x(0xbb),x(0x16)

#define	dec_vals(x) \
   .byte x(0x52),x(0x09),x(0x6a),x(0xd5),x(0x30),x(0x36),x(0xa5),x(0x38); \
   .byte x(0xbf),x(0x40),x(0xa3),x(0x9e),x(0x81),x(0xf3),x(0xd7),x(0xfb); \
   .byte x(0x7c),x(0xe3),x(0x39),x(0x82),x(0x9b),x(0x2f),x(0xff),x(0x87); \
   .byte x(0x34),x(0x8e),x(0x43),x(0x44),x(0xc4),x(0xde),x(0xe9),x(0xcb); \
   .byte x(0x54),x(0x7b),x(0x94),x(0x32),x(0xa6),x(0xc2),x(0x23),x(0x3d); \
   .byte x(0xee),x(0x4c),x(0x95),x(0x0b),x(0x42),x(0xfa),x(0xc3),x(0x4e); \
   .byte x(0x08),x(0x2e),x(0xa1),x(0x66),x(0x28),x(0xd9),x(0x24),x(0xb2); \
   .byte x(0x76),x(0x5b),x(0xa2),x(0x49),x(0x6d),x(0x8b),x(0xd1),x(0x25); \
   .byte x(0x72),x(0xf8),x(0xf6),x(0x64),x(0x86),x(0x68),x(0x98),x(0x16); \
   .byte x(0xd4),x(0xa4),x(0x5c),x(0xcc),x(0x5d),x(0x65),x(0xb6),x(0x92); \
   .byte x(0x6c),x(0x70),x(0x48),x(0x50),x(0xfd),x(0xed),x(0xb9),x(0xda); \
   .byte x(0x5e),x(0x15),x(0x46),x(0x57),x(0xa7),x(0x8d),x(0x9d),x(0x84); \
   .byte x(0x90),x(0xd8),x(0xab),x(0x00),x(0x8c),x(0xbc),x(0xd3),x(0x0a); \
   .byte x(0xf7),x(0xe4),x(0x58),x(0x05),x(0xb8),x(0xb3),x(0x45),x(0x06); \
   .byte x(0xd0),x(0x2c),x(0x1e),x(0x8f),x(0xca),x(0x3f),x(0x0f),x(0x02); \
   .byte x(0xc1),x(0xaf),x(0xbd),x(0x03),x(0x01),x(0x13),x(0x8a),x(0x6b); \
   .byte x(0x3a),x(0x91),x(0x11),x(0x41),x(0x4f),x(0x67),x(0xdc),x(0xea); \
   .byte x(0x97),x(0xf2),x(0xcf),x(0xce),x(0xf0),x(0xb4),x(0xe6),x(0x73); \
   .byte x(0x96),x(0xac),x(0x74),x(0x22),x(0xe7),x(0xad),x(0x35),x(0x85); \
   .byte x(0xe2),x(0xf9),x(0x37),x(0xe8),x(0x1c),x(0x75),x(0xdf),x(0x6e); \
   .byte x(0x47),x(0xf1),x(0x1a),x(0x71),x(0x1d),x(0x29),x(0xc5),x(0x89); \
   .byte x(0x6f),x(0xb7),x(0x62),x(0x0e),x(0xaa),x(0x18),x(0xbe),x(0x1b); \
   .byte x(0xfc),x(0x56),x(0x3e),x(0x4b),x(0xc6),x(0xd2),x(0x79),x(0x20); \
   .byte x(0x9a),x(0xdb),x(0xc0),x(0xfe),x(0x78),x(0xcd),x(0x5a),x(0xf4); \
   .byte x(0x1f),x(0xdd),x(0xa8),x(0x33),x(0x88),x(0x07),x(0xc7),x(0x31); \
   .byte x(0xb1),x(0x12),x(0x10),x(0x59),x(0x27),x(0x80),x(0xec),x(0x5f); \
   .byte x(0x60),x(0x51),x(0x7f),x(0xa9),x(0x19),x(0xb5),x(0x4a),x(0x0d); \
   .byte x(0x2d),x(0xe5),x(0x7a),x(0x9f),x(0x93),x(0xc9),x(0x9c),x(0xef); \
   .byte x(0xa0),x(0xe0),x(0x3b),x(0x4d),x(0xae),x(0x2a),x(0xf5),x(0xb0); \
   .byte x(0xc8),x(0xeb),x(0xbb),x(0x3c),x(0x83),x(0x53),x(0x99),x(0x61); \
   .byte x(0x17),x(0x2b),x(0x04),x(0x7e),x(0xba),x(0x77),x(0xd6),x(0x26); \
   .byte x(0xe1),x(0x69),x(0x14),x(0x63),x(0x55),x(0x21),x(0x0c),x(0x7d)

#define	tptr	%rbp	/* table pointer */
#define	kptr	%r8	/* key schedule pointer */
#define	fofs	128	/* adjust offset in key schedule to keep |disp| < 128 */
#define	fk_ref(x, y)	-16*x+fofs+4*y(kptr)

#ifdef	AES_REV_DKS
#define	rofs		128
#define	ik_ref(x, y)	-16*x+rofs+4*y(kptr)

#else
#define	rofs		-128
#define	ik_ref(x, y)	16*x+rofs+4*y(kptr)
#endif	/* AES_REV_DKS */

#define	tab_0(x)	(tptr,x,8)
#define	tab_1(x)	3(tptr,x,8)
#define	tab_2(x)	2(tptr,x,8)
#define	tab_3(x)	1(tptr,x,8)
#define	tab_f(x)	1(tptr,x,8)
#define	tab_i(x)	7(tptr,x,8)

#define	ff_rnd(p1, p2, p3, p4, round)	/* normal forward round */ \
	mov	fk_ref(round,0), p1; \
	mov	fk_ref(round,1), p2; \
	mov	fk_ref(round,2), p3; \
	mov	fk_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	shr	$16, %eax; \
	xor	tab_0(%rsi), p1; \
	xor	tab_1(%rdi), p4; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	xor	tab_2(%rsi), p3; \
	xor	tab_3(%rdi), p2; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	shr	$16, %ebx; \
	xor	tab_0(%rsi), p2; \
	xor	tab_1(%rdi), p1; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	xor	tab_2(%rsi), p4; \
	xor	tab_3(%rdi), p3; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	shr	$16, %ecx; \
	xor	tab_0(%rsi), p3; \
	xor	tab_1(%rdi), p2; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	xor	tab_2(%rsi), p1; \
	xor	tab_3(%rdi), p4; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	shr	$16, %edx; \
	xor	tab_0(%rsi), p4; \
	xor	tab_1(%rdi), p3; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	xor	tab_2(%rsi), p2; \
	xor	tab_3(%rdi), p1; \
 \
	mov	p1, %eax; \
	mov	p2, %ebx; \
	mov	p3, %ecx; \
	mov	p4, %edx

#ifdef	LAST_ROUND_TABLES

#define	fl_rnd(p1, p2, p3, p4, round)	/* last forward round */ \
	add	$2048, tptr; \
	mov	fk_ref(round,0), p1; \
	mov	fk_ref(round,1), p2; \
	mov	fk_ref(round,2), p3; \
	mov	fk_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	shr	$16, %eax; \
	xor	tab_0(%rsi), p1; \
	xor	tab_1(%rdi), p4; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	xor	tab_2(%rsi), p3; \
	xor	tab_3(%rdi), p2; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	shr	$16, %ebx; \
	xor	tab_0(%rsi), p2; \
	xor	tab_1(%rdi), p1; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	xor	tab_2(%rsi), p4; \
	xor	tab_3(%rdi), p3; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	shr	$16, %ecx; \
	xor	tab_0(%rsi), p3; \
	xor	tab_1(%rdi), p2; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	xor	tab_2(%rsi), p1; \
	xor	tab_3(%rdi), p4; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	shr	$16, %edx; \
	xor	tab_0(%rsi), p4; \
	xor	tab_1(%rdi), p3; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	xor	tab_2(%rsi), p2; \
	xor	tab_3(%rdi), p1

#else

#define	fl_rnd(p1, p2, p3, p4, round)	/* last forward round */ \
	mov	fk_ref(round,0), p1; \
	mov	fk_ref(round,1), p2; \
	mov	fk_ref(round,2), p3; \
	mov	fk_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	shr	$16, %eax; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	xor	%esi, p1; \
	rol	$8, %edi; \
	xor	%edi, p4; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p3; \
	xor	%edi, p2; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	shr	$16, %ebx; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	xor	%esi, p2; \
	rol	$8, %edi; \
	xor	%edi, p1; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p4; \
	xor	%edi, p3; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	shr	$16, %ecx; \
	xor	%esi, p3; \
	rol	$8, %edi; \
	xor	%edi, p2; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p1; \
	xor	%edi, p4; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	shr	$16, %edx; \
	xor	%esi, p4; \
	rol	$8, %edi; \
	xor	%edi, p3; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	movzx	tab_f(%rsi), %esi; \
	movzx	tab_f(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p2; \
	xor	%edi, p1

#endif	/* LAST_ROUND_TABLES */

#define	ii_rnd(p1, p2, p3, p4, round)	/* normal inverse round */ \
	mov	ik_ref(round,0), p1; \
	mov	ik_ref(round,1), p2; \
	mov	ik_ref(round,2), p3; \
	mov	ik_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	shr	$16, %eax; \
	xor	tab_0(%rsi), p1; \
	xor	tab_1(%rdi), p2; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	xor	tab_2(%rsi), p3; \
	xor	tab_3(%rdi), p4; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	shr	$16, %ebx; \
	xor	tab_0(%rsi), p2; \
	xor	tab_1(%rdi), p3; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	xor	tab_2(%rsi), p4; \
	xor	tab_3(%rdi), p1; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	shr	$16, %ecx; \
	xor	tab_0(%rsi), p3; \
	xor	tab_1(%rdi), p4; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	xor	tab_2(%rsi), p1; \
	xor	tab_3(%rdi), p2; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	shr	$16, %edx; \
	xor	tab_0(%rsi), p4; \
	xor	tab_1(%rdi), p1; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	xor	tab_2(%rsi), p2; \
	xor	tab_3(%rdi), p3; \
 \
	mov	p1, %eax; \
	mov	p2, %ebx; \
	mov	p3, %ecx; \
	mov	p4, %edx

#ifdef	LAST_ROUND_TABLES

#define	il_rnd(p1, p2, p3, p4, round)	/* last inverse round */ \
	add	$2048, tptr; \
	mov	ik_ref(round,0), p1; \
	mov	ik_ref(round,1), p2; \
	mov	ik_ref(round,2), p3; \
	mov	ik_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	shr	$16, %eax; \
	xor	tab_0(%rsi), p1; \
	xor	tab_1(%rdi), p2; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	xor	tab_2(%rsi), p3; \
	xor	tab_3(%rdi), p4; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	shr	$16, %ebx; \
	xor	tab_0(%rsi), p2; \
	xor	tab_1(%rdi), p3; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	xor	tab_2(%rsi), p4; \
	xor	tab_3(%rdi), p1; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	shr	$16, %ecx; \
	xor	tab_0(%rsi), p3; \
	xor	tab_1(%rdi), p4; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	xor	tab_2(%rsi), p1; \
	xor	tab_3(%rdi), p2; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	shr	$16, %edx; \
	xor	tab_0(%rsi), p4; \
	xor	tab_1(%rdi), p1; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	xor	tab_2(%rsi), p2; \
	xor	tab_3(%rdi), p3

#else

#define	il_rnd(p1, p2, p3, p4, round)	/* last inverse round */ \
	mov	ik_ref(round,0), p1; \
	mov	ik_ref(round,1), p2; \
	mov	ik_ref(round,2), p3; \
	mov	ik_ref(round,3), p4; \
 \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	shr	$16, %eax; \
	xor	%esi, p1; \
	rol	$8, %edi; \
	xor	%edi, p2; \
	movzx	%al, %esi; \
	movzx	%ah, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p3; \
	xor	%edi, p4; \
 \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	shr	$16, %ebx; \
	xor	%esi, p2; \
	rol	$8, %edi; \
	xor	%edi, p3; \
	movzx	%bl, %esi; \
	movzx	%bh, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p4; \
	xor	%edi, p1; \
 \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	shr	$16, %ecx; \
	xor	%esi, p3; \
	rol	$8, %edi; \
	xor	%edi, p4; \
	movzx	%cl, %esi; \
	movzx	%ch, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p1; \
	xor	%edi, p2; \
 \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	shr	$16, %edx; \
	xor	%esi, p4; \
	rol	$8, %edi; \
	xor	%edi, p1; \
	movzx	%dl, %esi; \
	movzx	%dh, %edi; \
	movzx	tab_i(%rsi), %esi; \
	movzx	tab_i(%rdi), %edi; \
	rol	$16, %esi; \
	rol	$24, %edi; \
	xor	%esi, p2; \
	xor	%edi, p3

#endif	/* LAST_ROUND_TABLES */

/*
 * OpenSolaris OS:
 * void aes_encrypt_amd64(const aes_ks_t *ks, int Nr,
 *	const uint32_t pt[4], uint32_t ct[4])/
 *
 * Original interface:
 * int aes_encrypt(const unsigned char *in,
 *	unsigned char *out, const aes_encrypt_ctx cx[1])/
 */
.data
.align	64
enc_tab:
	enc_vals(u8)
#ifdef	LAST_ROUND_TABLES
	// Last Round Tables:
	enc_vals(w8)
#endif


ENTRY_NP(aes_encrypt_amd64)
#ifdef	GLADMAN_INTERFACE
	// Original interface
	sub	$[4*8], %rsp	// gnu/linux/opensolaris binary interface
	mov	%rsi, (%rsp)	// output pointer (P2)
	mov	%rdx, %r8	// context (P3)

	mov	%rbx, 1*8(%rsp)	// P1: input pointer in rdi
	mov	%rbp, 2*8(%rsp)	// P2: output pointer in (rsp)
	mov	%r12, 3*8(%rsp)	// P3: context in r8
	movzx	4*KS_LENGTH(kptr), %esi	// Get byte key length * 16

#else
	// OpenSolaris OS interface
	sub	$[4*8], %rsp	// Make room on stack to save registers
	mov	%rcx, (%rsp)	// Save output pointer (P4) on stack
	mov	%rdi, %r8	// context (P1)
	mov	%rdx, %rdi	// P3: save input pointer
	shl	$4, %esi	// P2: esi byte key length * 16

	mov	%rbx, 1*8(%rsp)	// Save registers
	mov	%rbp, 2*8(%rsp)
	mov	%r12, 3*8(%rsp)
	// P1: context in r8
	// P2: byte key length * 16 in esi
	// P3: input pointer in rdi
	// P4: output pointer in (rsp)
#endif	/* GLADMAN_INTERFACE */

	lea	enc_tab(%rip), tptr
	sub	$fofs, kptr

	// Load input block into registers
	mov	(%rdi), %eax
	mov	1*4(%rdi), %ebx
	mov	2*4(%rdi), %ecx
	mov	3*4(%rdi), %edx

	xor	fofs(kptr), %eax
	xor	fofs+4(kptr), %ebx
	xor	fofs+8(kptr), %ecx
	xor	fofs+12(kptr), %edx

	lea	(kptr,%rsi), kptr
	// Jump based on byte key length * 16:
	cmp	$[10*16], %esi
	je	3f
	cmp	$[12*16], %esi
	je	2f
	cmp	$[14*16], %esi
	je	1f
	mov	$-1, %rax	// error
	jmp	4f

	// Perform normal forward rounds
1:	ff_rnd(%r9d, %r10d, %r11d, %r12d, 13)
	ff_rnd(%r9d, %r10d, %r11d, %r12d, 12)
2:	ff_rnd(%r9d, %r10d, %r11d, %r12d, 11)
	ff_rnd(%r9d, %r10d, %r11d, %r12d, 10)
3:	ff_rnd(%r9d, %r10d, %r11d, %r12d,  9)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  8)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  7)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  6)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  5)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  4)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  3)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  2)
	ff_rnd(%r9d, %r10d, %r11d, %r12d,  1)
	fl_rnd(%r9d, %r10d, %r11d, %r12d,  0)

	// Copy results
	mov	(%rsp), %rbx
	mov	%r9d, (%rbx)
	mov	%r10d, 4(%rbx)
	mov	%r11d, 8(%rbx)
	mov	%r12d, 12(%rbx)
	xor	%rax, %rax
4:	// Restore registers
	mov	1*8(%rsp), %rbx
	mov	2*8(%rsp), %rbp
	mov	3*8(%rsp), %r12
	add	$[4*8], %rsp
	ret

	SET_SIZE(aes_encrypt_amd64)

/*
 * OpenSolaris OS:
 * void aes_decrypt_amd64(const aes_ks_t *ks, int Nr,
 *	const uint32_t pt[4], uint32_t ct[4])/
 *
 * Original interface:
 * int aes_decrypt(const unsigned char *in,
 *	unsigned char *out, const aes_encrypt_ctx cx[1])/
 */
.data
.align	64
dec_tab:
	dec_vals(v8)
#ifdef	LAST_ROUND_TABLES
	// Last Round Tables:
	dec_vals(w8)
#endif


ENTRY_NP(aes_decrypt_amd64)
#ifdef	GLADMAN_INTERFACE
	// Original interface
	sub	$[4*8], %rsp	// gnu/linux/opensolaris binary interface
	mov	%rsi, (%rsp)	// output pointer (P2)
	mov	%rdx, %r8	// context (P3)

	mov	%rbx, 1*8(%rsp)	// P1: input pointer in rdi
	mov	%rbp, 2*8(%rsp)	// P2: output pointer in (rsp)
	mov	%r12, 3*8(%rsp)	// P3: context in r8
	movzx	4*KS_LENGTH(kptr), %esi	// Get byte key length * 16

#else
	// OpenSolaris OS interface
	sub	$[4*8], %rsp	// Make room on stack to save registers
	mov	%rcx, (%rsp)	// Save output pointer (P4) on stack
	mov	%rdi, %r8	// context (P1)
	mov	%rdx, %rdi	// P3: save input pointer
	shl	$4, %esi	// P2: esi byte key length * 16

	mov	%rbx, 1*8(%rsp)	// Save registers
	mov	%rbp, 2*8(%rsp)
	mov	%r12, 3*8(%rsp)
	// P1: context in r8
	// P2: byte key length * 16 in esi
	// P3: input pointer in rdi
	// P4: output pointer in (rsp)
#endif	/* GLADMAN_INTERFACE */

	lea	dec_tab(%rip), tptr
	sub	$rofs, kptr

	// Load input block into registers
	mov	(%rdi), %eax
	mov	1*4(%rdi), %ebx
	mov	2*4(%rdi), %ecx
	mov	3*4(%rdi), %edx

#ifdef AES_REV_DKS
	mov	kptr, %rdi
	lea	(kptr,%rsi), kptr
#else
	lea	(kptr,%rsi), %rdi
#endif

	xor	rofs(%rdi), %eax
	xor	rofs+4(%rdi), %ebx
	xor	rofs+8(%rdi), %ecx
	xor	rofs+12(%rdi), %edx

	// Jump based on byte key length * 16:
	cmp	$[10*16], %esi
	je	3f
	cmp	$[12*16], %esi
	je	2f
	cmp	$[14*16], %esi
	je	1f
	mov	$-1, %rax	// error
	jmp	4f

	// Perform normal inverse rounds
1:	ii_rnd(%r9d, %r10d, %r11d, %r12d, 13)
	ii_rnd(%r9d, %r10d, %r11d, %r12d, 12)
2:	ii_rnd(%r9d, %r10d, %r11d, %r12d, 11)
	ii_rnd(%r9d, %r10d, %r11d, %r12d, 10)
3:	ii_rnd(%r9d, %r10d, %r11d, %r12d,  9)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  8)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  7)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  6)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  5)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  4)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  3)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  2)
	ii_rnd(%r9d, %r10d, %r11d, %r12d,  1)
	il_rnd(%r9d, %r10d, %r11d, %r12d,  0)

	// Copy results
	mov	(%rsp), %rbx
	mov	%r9d, (%rbx)
	mov	%r10d, 4(%rbx)
	mov	%r11d, 8(%rbx)
	mov	%r12d, 12(%rbx)
	xor	%rax, %rax
4:	// Restore registers
	mov	1*8(%rsp), %rbx
	mov	2*8(%rsp), %rbp
	mov	3*8(%rsp), %r12
	add	$[4*8], %rsp
	ret

	SET_SIZE(aes_decrypt_amd64)
#endif	/* lint || __lint */

#ifdef __ELF__
.section .note.GNU-stack,"",%progbits
#endif