Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 * LLNL-CODE-403049.
 * Rewritten for Linux by:
 *   Rohan Puri <rohan.puri15@gmail.com>
 *   Brian Behlendorf <behlendorf1@llnl.gov>
 */

#include <sys/zfs_znode.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>

/*
 * Common open routine.  Disallow any write access.
 */
/* ARGSUSED */
static int
zpl_common_open(struct inode *ip, struct file *filp)
{
	if (filp->f_mode & FMODE_WRITE)
		return (-EACCES);

	return (generic_file_open(ip, filp));
}

/*
 * Get root directory contents.
 */
static int
zpl_root_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
	zfsvfs_t *zfsvfs = ITOZSB(file_inode(filp));
	int error = 0;

	ZFS_ENTER(zfsvfs);

	if (!zpl_dir_emit_dots(filp, ctx))
		goto out;

	if (ctx->pos == 2) {
		if (!zpl_dir_emit(ctx, ZFS_SNAPDIR_NAME,
		    strlen(ZFS_SNAPDIR_NAME), ZFSCTL_INO_SNAPDIR, DT_DIR))
			goto out;

		ctx->pos++;
	}

	if (ctx->pos == 3) {
		if (!zpl_dir_emit(ctx, ZFS_SHAREDIR_NAME,
		    strlen(ZFS_SHAREDIR_NAME), ZFSCTL_INO_SHARES, DT_DIR))
			goto out;

		ctx->pos++;
	}
out:
	ZFS_EXIT(zfsvfs);

	return (error);
}

#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_root_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
	zpl_dir_context_t ctx =
	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
	int error;

	error = zpl_root_iterate(filp, &ctx);
	filp->f_pos = ctx.pos;

	return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */

/*
 * Get root directory attributes.
 */
/* ARGSUSED */
static int
zpl_root_getattr_impl(const struct path *path, struct kstat *stat,
    u32 request_mask, unsigned int query_flags)
{
	struct inode *ip = path->dentry->d_inode;

	generic_fillattr(ip, stat);
	stat->atime = current_time(ip);

	return (0);
}
ZPL_GETATTR_WRAPPER(zpl_root_getattr);

static struct dentry *
zpl_root_lookup(struct inode *dip, struct dentry *dentry, unsigned int flags)
{
	cred_t *cr = CRED();
	struct inode *ip;
	int error;

	crhold(cr);
	error = -zfsctl_root_lookup(dip, dname(dentry), &ip, 0, cr, NULL, NULL);
	ASSERT3S(error, <=, 0);
	crfree(cr);

	if (error) {
		if (error == -ENOENT)
			return (d_splice_alias(NULL, dentry));
		else
			return (ERR_PTR(error));
	}

	return (d_splice_alias(ip, dentry));
}

/*
 * The '.zfs' control directory file and inode operations.
 */
const struct file_operations zpl_fops_root = {
	.open		= zpl_common_open,
	.llseek		= generic_file_llseek,
	.read		= generic_read_dir,
#ifdef HAVE_VFS_ITERATE_SHARED
	.iterate_shared	= zpl_root_iterate,
#elif defined(HAVE_VFS_ITERATE)
	.iterate	= zpl_root_iterate,
#else
	.readdir	= zpl_root_readdir,
#endif
};

const struct inode_operations zpl_ops_root = {
	.lookup		= zpl_root_lookup,
	.getattr	= zpl_root_getattr,
};

static struct vfsmount *
zpl_snapdir_automount(struct path *path)
{
	int error;

	error = -zfsctl_snapshot_mount(path, 0);
	if (error)
		return (ERR_PTR(error));

	/*
	 * Rather than returning the new vfsmount for the snapshot we must
	 * return NULL to indicate a mount collision.  This is done because
	 * the user space mount calls do_add_mount() which adds the vfsmount
	 * to the name space.  If we returned the new mount here it would be
	 * added again to the vfsmount list resulting in list corruption.
	 */
	return (NULL);
}

/*
 * Negative dentries must always be revalidated so newly created snapshots
 * can be detected and automounted.  Normal dentries should be kept because
 * as of the 3.18 kernel revaliding the mountpoint dentry will result in
 * the snapshot being immediately unmounted.
 */
static int
#ifdef HAVE_D_REVALIDATE_NAMEIDATA
zpl_snapdir_revalidate(struct dentry *dentry, struct nameidata *i)
#else
zpl_snapdir_revalidate(struct dentry *dentry, unsigned int flags)
#endif
{
	return (!!dentry->d_inode);
}

dentry_operations_t zpl_dops_snapdirs = {
/*
 * Auto mounting of snapshots is only supported for 2.6.37 and
 * newer kernels.  Prior to this kernel the ops->follow_link()
 * callback was used as a hack to trigger the mount.  The
 * resulting vfsmount was then explicitly grafted in to the
 * name space.  While it might be possible to add compatibility
 * code to accomplish this it would require considerable care.
 */
	.d_automount	= zpl_snapdir_automount,
	.d_revalidate	= zpl_snapdir_revalidate,
};

static struct dentry *
zpl_snapdir_lookup(struct inode *dip, struct dentry *dentry,
    unsigned int flags)
{
	fstrans_cookie_t cookie;
	cred_t *cr = CRED();
	struct inode *ip = NULL;
	int error;

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfsctl_snapdir_lookup(dip, dname(dentry), &ip,
	    0, cr, NULL, NULL);
	ASSERT3S(error, <=, 0);
	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error && error != -ENOENT)
		return (ERR_PTR(error));

	ASSERT(error == 0 || ip == NULL);
	d_clear_d_op(dentry);
	d_set_d_op(dentry, &zpl_dops_snapdirs);
	dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;

	return (d_splice_alias(ip, dentry));
}

static int
zpl_snapdir_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
	zfsvfs_t *zfsvfs = ITOZSB(file_inode(filp));
	fstrans_cookie_t cookie;
	char snapname[MAXNAMELEN];
	boolean_t case_conflict;
	uint64_t id, pos;
	int error = 0;

	ZFS_ENTER(zfsvfs);
	cookie = spl_fstrans_mark();

	if (!zpl_dir_emit_dots(filp, ctx))
		goto out;

	pos = ctx->pos;
	while (error == 0) {
		dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
		error = -dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN,
		    snapname, &id, &pos, &case_conflict);
		dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
		if (error)
			goto out;

		if (!zpl_dir_emit(ctx, snapname, strlen(snapname),
		    ZFSCTL_INO_SHARES - id, DT_DIR))
			goto out;

		ctx->pos = pos;
	}
out:
	spl_fstrans_unmark(cookie);
	ZFS_EXIT(zfsvfs);

	if (error == -ENOENT)
		return (0);

	return (error);
}

#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_snapdir_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
	zpl_dir_context_t ctx =
	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
	int error;

	error = zpl_snapdir_iterate(filp, &ctx);
	filp->f_pos = ctx.pos;

	return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */

static int
zpl_snapdir_rename2(struct inode *sdip, struct dentry *sdentry,
    struct inode *tdip, struct dentry *tdentry, unsigned int flags)
{
	cred_t *cr = CRED();
	int error;

	/* We probably don't want to support renameat2(2) in ctldir */
	if (flags)
		return (-EINVAL);

	crhold(cr);
	error = -zfsctl_snapdir_rename(sdip, dname(sdentry),
	    tdip, dname(tdentry), cr, 0);
	ASSERT3S(error, <=, 0);
	crfree(cr);

	return (error);
}

#ifndef HAVE_RENAME_WANTS_FLAGS
static int
zpl_snapdir_rename(struct inode *sdip, struct dentry *sdentry,
    struct inode *tdip, struct dentry *tdentry)
{
	return (zpl_snapdir_rename2(sdip, sdentry, tdip, tdentry, 0));
}
#endif

static int
zpl_snapdir_rmdir(struct inode *dip, struct dentry *dentry)
{
	cred_t *cr = CRED();
	int error;

	crhold(cr);
	error = -zfsctl_snapdir_remove(dip, dname(dentry), cr, 0);
	ASSERT3S(error, <=, 0);
	crfree(cr);

	return (error);
}

static int
zpl_snapdir_mkdir(struct inode *dip, struct dentry *dentry, umode_t mode)
{
	cred_t *cr = CRED();
	vattr_t *vap;
	struct inode *ip;
	int error;

	crhold(cr);
	vap = kmem_zalloc(sizeof (vattr_t), KM_SLEEP);
	zpl_vap_init(vap, dip, mode | S_IFDIR, cr);

	error = -zfsctl_snapdir_mkdir(dip, dname(dentry), vap, &ip, cr, 0);
	if (error == 0) {
		d_clear_d_op(dentry);
		d_set_d_op(dentry, &zpl_dops_snapdirs);
		d_instantiate(dentry, ip);
	}

	kmem_free(vap, sizeof (vattr_t));
	ASSERT3S(error, <=, 0);
	crfree(cr);

	return (error);
}

/*
 * Get snapshot directory attributes.
 */
/* ARGSUSED */
static int
zpl_snapdir_getattr_impl(const struct path *path, struct kstat *stat,
    u32 request_mask, unsigned int query_flags)
{
	struct inode *ip = path->dentry->d_inode;
	zfsvfs_t *zfsvfs = ITOZSB(ip);

	ZFS_ENTER(zfsvfs);
	generic_fillattr(ip, stat);

	stat->nlink = stat->size = 2;
	stat->ctime = stat->mtime = dmu_objset_snap_cmtime(zfsvfs->z_os);
	stat->atime = current_time(ip);
	ZFS_EXIT(zfsvfs);

	return (0);
}
ZPL_GETATTR_WRAPPER(zpl_snapdir_getattr);

/*
 * The '.zfs/snapshot' directory file operations.  These mainly control
 * generating the list of available snapshots when doing an 'ls' in the
 * directory.  See zpl_snapdir_readdir().
 */
const struct file_operations zpl_fops_snapdir = {
	.open		= zpl_common_open,
	.llseek		= generic_file_llseek,
	.read		= generic_read_dir,
#ifdef HAVE_VFS_ITERATE_SHARED
	.iterate_shared	= zpl_snapdir_iterate,
#elif defined(HAVE_VFS_ITERATE)
	.iterate	= zpl_snapdir_iterate,
#else
	.readdir	= zpl_snapdir_readdir,
#endif

};

/*
 * The '.zfs/snapshot' directory inode operations.  These mainly control
 * creating an inode for a snapshot directory and initializing the needed
 * infrastructure to automount the snapshot.  See zpl_snapdir_lookup().
 */
const struct inode_operations zpl_ops_snapdir = {
	.lookup		= zpl_snapdir_lookup,
	.getattr	= zpl_snapdir_getattr,
#ifdef HAVE_RENAME_WANTS_FLAGS
	.rename		= zpl_snapdir_rename2,
#else
	.rename		= zpl_snapdir_rename,
#endif
	.rmdir		= zpl_snapdir_rmdir,
	.mkdir		= zpl_snapdir_mkdir,
};

static struct dentry *
zpl_shares_lookup(struct inode *dip, struct dentry *dentry,
    unsigned int flags)
{
	fstrans_cookie_t cookie;
	cred_t *cr = CRED();
	struct inode *ip = NULL;
	int error;

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfsctl_shares_lookup(dip, dname(dentry), &ip,
	    0, cr, NULL, NULL);
	ASSERT3S(error, <=, 0);
	spl_fstrans_unmark(cookie);
	crfree(cr);

	if (error) {
		if (error == -ENOENT)
			return (d_splice_alias(NULL, dentry));
		else
			return (ERR_PTR(error));
	}

	return (d_splice_alias(ip, dentry));
}

static int
zpl_shares_iterate(struct file *filp, zpl_dir_context_t *ctx)
{
	fstrans_cookie_t cookie;
	cred_t *cr = CRED();
	zfsvfs_t *zfsvfs = ITOZSB(file_inode(filp));
	znode_t *dzp;
	int error = 0;

	ZFS_ENTER(zfsvfs);
	cookie = spl_fstrans_mark();

	if (zfsvfs->z_shares_dir == 0) {
		zpl_dir_emit_dots(filp, ctx);
		goto out;
	}

	error = -zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp);
	if (error)
		goto out;

	crhold(cr);
	error = -zfs_readdir(ZTOI(dzp), ctx, cr);
	crfree(cr);

	iput(ZTOI(dzp));
out:
	spl_fstrans_unmark(cookie);
	ZFS_EXIT(zfsvfs);
	ASSERT3S(error, <=, 0);

	return (error);
}

#if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
static int
zpl_shares_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
	zpl_dir_context_t ctx =
	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
	int error;

	error = zpl_shares_iterate(filp, &ctx);
	filp->f_pos = ctx.pos;

	return (error);
}
#endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */

/* ARGSUSED */
static int
zpl_shares_getattr_impl(const struct path *path, struct kstat *stat,
    u32 request_mask, unsigned int query_flags)
{
	struct inode *ip = path->dentry->d_inode;
	zfsvfs_t *zfsvfs = ITOZSB(ip);
	znode_t *dzp;
	int error;

	ZFS_ENTER(zfsvfs);

	if (zfsvfs->z_shares_dir == 0) {
		generic_fillattr(path->dentry->d_inode, stat);
		stat->nlink = stat->size = 2;
		stat->atime = current_time(ip);
		ZFS_EXIT(zfsvfs);
		return (0);
	}

	error = -zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp);
	if (error == 0) {
		error = -zfs_getattr_fast(ZTOI(dzp), stat);
		iput(ZTOI(dzp));
	}

	ZFS_EXIT(zfsvfs);
	ASSERT3S(error, <=, 0);

	return (error);
}
ZPL_GETATTR_WRAPPER(zpl_shares_getattr);

/*
 * The '.zfs/shares' directory file operations.
 */
const struct file_operations zpl_fops_shares = {
	.open		= zpl_common_open,
	.llseek		= generic_file_llseek,
	.read		= generic_read_dir,
#ifdef HAVE_VFS_ITERATE_SHARED
	.iterate_shared	= zpl_shares_iterate,
#elif defined(HAVE_VFS_ITERATE)
	.iterate	= zpl_shares_iterate,
#else
	.readdir	= zpl_shares_readdir,
#endif

};

/*
 * The '.zfs/shares' directory inode operations.
 */
const struct inode_operations zpl_ops_shares = {
	.lookup		= zpl_shares_lookup,
	.getattr	= zpl_shares_getattr,
};