Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
/*-
 * SPDX-License-Identifier: Beerware
 *
 * ----------------------------------------------------------------------------
 * "THE BEER-WARE LICENSE" (Revision 42):
 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
 * can do whatever you want with this stuff. If we meet some day, and you think
 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
 * ----------------------------------------------------------------------------
 *
 * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
 * All rights reserved.
 *
 * Portions of this software were developed by Julien Ridoux at the University
 * of Melbourne under sponsorship from the FreeBSD Foundation.
 *
 * Portions of this software were developed by Konstantin Belousov
 * under sponsorship from the FreeBSD Foundation.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ntp.h"
#include "opt_ffclock.h"

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sbuf.h>
#include <sys/sleepqueue.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/timeffc.h>
#include <sys/timepps.h>
#include <sys/timetc.h>
#include <sys/timex.h>
#include <sys/vdso.h>

/*
 * A large step happens on boot.  This constant detects such steps.
 * It is relatively small so that ntp_update_second gets called enough
 * in the typical 'missed a couple of seconds' case, but doesn't loop
 * forever when the time step is large.
 */
#define LARGE_STEP	200

/*
 * Implement a dummy timecounter which we can use until we get a real one
 * in the air.  This allows the console and other early stuff to use
 * time services.
 */

static u_int
dummy_get_timecount(struct timecounter *tc)
{
	static u_int now;

	return (++now);
}

static struct timecounter dummy_timecounter = {
	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
};

struct timehands {
	/* These fields must be initialized by the driver. */
	struct timecounter	*th_counter;
	int64_t			th_adjustment;
	uint64_t		th_scale;
	u_int			th_large_delta;
	u_int	 		th_offset_count;
	struct bintime		th_offset;
	struct bintime		th_bintime;
	struct timeval		th_microtime;
	struct timespec		th_nanotime;
	struct bintime		th_boottime;
	/* Fields not to be copied in tc_windup start with th_generation. */
	u_int			th_generation;
	struct timehands	*th_next;
};

static struct timehands ths[16] = {
    [0] =  {
	.th_counter = &dummy_timecounter,
	.th_scale = (uint64_t)-1 / 1000000,
	.th_large_delta = 1000000,
	.th_offset = { .sec = 1 },
	.th_generation = 1,
    },
};

static struct timehands *volatile timehands = &ths[0];
struct timecounter *timecounter = &dummy_timecounter;
static struct timecounter *timecounters = &dummy_timecounter;

int tc_min_ticktock_freq = 1;

volatile time_t time_second = 1;
volatile time_t time_uptime = 1;

static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime,
    CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_kern_boottime, "S,timeval",
    "System boottime");

SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "");
static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc,
    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "");

static int timestepwarnings;
SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
    &timestepwarnings, 0, "Log time steps");

static int timehands_count = 2;
SYSCTL_INT(_kern_timecounter, OID_AUTO, timehands_count,
    CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
    &timehands_count, 0, "Count of timehands in rotation");

struct bintime bt_timethreshold;
struct bintime bt_tickthreshold;
sbintime_t sbt_timethreshold;
sbintime_t sbt_tickthreshold;
struct bintime tc_tick_bt;
sbintime_t tc_tick_sbt;
int tc_precexp;
int tc_timepercentage = TC_DEFAULTPERC;
static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
    sysctl_kern_timecounter_adjprecision, "I",
    "Allowed time interval deviation in percents");

volatile int rtc_generation = 1;

static int tc_chosen;	/* Non-zero if a specific tc was chosen via sysctl. */

static void tc_windup(struct bintime *new_boottimebin);
static void cpu_tick_calibrate(int);

void dtrace_getnanotime(struct timespec *tsp);

static int
sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
{
	struct timeval boottime;

	getboottime(&boottime);

/* i386 is the only arch which uses a 32bits time_t */
#ifdef __amd64__
#ifdef SCTL_MASK32
	int tv[2];

	if (req->flags & SCTL_MASK32) {
		tv[0] = boottime.tv_sec;
		tv[1] = boottime.tv_usec;
		return (SYSCTL_OUT(req, tv, sizeof(tv)));
	}
#endif
#endif
	return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
}

static int
sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
{
	u_int ncount;
	struct timecounter *tc = arg1;

	ncount = tc->tc_get_timecount(tc);
	return (sysctl_handle_int(oidp, &ncount, 0, req));
}

static int
sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
{
	uint64_t freq;
	struct timecounter *tc = arg1;

	freq = tc->tc_frequency;
	return (sysctl_handle_64(oidp, &freq, 0, req));
}

/*
 * Return the difference between the timehands' counter value now and what
 * was when we copied it to the timehands' offset_count.
 */
static __inline u_int
tc_delta(struct timehands *th)
{
	struct timecounter *tc;

	tc = th->th_counter;
	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
	    tc->tc_counter_mask);
}

/*
 * Functions for reading the time.  We have to loop until we are sure that
 * the timehands that we operated on was not updated under our feet.  See
 * the comment in <sys/time.h> for a description of these 12 functions.
 */

static __inline void
bintime_off(struct bintime *bt, u_int off)
{
	struct timehands *th;
	struct bintime *btp;
	uint64_t scale, x;
	u_int delta, gen, large_delta;

	do {
		th = timehands;
		gen = atomic_load_acq_int(&th->th_generation);
		btp = (struct bintime *)((vm_offset_t)th + off);
		*bt = *btp;
		scale = th->th_scale;
		delta = tc_delta(th);
		large_delta = th->th_large_delta;
		atomic_thread_fence_acq();
	} while (gen == 0 || gen != th->th_generation);

	if (__predict_false(delta >= large_delta)) {
		/* Avoid overflow for scale * delta. */
		x = (scale >> 32) * delta;
		bt->sec += x >> 32;
		bintime_addx(bt, x << 32);
		bintime_addx(bt, (scale & 0xffffffff) * delta);
	} else {
		bintime_addx(bt, scale * delta);
	}
}
#define	GETTHBINTIME(dst, member)					\
do {									\
	_Static_assert(_Generic(((struct timehands *)NULL)->member,	\
	    struct bintime: 1, default: 0) == 1,			\
	    "struct timehands member is not of struct bintime type");	\
	bintime_off(dst, __offsetof(struct timehands, member));		\
} while (0)

static __inline void
getthmember(void *out, size_t out_size, u_int off)
{
	struct timehands *th;
	u_int gen;

	do {
		th = timehands;
		gen = atomic_load_acq_int(&th->th_generation);
		memcpy(out, (char *)th + off, out_size);
		atomic_thread_fence_acq();
	} while (gen == 0 || gen != th->th_generation);
}
#define	GETTHMEMBER(dst, member)					\
do {									\
	_Static_assert(_Generic(*dst,					\
	    __typeof(((struct timehands *)NULL)->member): 1,		\
	    default: 0) == 1,						\
	    "*dst and struct timehands member have different types");	\
	getthmember(dst, sizeof(*dst), __offsetof(struct timehands,	\
	    member));							\
} while (0)

#ifdef FFCLOCK
void
fbclock_binuptime(struct bintime *bt)
{

	GETTHBINTIME(bt, th_offset);
}

void
fbclock_nanouptime(struct timespec *tsp)
{
	struct bintime bt;

	fbclock_binuptime(&bt);
	bintime2timespec(&bt, tsp);
}

void
fbclock_microuptime(struct timeval *tvp)
{
	struct bintime bt;

	fbclock_binuptime(&bt);
	bintime2timeval(&bt, tvp);
}

void
fbclock_bintime(struct bintime *bt)
{

	GETTHBINTIME(bt, th_bintime);
}

void
fbclock_nanotime(struct timespec *tsp)
{
	struct bintime bt;

	fbclock_bintime(&bt);
	bintime2timespec(&bt, tsp);
}

void
fbclock_microtime(struct timeval *tvp)
{
	struct bintime bt;

	fbclock_bintime(&bt);
	bintime2timeval(&bt, tvp);
}

void
fbclock_getbinuptime(struct bintime *bt)
{

	GETTHMEMBER(bt, th_offset);
}

void
fbclock_getnanouptime(struct timespec *tsp)
{
	struct bintime bt;

	GETTHMEMBER(&bt, th_offset);
	bintime2timespec(&bt, tsp);
}

void
fbclock_getmicrouptime(struct timeval *tvp)
{
	struct bintime bt;

	GETTHMEMBER(&bt, th_offset);
	bintime2timeval(&bt, tvp);
}

void
fbclock_getbintime(struct bintime *bt)
{

	GETTHMEMBER(bt, th_bintime);
}

void
fbclock_getnanotime(struct timespec *tsp)
{

	GETTHMEMBER(tsp, th_nanotime);
}

void
fbclock_getmicrotime(struct timeval *tvp)
{

	GETTHMEMBER(tvp, th_microtime);
}
#else /* !FFCLOCK */

void
binuptime(struct bintime *bt)
{

	GETTHBINTIME(bt, th_offset);
}

void
nanouptime(struct timespec *tsp)
{
	struct bintime bt;

	binuptime(&bt);
	bintime2timespec(&bt, tsp);
}

void
microuptime(struct timeval *tvp)
{
	struct bintime bt;

	binuptime(&bt);
	bintime2timeval(&bt, tvp);
}

void
bintime(struct bintime *bt)
{

	GETTHBINTIME(bt, th_bintime);
}

void
nanotime(struct timespec *tsp)
{
	struct bintime bt;

	bintime(&bt);
	bintime2timespec(&bt, tsp);
}

void
microtime(struct timeval *tvp)
{
	struct bintime bt;

	bintime(&bt);
	bintime2timeval(&bt, tvp);
}

void
getbinuptime(struct bintime *bt)
{

	GETTHMEMBER(bt, th_offset);
}

void
getnanouptime(struct timespec *tsp)
{
	struct bintime bt;

	GETTHMEMBER(&bt, th_offset);
	bintime2timespec(&bt, tsp);
}

void
getmicrouptime(struct timeval *tvp)
{
	struct bintime bt;

	GETTHMEMBER(&bt, th_offset);
	bintime2timeval(&bt, tvp);
}

void
getbintime(struct bintime *bt)
{

	GETTHMEMBER(bt, th_bintime);
}

void
getnanotime(struct timespec *tsp)
{

	GETTHMEMBER(tsp, th_nanotime);
}

void
getmicrotime(struct timeval *tvp)
{

	GETTHMEMBER(tvp, th_microtime);
}
#endif /* FFCLOCK */

void
getboottime(struct timeval *boottime)
{
	struct bintime boottimebin;

	getboottimebin(&boottimebin);
	bintime2timeval(&boottimebin, boottime);
}

void
getboottimebin(struct bintime *boottimebin)
{

	GETTHMEMBER(boottimebin, th_boottime);
}

#ifdef FFCLOCK
/*
 * Support for feed-forward synchronization algorithms. This is heavily inspired
 * by the timehands mechanism but kept independent from it. *_windup() functions
 * have some connection to avoid accessing the timecounter hardware more than
 * necessary.
 */

/* Feed-forward clock estimates kept updated by the synchronization daemon. */
struct ffclock_estimate ffclock_estimate;
struct bintime ffclock_boottime;	/* Feed-forward boot time estimate. */
uint32_t ffclock_status;		/* Feed-forward clock status. */
int8_t ffclock_updated;			/* New estimates are available. */
struct mtx ffclock_mtx;			/* Mutex on ffclock_estimate. */

struct fftimehands {
	struct ffclock_estimate	cest;
	struct bintime		tick_time;
	struct bintime		tick_time_lerp;
	ffcounter		tick_ffcount;
	uint64_t		period_lerp;
	volatile uint8_t	gen;
	struct fftimehands	*next;
};

#define	NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))

static struct fftimehands ffth[10];
static struct fftimehands *volatile fftimehands = ffth;

static void
ffclock_init(void)
{
	struct fftimehands *cur;
	struct fftimehands *last;

	memset(ffth, 0, sizeof(ffth));

	last = ffth + NUM_ELEMENTS(ffth) - 1;
	for (cur = ffth; cur < last; cur++)
		cur->next = cur + 1;
	last->next = ffth;

	ffclock_updated = 0;
	ffclock_status = FFCLOCK_STA_UNSYNC;
	mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
}

/*
 * Reset the feed-forward clock estimates. Called from inittodr() to get things
 * kick started and uses the timecounter nominal frequency as a first period
 * estimate. Note: this function may be called several time just after boot.
 * Note: this is the only function that sets the value of boot time for the
 * monotonic (i.e. uptime) version of the feed-forward clock.
 */
void
ffclock_reset_clock(struct timespec *ts)
{
	struct timecounter *tc;
	struct ffclock_estimate cest;

	tc = timehands->th_counter;
	memset(&cest, 0, sizeof(struct ffclock_estimate));

	timespec2bintime(ts, &ffclock_boottime);
	timespec2bintime(ts, &(cest.update_time));
	ffclock_read_counter(&cest.update_ffcount);
	cest.leapsec_next = 0;
	cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
	cest.errb_abs = 0;
	cest.errb_rate = 0;
	cest.status = FFCLOCK_STA_UNSYNC;
	cest.leapsec_total = 0;
	cest.leapsec = 0;

	mtx_lock(&ffclock_mtx);
	bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
	ffclock_updated = INT8_MAX;
	mtx_unlock(&ffclock_mtx);

	printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
	    (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
	    (unsigned long)ts->tv_nsec);
}

/*
 * Sub-routine to convert a time interval measured in RAW counter units to time
 * in seconds stored in bintime format.
 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
 * extra cycles.
 */
static void
ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
{
	struct bintime bt2;
	ffcounter delta, delta_max;

	delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
	bintime_clear(bt);
	do {
		if (ffdelta > delta_max)
			delta = delta_max;
		else
			delta = ffdelta;
		bt2.sec = 0;
		bt2.frac = period;
		bintime_mul(&bt2, (unsigned int)delta);
		bintime_add(bt, &bt2);
		ffdelta -= delta;
	} while (ffdelta > 0);
}

/*
 * Update the fftimehands.
 * Push the tick ffcount and time(s) forward based on current clock estimate.
 * The conversion from ffcounter to bintime relies on the difference clock
 * principle, whose accuracy relies on computing small time intervals. If a new
 * clock estimate has been passed by the synchronisation daemon, make it
 * current, and compute the linear interpolation for monotonic time if needed.
 */
static void
ffclock_windup(unsigned int delta)
{
	struct ffclock_estimate *cest;
	struct fftimehands *ffth;
	struct bintime bt, gap_lerp;
	ffcounter ffdelta;
	uint64_t frac;
	unsigned int polling;
	uint8_t forward_jump, ogen;

	/*
	 * Pick the next timehand, copy current ffclock estimates and move tick
	 * times and counter forward.
	 */
	forward_jump = 0;
	ffth = fftimehands->next;
	ogen = ffth->gen;
	ffth->gen = 0;
	cest = &ffth->cest;
	bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
	ffdelta = (ffcounter)delta;
	ffth->period_lerp = fftimehands->period_lerp;

	ffth->tick_time = fftimehands->tick_time;
	ffclock_convert_delta(ffdelta, cest->period, &bt);
	bintime_add(&ffth->tick_time, &bt);

	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
	ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
	bintime_add(&ffth->tick_time_lerp, &bt);

	ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;

	/*
	 * Assess the status of the clock, if the last update is too old, it is
	 * likely the synchronisation daemon is dead and the clock is free
	 * running.
	 */
	if (ffclock_updated == 0) {
		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
		ffclock_convert_delta(ffdelta, cest->period, &bt);
		if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
			ffclock_status |= FFCLOCK_STA_UNSYNC;
	}

	/*
	 * If available, grab updated clock estimates and make them current.
	 * Recompute time at this tick using the updated estimates. The clock
	 * estimates passed the feed-forward synchronisation daemon may result
	 * in time conversion that is not monotonically increasing (just after
	 * the update). time_lerp is a particular linear interpolation over the
	 * synchronisation algo polling period that ensures monotonicity for the
	 * clock ids requesting it.
	 */
	if (ffclock_updated > 0) {
		bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
		ffdelta = ffth->tick_ffcount - cest->update_ffcount;
		ffth->tick_time = cest->update_time;
		ffclock_convert_delta(ffdelta, cest->period, &bt);
		bintime_add(&ffth->tick_time, &bt);

		/* ffclock_reset sets ffclock_updated to INT8_MAX */
		if (ffclock_updated == INT8_MAX)
			ffth->tick_time_lerp = ffth->tick_time;

		if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
			forward_jump = 1;
		else
			forward_jump = 0;

		bintime_clear(&gap_lerp);
		if (forward_jump) {
			gap_lerp = ffth->tick_time;
			bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
		} else {
			gap_lerp = ffth->tick_time_lerp;
			bintime_sub(&gap_lerp, &ffth->tick_time);
		}

		/*
		 * The reset from the RTC clock may be far from accurate, and
		 * reducing the gap between real time and interpolated time
		 * could take a very long time if the interpolated clock insists
		 * on strict monotonicity. The clock is reset under very strict
		 * conditions (kernel time is known to be wrong and
		 * synchronization daemon has been restarted recently.
		 * ffclock_boottime absorbs the jump to ensure boot time is
		 * correct and uptime functions stay consistent.
		 */
		if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
		    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
		    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
			if (forward_jump)
				bintime_add(&ffclock_boottime, &gap_lerp);
			else
				bintime_sub(&ffclock_boottime, &gap_lerp);
			ffth->tick_time_lerp = ffth->tick_time;
			bintime_clear(&gap_lerp);
		}

		ffclock_status = cest->status;
		ffth->period_lerp = cest->period;

		/*
		 * Compute corrected period used for the linear interpolation of
		 * time. The rate of linear interpolation is capped to 5000PPM
		 * (5ms/s).
		 */
		if (bintime_isset(&gap_lerp)) {
			ffdelta = cest->update_ffcount;
			ffdelta -= fftimehands->cest.update_ffcount;
			ffclock_convert_delta(ffdelta, cest->period, &bt);
			polling = bt.sec;
			bt.sec = 0;
			bt.frac = 5000000 * (uint64_t)18446744073LL;
			bintime_mul(&bt, polling);
			if (bintime_cmp(&gap_lerp, &bt, >))
				gap_lerp = bt;

			/* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
			frac = 0;
			if (gap_lerp.sec > 0) {
				frac -= 1;
				frac /= ffdelta / gap_lerp.sec;
			}
			frac += gap_lerp.frac / ffdelta;

			if (forward_jump)
				ffth->period_lerp += frac;
			else
				ffth->period_lerp -= frac;
		}

		ffclock_updated = 0;
	}
	if (++ogen == 0)
		ogen = 1;
	ffth->gen = ogen;
	fftimehands = ffth;
}

/*
 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
 * the old and new hardware counter cannot be read simultaneously. tc_windup()
 * does read the two counters 'back to back', but a few cycles are effectively
 * lost, and not accumulated in tick_ffcount. This is a fairly radical
 * operation for a feed-forward synchronization daemon, and it is its job to not
 * pushing irrelevant data to the kernel. Because there is no locking here,
 * simply force to ignore pending or next update to give daemon a chance to
 * realize the counter has changed.
 */
static void
ffclock_change_tc(struct timehands *th)
{
	struct fftimehands *ffth;
	struct ffclock_estimate *cest;
	struct timecounter *tc;
	uint8_t ogen;

	tc = th->th_counter;
	ffth = fftimehands->next;
	ogen = ffth->gen;
	ffth->gen = 0;

	cest = &ffth->cest;
	bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
	cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
	cest->errb_abs = 0;
	cest->errb_rate = 0;
	cest->status |= FFCLOCK_STA_UNSYNC;

	ffth->tick_ffcount = fftimehands->tick_ffcount;
	ffth->tick_time_lerp = fftimehands->tick_time_lerp;
	ffth->tick_time = fftimehands->tick_time;
	ffth->period_lerp = cest->period;

	/* Do not lock but ignore next update from synchronization daemon. */
	ffclock_updated--;

	if (++ogen == 0)
		ogen = 1;
	ffth->gen = ogen;
	fftimehands = ffth;
}

/*
 * Retrieve feed-forward counter and time of last kernel tick.
 */
void
ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
{
	struct fftimehands *ffth;
	uint8_t gen;

	/*
	 * No locking but check generation has not changed. Also need to make
	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
	 */
	do {
		ffth = fftimehands;
		gen = ffth->gen;
		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
			*bt = ffth->tick_time_lerp;
		else
			*bt = ffth->tick_time;
		*ffcount = ffth->tick_ffcount;
	} while (gen == 0 || gen != ffth->gen);
}

/*
 * Absolute clock conversion. Low level function to convert ffcounter to
 * bintime. The ffcounter is converted using the current ffclock period estimate
 * or the "interpolated period" to ensure monotonicity.
 * NOTE: this conversion may have been deferred, and the clock updated since the
 * hardware counter has been read.
 */
void
ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
{
	struct fftimehands *ffth;
	struct bintime bt2;
	ffcounter ffdelta;
	uint8_t gen;

	/*
	 * No locking but check generation has not changed. Also need to make
	 * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
	 */
	do {
		ffth = fftimehands;
		gen = ffth->gen;
		if (ffcount > ffth->tick_ffcount)
			ffdelta = ffcount - ffth->tick_ffcount;
		else
			ffdelta = ffth->tick_ffcount - ffcount;

		if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
			*bt = ffth->tick_time_lerp;
			ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
		} else {
			*bt = ffth->tick_time;
			ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
		}

		if (ffcount > ffth->tick_ffcount)
			bintime_add(bt, &bt2);
		else
			bintime_sub(bt, &bt2);
	} while (gen == 0 || gen != ffth->gen);
}

/*
 * Difference clock conversion.
 * Low level function to Convert a time interval measured in RAW counter units
 * into bintime. The difference clock allows measuring small intervals much more
 * reliably than the absolute clock.
 */
void
ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
{
	struct fftimehands *ffth;
	uint8_t gen;

	/* No locking but check generation has not changed. */
	do {
		ffth = fftimehands;
		gen = ffth->gen;
		ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
	} while (gen == 0 || gen != ffth->gen);
}

/*
 * Access to current ffcounter value.
 */
void
ffclock_read_counter(ffcounter *ffcount)
{
	struct timehands *th;
	struct fftimehands *ffth;
	unsigned int gen, delta;

	/*
	 * ffclock_windup() called from tc_windup(), safe to rely on
	 * th->th_generation only, for correct delta and ffcounter.
	 */
	do {
		th = timehands;
		gen = atomic_load_acq_int(&th->th_generation);
		ffth = fftimehands;
		delta = tc_delta(th);
		*ffcount = ffth->tick_ffcount;
		atomic_thread_fence_acq();
	} while (gen == 0 || gen != th->th_generation);

	*ffcount += delta;
}

void
binuptime(struct bintime *bt)
{

	binuptime_fromclock(bt, sysclock_active);
}

void
nanouptime(struct timespec *tsp)
{

	nanouptime_fromclock(tsp, sysclock_active);
}

void
microuptime(struct timeval *tvp)
{

	microuptime_fromclock(tvp, sysclock_active);
}

void
bintime(struct bintime *bt)
{

	bintime_fromclock(bt, sysclock_active);
}

void
nanotime(struct timespec *tsp)
{

	nanotime_fromclock(tsp, sysclock_active);
}

void
microtime(struct timeval *tvp)
{

	microtime_fromclock(tvp, sysclock_active);
}

void
getbinuptime(struct bintime *bt)
{

	getbinuptime_fromclock(bt, sysclock_active);
}

void
getnanouptime(struct timespec *tsp)
{

	getnanouptime_fromclock(tsp, sysclock_active);
}

void
getmicrouptime(struct timeval *tvp)
{

	getmicrouptime_fromclock(tvp, sysclock_active);
}

void
getbintime(struct bintime *bt)
{

	getbintime_fromclock(bt, sysclock_active);
}

void
getnanotime(struct timespec *tsp)
{

	getnanotime_fromclock(tsp, sysclock_active);
}

void
getmicrotime(struct timeval *tvp)
{

	getmicrouptime_fromclock(tvp, sysclock_active);
}

#endif /* FFCLOCK */

/*
 * This is a clone of getnanotime and used for walltimestamps.
 * The dtrace_ prefix prevents fbt from creating probes for
 * it so walltimestamp can be safely used in all fbt probes.
 */
void
dtrace_getnanotime(struct timespec *tsp)
{

	GETTHMEMBER(tsp, th_nanotime);
}

/*
 * System clock currently providing time to the system. Modifiable via sysctl
 * when the FFCLOCK option is defined.
 */
int sysclock_active = SYSCLOCK_FBCK;

/* Internal NTP status and error estimates. */
extern int time_status;
extern long time_esterror;

/*
 * Take a snapshot of sysclock data which can be used to compare system clocks
 * and generate timestamps after the fact.
 */
void
sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
{
	struct fbclock_info *fbi;
	struct timehands *th;
	struct bintime bt;
	unsigned int delta, gen;
#ifdef FFCLOCK
	ffcounter ffcount;
	struct fftimehands *ffth;
	struct ffclock_info *ffi;
	struct ffclock_estimate cest;

	ffi = &clock_snap->ff_info;
#endif

	fbi = &clock_snap->fb_info;
	delta = 0;

	do {
		th = timehands;
		gen = atomic_load_acq_int(&th->th_generation);
		fbi->th_scale = th->th_scale;
		fbi->tick_time = th->th_offset;
#ifdef FFCLOCK
		ffth = fftimehands;
		ffi->tick_time = ffth->tick_time_lerp;
		ffi->tick_time_lerp = ffth->tick_time_lerp;
		ffi->period = ffth->cest.period;
		ffi->period_lerp = ffth->period_lerp;
		clock_snap->ffcount = ffth->tick_ffcount;
		cest = ffth->cest;
#endif
		if (!fast)
			delta = tc_delta(th);
		atomic_thread_fence_acq();
	} while (gen == 0 || gen != th->th_generation);

	clock_snap->delta = delta;
	clock_snap->sysclock_active = sysclock_active;

	/* Record feedback clock status and error. */
	clock_snap->fb_info.status = time_status;
	/* XXX: Very crude estimate of feedback clock error. */
	bt.sec = time_esterror / 1000000;
	bt.frac = ((time_esterror - bt.sec) * 1000000) *
	    (uint64_t)18446744073709ULL;
	clock_snap->fb_info.error = bt;

#ifdef FFCLOCK
	if (!fast)
		clock_snap->ffcount += delta;

	/* Record feed-forward clock leap second adjustment. */
	ffi->leapsec_adjustment = cest.leapsec_total;
	if (clock_snap->ffcount > cest.leapsec_next)
		ffi->leapsec_adjustment -= cest.leapsec;

	/* Record feed-forward clock status and error. */
	clock_snap->ff_info.status = cest.status;
	ffcount = clock_snap->ffcount - cest.update_ffcount;
	ffclock_convert_delta(ffcount, cest.period, &bt);
	/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
	bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
	/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
	bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
	clock_snap->ff_info.error = bt;
#endif
}

/*
 * Convert a sysclock snapshot into a struct bintime based on the specified
 * clock source and flags.
 */
int
sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
    int whichclock, uint32_t flags)
{
	struct bintime boottimebin;
#ifdef FFCLOCK
	struct bintime bt2;
	uint64_t period;
#endif

	switch (whichclock) {
	case SYSCLOCK_FBCK:
		*bt = cs->fb_info.tick_time;

		/* If snapshot was created with !fast, delta will be >0. */
		if (cs->delta > 0)
			bintime_addx(bt, cs->fb_info.th_scale * cs->delta);

		if ((flags & FBCLOCK_UPTIME) == 0) {
			getboottimebin(&boottimebin);
			bintime_add(bt, &boottimebin);
		}
		break;
#ifdef FFCLOCK
	case SYSCLOCK_FFWD:
		if (flags & FFCLOCK_LERP) {
			*bt = cs->ff_info.tick_time_lerp;
			period = cs->ff_info.period_lerp;
		} else {
			*bt = cs->ff_info.tick_time;
			period = cs->ff_info.period;
		}

		/* If snapshot was created with !fast, delta will be >0. */
		if (cs->delta > 0) {
			ffclock_convert_delta(cs->delta, period, &bt2);
			bintime_add(bt, &bt2);
		}

		/* Leap second adjustment. */
		if (flags & FFCLOCK_LEAPSEC)
			bt->sec -= cs->ff_info.leapsec_adjustment;

		/* Boot time adjustment, for uptime/monotonic clocks. */
		if (flags & FFCLOCK_UPTIME)
			bintime_sub(bt, &ffclock_boottime);
		break;
#endif
	default:
		return (EINVAL);
		break;
	}

	return (0);
}

/*
 * Initialize a new timecounter and possibly use it.
 */
void
tc_init(struct timecounter *tc)
{
	u_int u;
	struct sysctl_oid *tc_root;

	u = tc->tc_frequency / tc->tc_counter_mask;
	/* XXX: We need some margin here, 10% is a guess */
	u *= 11;
	u /= 10;
	if (u > hz && tc->tc_quality >= 0) {
		tc->tc_quality = -2000;
		if (bootverbose) {
			printf("Timecounter \"%s\" frequency %ju Hz",
			    tc->tc_name, (uintmax_t)tc->tc_frequency);
			printf(" -- Insufficient hz, needs at least %u\n", u);
		}
	} else if (tc->tc_quality >= 0 || bootverbose) {
		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
		    tc->tc_name, (uintmax_t)tc->tc_frequency,
		    tc->tc_quality);
	}

	tc->tc_next = timecounters;
	timecounters = tc;
	/*
	 * Set up sysctl tree for this counter.
	 */
	tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
	    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
	    "timecounter description", "timecounter");
	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
	    "mask for implemented bits");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "counter", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
	    sizeof(*tc), sysctl_kern_timecounter_get, "IU",
	    "current timecounter value");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "frequency", CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, tc,
	    sizeof(*tc), sysctl_kern_timecounter_freq, "QU",
	    "timecounter frequency");
	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
	    "goodness of time counter");
	/*
	 * Do not automatically switch if the current tc was specifically
	 * chosen.  Never automatically use a timecounter with negative quality.
	 * Even though we run on the dummy counter, switching here may be
	 * worse since this timecounter may not be monotonic.
	 */
	if (tc_chosen)
		return;
	if (tc->tc_quality < 0)
		return;
	if (tc->tc_quality < timecounter->tc_quality)
		return;
	if (tc->tc_quality == timecounter->tc_quality &&
	    tc->tc_frequency < timecounter->tc_frequency)
		return;
	(void)tc->tc_get_timecount(tc);
	timecounter = tc;
}

/* Report the frequency of the current timecounter. */
uint64_t
tc_getfrequency(void)
{

	return (timehands->th_counter->tc_frequency);
}

static bool
sleeping_on_old_rtc(struct thread *td)
{

	/*
	 * td_rtcgen is modified by curthread when it is running,
	 * and by other threads in this function.  By finding the thread
	 * on a sleepqueue and holding the lock on the sleepqueue
	 * chain, we guarantee that the thread is not running and that
	 * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
	 * the thread that it was woken due to a real-time clock adjustment.
	 * (The declaration of td_rtcgen refers to this comment.)
	 */
	if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
		td->td_rtcgen = 0;
		return (true);
	}
	return (false);
}

static struct mtx tc_setclock_mtx;
MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);

/*
 * Step our concept of UTC.  This is done by modifying our estimate of
 * when we booted.
 */
void
tc_setclock(struct timespec *ts)
{
	struct timespec tbef, taft;
	struct bintime bt, bt2;

	timespec2bintime(ts, &bt);
	nanotime(&tbef);
	mtx_lock_spin(&tc_setclock_mtx);
	cpu_tick_calibrate(1);
	binuptime(&bt2);
	bintime_sub(&bt, &bt2);

	/* XXX fiddle all the little crinkly bits around the fiords... */
	tc_windup(&bt);
	mtx_unlock_spin(&tc_setclock_mtx);

	/* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
	atomic_add_rel_int(&rtc_generation, 2);
	sleepq_chains_remove_matching(sleeping_on_old_rtc);
	if (timestepwarnings) {
		nanotime(&taft);
		log(LOG_INFO,
		    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
		    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
		    (intmax_t)taft.tv_sec, taft.tv_nsec,
		    (intmax_t)ts->tv_sec, ts->tv_nsec);
	}
}

/*
 * Initialize the next struct timehands in the ring and make
 * it the active timehands.  Along the way we might switch to a different
 * timecounter and/or do seconds processing in NTP.  Slightly magic.
 */
static void
tc_windup(struct bintime *new_boottimebin)
{
	struct bintime bt;
	struct timehands *th, *tho;
	uint64_t scale;
	u_int delta, ncount, ogen;
	int i;
	time_t t;

	/*
	 * Make the next timehands a copy of the current one, but do
	 * not overwrite the generation or next pointer.  While we
	 * update the contents, the generation must be zero.  We need
	 * to ensure that the zero generation is visible before the
	 * data updates become visible, which requires release fence.
	 * For similar reasons, re-reading of the generation after the
	 * data is read should use acquire fence.
	 */
	tho = timehands;
	th = tho->th_next;
	ogen = th->th_generation;
	th->th_generation = 0;
	atomic_thread_fence_rel();
	memcpy(th, tho, offsetof(struct timehands, th_generation));
	if (new_boottimebin != NULL)
		th->th_boottime = *new_boottimebin;

	/*
	 * Capture a timecounter delta on the current timecounter and if
	 * changing timecounters, a counter value from the new timecounter.
	 * Update the offset fields accordingly.
	 */
	delta = tc_delta(th);
	if (th->th_counter != timecounter)
		ncount = timecounter->tc_get_timecount(timecounter);
	else
		ncount = 0;
#ifdef FFCLOCK
	ffclock_windup(delta);
#endif
	th->th_offset_count += delta;
	th->th_offset_count &= th->th_counter->tc_counter_mask;
	while (delta > th->th_counter->tc_frequency) {
		/* Eat complete unadjusted seconds. */
		delta -= th->th_counter->tc_frequency;
		th->th_offset.sec++;
	}
	if ((delta > th->th_counter->tc_frequency / 2) &&
	    (th->th_scale * delta < ((uint64_t)1 << 63))) {
		/* The product th_scale * delta just barely overflows. */
		th->th_offset.sec++;
	}
	bintime_addx(&th->th_offset, th->th_scale * delta);

	/*
	 * Hardware latching timecounters may not generate interrupts on
	 * PPS events, so instead we poll them.  There is a finite risk that
	 * the hardware might capture a count which is later than the one we
	 * got above, and therefore possibly in the next NTP second which might
	 * have a different rate than the current NTP second.  It doesn't
	 * matter in practice.
	 */
	if (tho->th_counter->tc_poll_pps)
		tho->th_counter->tc_poll_pps(tho->th_counter);

	/*
	 * Deal with NTP second processing.  The for loop normally
	 * iterates at most once, but in extreme situations it might
	 * keep NTP sane if timeouts are not run for several seconds.
	 * At boot, the time step can be large when the TOD hardware
	 * has been read, so on really large steps, we call
	 * ntp_update_second only twice.  We need to call it twice in
	 * case we missed a leap second.
	 */
	bt = th->th_offset;
	bintime_add(&bt, &th->th_boottime);
	i = bt.sec - tho->th_microtime.tv_sec;
	if (i > LARGE_STEP)
		i = 2;
	for (; i > 0; i--) {
		t = bt.sec;
		ntp_update_second(&th->th_adjustment, &bt.sec);
		if (bt.sec != t)
			th->th_boottime.sec += bt.sec - t;
	}
	/* Update the UTC timestamps used by the get*() functions. */
	th->th_bintime = bt;
	bintime2timeval(&bt, &th->th_microtime);
	bintime2timespec(&bt, &th->th_nanotime);

	/* Now is a good time to change timecounters. */
	if (th->th_counter != timecounter) {
#ifndef __arm__
		if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
			cpu_disable_c2_sleep++;
		if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
			cpu_disable_c2_sleep--;
#endif
		th->th_counter = timecounter;
		th->th_offset_count = ncount;
		tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
		    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
#ifdef FFCLOCK
		ffclock_change_tc(th);
#endif
	}

	/*-
	 * Recalculate the scaling factor.  We want the number of 1/2^64
	 * fractions of a second per period of the hardware counter, taking
	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
	 * processing provides us with.
	 *
	 * The th_adjustment is nanoseconds per second with 32 bit binary
	 * fraction and we want 64 bit binary fraction of second:
	 *
	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
	 *
	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
	 * we can only multiply by about 850 without overflowing, that
	 * leaves no suitably precise fractions for multiply before divide.
	 *
	 * Divide before multiply with a fraction of 2199/512 results in a
	 * systematic undercompensation of 10PPM of th_adjustment.  On a
	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
 	 *
	 * We happily sacrifice the lowest of the 64 bits of our result
	 * to the goddess of code clarity.
	 *
	 */
	scale = (uint64_t)1 << 63;
	scale += (th->th_adjustment / 1024) * 2199;
	scale /= th->th_counter->tc_frequency;
	th->th_scale = scale * 2;
	th->th_large_delta = MIN(((uint64_t)1 << 63) / scale, UINT_MAX);

	/*
	 * Now that the struct timehands is again consistent, set the new
	 * generation number, making sure to not make it zero.
	 */
	if (++ogen == 0)
		ogen = 1;
	atomic_store_rel_int(&th->th_generation, ogen);

	/* Go live with the new struct timehands. */
#ifdef FFCLOCK
	switch (sysclock_active) {
	case SYSCLOCK_FBCK:
#endif
		time_second = th->th_microtime.tv_sec;
		time_uptime = th->th_offset.sec;
#ifdef FFCLOCK
		break;
	case SYSCLOCK_FFWD:
		time_second = fftimehands->tick_time_lerp.sec;
		time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
		break;
	}
#endif

	timehands = th;
	timekeep_push_vdso();
}

/* Report or change the active timecounter hardware. */
static int
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
{
	char newname[32];
	struct timecounter *newtc, *tc;
	int error;

	tc = timecounter;
	strlcpy(newname, tc->tc_name, sizeof(newname));

	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
	if (error != 0 || req->newptr == NULL)
		return (error);
	/* Record that the tc in use now was specifically chosen. */
	tc_chosen = 1;
	if (strcmp(newname, tc->tc_name) == 0)
		return (0);
	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
		if (strcmp(newname, newtc->tc_name) != 0)
			continue;

		/* Warm up new timecounter. */
		(void)newtc->tc_get_timecount(newtc);

		timecounter = newtc;

		/*
		 * The vdso timehands update is deferred until the next
		 * 'tc_windup()'.
		 *
		 * This is prudent given that 'timekeep_push_vdso()' does not
		 * use any locking and that it can be called in hard interrupt
		 * context via 'tc_windup()'.
		 */
		return (0);
	}
	return (EINVAL);
}

SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware,
    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
    sysctl_kern_timecounter_hardware, "A",
    "Timecounter hardware selected");

/* Report the available timecounter hardware. */
static int
sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sb;
	struct timecounter *tc;
	int error;

	sbuf_new_for_sysctl(&sb, NULL, 0, req);
	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
		if (tc != timecounters)
			sbuf_putc(&sb, ' ');
		sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
	}
	error = sbuf_finish(&sb);
	sbuf_delete(&sb);
	return (error);
}

SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
    sysctl_kern_timecounter_choice, "A",
    "Timecounter hardware detected");

/*
 * RFC 2783 PPS-API implementation.
 */

/*
 *  Return true if the driver is aware of the abi version extensions in the
 *  pps_state structure, and it supports at least the given abi version number.
 */
static inline int
abi_aware(struct pps_state *pps, int vers)
{

	return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
}

static int
pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
{
	int err, timo;
	pps_seq_t aseq, cseq;
	struct timeval tv;

	if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
		return (EINVAL);

	/*
	 * If no timeout is requested, immediately return whatever values were
	 * most recently captured.  If timeout seconds is -1, that's a request
	 * to block without a timeout.  WITNESS won't let us sleep forever
	 * without a lock (we really don't need a lock), so just repeatedly
	 * sleep a long time.
	 */
	if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
		if (fapi->timeout.tv_sec == -1)
			timo = 0x7fffffff;
		else {
			tv.tv_sec = fapi->timeout.tv_sec;
			tv.tv_usec = fapi->timeout.tv_nsec / 1000;
			timo = tvtohz(&tv);
		}
		aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
		cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
		while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
		    cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
			if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
				if (pps->flags & PPSFLAG_MTX_SPIN) {
					err = msleep_spin(pps, pps->driver_mtx,
					    "ppsfch", timo);
				} else {
					err = msleep(pps, pps->driver_mtx, PCATCH,
					    "ppsfch", timo);
				}
			} else {
				err = tsleep(pps, PCATCH, "ppsfch", timo);
			}
			if (err == EWOULDBLOCK) {
				if (fapi->timeout.tv_sec == -1) {
					continue;
				} else {
					return (ETIMEDOUT);
				}
			} else if (err != 0) {
				return (err);
			}
		}
	}

	pps->ppsinfo.current_mode = pps->ppsparam.mode;
	fapi->pps_info_buf = pps->ppsinfo;

	return (0);
}

int
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
{
	pps_params_t *app;
	struct pps_fetch_args *fapi;
#ifdef FFCLOCK
	struct pps_fetch_ffc_args *fapi_ffc;
#endif
#ifdef PPS_SYNC
	struct pps_kcbind_args *kapi;
#endif

	KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
	switch (cmd) {
	case PPS_IOC_CREATE:
		return (0);
	case PPS_IOC_DESTROY:
		return (0);
	case PPS_IOC_SETPARAMS:
		app = (pps_params_t *)data;
		if (app->mode & ~pps->ppscap)
			return (EINVAL);
#ifdef FFCLOCK
		/* Ensure only a single clock is selected for ffc timestamp. */
		if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
			return (EINVAL);
#endif
		pps->ppsparam = *app;
		return (0);
	case PPS_IOC_GETPARAMS:
		app = (pps_params_t *)data;
		*app = pps->ppsparam;
		app->api_version = PPS_API_VERS_1;
		return (0);
	case PPS_IOC_GETCAP:
		*(int*)data = pps->ppscap;
		return (0);
	case PPS_IOC_FETCH:
		fapi = (struct pps_fetch_args *)data;
		return (pps_fetch(fapi, pps));
#ifdef FFCLOCK
	case PPS_IOC_FETCH_FFCOUNTER:
		fapi_ffc = (struct pps_fetch_ffc_args *)data;
		if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
		    PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
			return (EOPNOTSUPP);
		pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
		fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
		/* Overwrite timestamps if feedback clock selected. */
		switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
		case PPS_TSCLK_FBCK:
			fapi_ffc->pps_info_buf_ffc.assert_timestamp =
			    pps->ppsinfo.assert_timestamp;
			fapi_ffc->pps_info_buf_ffc.clear_timestamp =
			    pps->ppsinfo.clear_timestamp;
			break;
		case PPS_TSCLK_FFWD:
			break;
		default:
			break;
		}
		return (0);
#endif /* FFCLOCK */
	case PPS_IOC_KCBIND:
#ifdef PPS_SYNC
		kapi = (struct pps_kcbind_args *)data;
		/* XXX Only root should be able to do this */
		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
			return (EINVAL);
		if (kapi->edge & ~pps->ppscap)
			return (EINVAL);
		pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
		    (pps->kcmode & KCMODE_ABIFLAG);
		return (0);
#else
		return (EOPNOTSUPP);
#endif
	default:
		return (ENOIOCTL);
	}
}

void
pps_init(struct pps_state *pps)
{
	pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
	if (pps->ppscap & PPS_CAPTUREASSERT)
		pps->ppscap |= PPS_OFFSETASSERT;
	if (pps->ppscap & PPS_CAPTURECLEAR)
		pps->ppscap |= PPS_OFFSETCLEAR;
#ifdef FFCLOCK
	pps->ppscap |= PPS_TSCLK_MASK;
#endif
	pps->kcmode &= ~KCMODE_ABIFLAG;
}

void
pps_init_abi(struct pps_state *pps)
{

	pps_init(pps);
	if (pps->driver_abi > 0) {
		pps->kcmode |= KCMODE_ABIFLAG;
		pps->kernel_abi = PPS_ABI_VERSION;
	}
}

void
pps_capture(struct pps_state *pps)
{
	struct timehands *th;

	KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
	th = timehands;
	pps->capgen = atomic_load_acq_int(&th->th_generation);
	pps->capth = th;
#ifdef FFCLOCK
	pps->capffth = fftimehands;
#endif
	pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
	atomic_thread_fence_acq();
	if (pps->capgen != th->th_generation)
		pps->capgen = 0;
}

void
pps_event(struct pps_state *pps, int event)
{
	struct bintime bt;
	struct timespec ts, *tsp, *osp;
	u_int tcount, *pcount;
	int foff;
	pps_seq_t *pseq;
#ifdef FFCLOCK
	struct timespec *tsp_ffc;
	pps_seq_t *pseq_ffc;
	ffcounter *ffcount;
#endif
#ifdef PPS_SYNC
	int fhard;
#endif

	KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
	/* Nothing to do if not currently set to capture this event type. */
	if ((event & pps->ppsparam.mode) == 0)
		return;
	/* If the timecounter was wound up underneath us, bail out. */
	if (pps->capgen == 0 || pps->capgen !=
	    atomic_load_acq_int(&pps->capth->th_generation))
		return;

	/* Things would be easier with arrays. */
	if (event == PPS_CAPTUREASSERT) {
		tsp = &pps->ppsinfo.assert_timestamp;
		osp = &pps->ppsparam.assert_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
#ifdef PPS_SYNC
		fhard = pps->kcmode & PPS_CAPTUREASSERT;
#endif
		pcount = &pps->ppscount[0];
		pseq = &pps->ppsinfo.assert_sequence;
#ifdef FFCLOCK
		ffcount = &pps->ppsinfo_ffc.assert_ffcount;
		tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
		pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
#endif
	} else {
		tsp = &pps->ppsinfo.clear_timestamp;
		osp = &pps->ppsparam.clear_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
#ifdef PPS_SYNC
		fhard = pps->kcmode & PPS_CAPTURECLEAR;
#endif
		pcount = &pps->ppscount[1];
		pseq = &pps->ppsinfo.clear_sequence;
#ifdef FFCLOCK
		ffcount = &pps->ppsinfo_ffc.clear_ffcount;
		tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
		pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
#endif
	}

	/*
	 * If the timecounter changed, we cannot compare the count values, so
	 * we have to drop the rest of the PPS-stuff until the next event.
	 */
	if (pps->ppstc != pps->capth->th_counter) {
		pps->ppstc = pps->capth->th_counter;
		*pcount = pps->capcount;
		pps->ppscount[2] = pps->capcount;
		return;
	}

	/* Convert the count to a timespec. */
	tcount = pps->capcount - pps->capth->th_offset_count;
	tcount &= pps->capth->th_counter->tc_counter_mask;
	bt = pps->capth->th_bintime;
	bintime_addx(&bt, pps->capth->th_scale * tcount);
	bintime2timespec(&bt, &ts);

	/* If the timecounter was wound up underneath us, bail out. */
	atomic_thread_fence_acq();
	if (pps->capgen != pps->capth->th_generation)
		return;

	*pcount = pps->capcount;
	(*pseq)++;
	*tsp = ts;

	if (foff) {
		timespecadd(tsp, osp, tsp);
		if (tsp->tv_nsec < 0) {
			tsp->tv_nsec += 1000000000;
			tsp->tv_sec -= 1;
		}
	}

#ifdef FFCLOCK
	*ffcount = pps->capffth->tick_ffcount + tcount;
	bt = pps->capffth->tick_time;
	ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
	bintime_add(&bt, &pps->capffth->tick_time);
	bintime2timespec(&bt, &ts);
	(*pseq_ffc)++;
	*tsp_ffc = ts;
#endif

#ifdef PPS_SYNC
	if (fhard) {
		uint64_t scale;

		/*
		 * Feed the NTP PLL/FLL.
		 * The FLL wants to know how many (hardware) nanoseconds
		 * elapsed since the previous event.
		 */
		tcount = pps->capcount - pps->ppscount[2];
		pps->ppscount[2] = pps->capcount;
		tcount &= pps->capth->th_counter->tc_counter_mask;
		scale = (uint64_t)1 << 63;
		scale /= pps->capth->th_counter->tc_frequency;
		scale *= 2;
		bt.sec = 0;
		bt.frac = 0;
		bintime_addx(&bt, scale * tcount);
		bintime2timespec(&bt, &ts);
		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
	}
#endif

	/* Wakeup anyone sleeping in pps_fetch().  */
	wakeup(pps);
}

/*
 * Timecounters need to be updated every so often to prevent the hardware
 * counter from overflowing.  Updating also recalculates the cached values
 * used by the get*() family of functions, so their precision depends on
 * the update frequency.
 */

static int tc_tick;
SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
    "Approximate number of hardclock ticks in a millisecond");

void
tc_ticktock(int cnt)
{
	static int count;

	if (mtx_trylock_spin(&tc_setclock_mtx)) {
		count += cnt;
		if (count >= tc_tick) {
			count = 0;
			tc_windup(NULL);
		}
		mtx_unlock_spin(&tc_setclock_mtx);
	}
}

static void __inline
tc_adjprecision(void)
{
	int t;

	if (tc_timepercentage > 0) {
		t = (99 + tc_timepercentage) / tc_timepercentage;
		tc_precexp = fls(t + (t >> 1)) - 1;
		FREQ2BT(hz / tc_tick, &bt_timethreshold);
		FREQ2BT(hz, &bt_tickthreshold);
		bintime_shift(&bt_timethreshold, tc_precexp);
		bintime_shift(&bt_tickthreshold, tc_precexp);
	} else {
		tc_precexp = 31;
		bt_timethreshold.sec = INT_MAX;
		bt_timethreshold.frac = ~(uint64_t)0;
		bt_tickthreshold = bt_timethreshold;
	}
	sbt_timethreshold = bttosbt(bt_timethreshold);
	sbt_tickthreshold = bttosbt(bt_tickthreshold);
}

static int
sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
{
	int error, val;

	val = tc_timepercentage;
	error = sysctl_handle_int(oidp, &val, 0, req);
	if (error != 0 || req->newptr == NULL)
		return (error);
	tc_timepercentage = val;
	if (cold)
		goto done;
	tc_adjprecision();
done:
	return (0);
}

/* Set up the requested number of timehands. */
static void
inittimehands(void *dummy)
{
	struct timehands *thp;
	int i;

	TUNABLE_INT_FETCH("kern.timecounter.timehands_count",
	    &timehands_count);
	if (timehands_count < 1)
		timehands_count = 1;
	if (timehands_count > nitems(ths))
		timehands_count = nitems(ths);
	for (i = 1, thp = &ths[0]; i < timehands_count;  thp = &ths[i++])
		thp->th_next = &ths[i];
	thp->th_next = &ths[0];
}
SYSINIT(timehands, SI_SUB_TUNABLES, SI_ORDER_ANY, inittimehands, NULL);

static void
inittimecounter(void *dummy)
{
	u_int p;
	int tick_rate;

	/*
	 * Set the initial timeout to
	 * max(1, <approx. number of hardclock ticks in a millisecond>).
	 * People should probably not use the sysctl to set the timeout
	 * to smaller than its initial value, since that value is the
	 * smallest reasonable one.  If they want better timestamps they
	 * should use the non-"get"* functions.
	 */
	if (hz > 1000)
		tc_tick = (hz + 500) / 1000;
	else
		tc_tick = 1;
	tc_adjprecision();
	FREQ2BT(hz, &tick_bt);
	tick_sbt = bttosbt(tick_bt);
	tick_rate = hz / tc_tick;
	FREQ2BT(tick_rate, &tc_tick_bt);
	tc_tick_sbt = bttosbt(tc_tick_bt);
	p = (tc_tick * 1000000) / hz;
	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);

#ifdef FFCLOCK
	ffclock_init();
#endif

	/* warm up new timecounter (again) and get rolling. */
	(void)timecounter->tc_get_timecount(timecounter);
	mtx_lock_spin(&tc_setclock_mtx);
	tc_windup(NULL);
	mtx_unlock_spin(&tc_setclock_mtx);
}

SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);

/* Cpu tick handling -------------------------------------------------*/

static int cpu_tick_variable;
static uint64_t	cpu_tick_frequency;

DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);

static uint64_t
tc_cpu_ticks(void)
{
	struct timecounter *tc;
	uint64_t res, *base;
	unsigned u, *last;

	critical_enter();
	base = DPCPU_PTR(tc_cpu_ticks_base);
	last = DPCPU_PTR(tc_cpu_ticks_last);
	tc = timehands->th_counter;
	u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
	if (u < *last)
		*base += (uint64_t)tc->tc_counter_mask + 1;
	*last = u;
	res = u + *base;
	critical_exit();
	return (res);
}

void
cpu_tick_calibration(void)
{
	static time_t last_calib;

	if (time_uptime != last_calib && !(time_uptime & 0xf)) {
		cpu_tick_calibrate(0);
		last_calib = time_uptime;
	}
}

/*
 * This function gets called every 16 seconds on only one designated
 * CPU in the system from hardclock() via cpu_tick_calibration()().
 *
 * Whenever the real time clock is stepped we get called with reset=1
 * to make sure we handle suspend/resume and similar events correctly.
 */

static void
cpu_tick_calibrate(int reset)
{
	static uint64_t c_last;
	uint64_t c_this, c_delta;
	static struct bintime  t_last;
	struct bintime t_this, t_delta;
	uint32_t divi;

	if (reset) {
		/* The clock was stepped, abort & reset */
		t_last.sec = 0;
		return;
	}

	/* we don't calibrate fixed rate cputicks */
	if (!cpu_tick_variable)
		return;

	getbinuptime(&t_this);
	c_this = cpu_ticks();
	if (t_last.sec != 0) {
		c_delta = c_this - c_last;
		t_delta = t_this;
		bintime_sub(&t_delta, &t_last);
		/*
		 * Headroom:
		 * 	2^(64-20) / 16[s] =
		 * 	2^(44) / 16[s] =
		 * 	17.592.186.044.416 / 16 =
		 * 	1.099.511.627.776 [Hz]
		 */
		divi = t_delta.sec << 20;
		divi |= t_delta.frac >> (64 - 20);
		c_delta <<= 20;
		c_delta /= divi;
		if (c_delta > cpu_tick_frequency) {
			if (0 && bootverbose)
				printf("cpu_tick increased to %ju Hz\n",
				    c_delta);
			cpu_tick_frequency = c_delta;
		}
	}
	c_last = c_this;
	t_last = t_this;
}

void
set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
{

	if (func == NULL) {
		cpu_ticks = tc_cpu_ticks;
	} else {
		cpu_tick_frequency = freq;
		cpu_tick_variable = var;
		cpu_ticks = func;
	}
}

uint64_t
cpu_tickrate(void)
{

	if (cpu_ticks == tc_cpu_ticks) 
		return (tc_getfrequency());
	return (cpu_tick_frequency);
}

/*
 * We need to be slightly careful converting cputicks to microseconds.
 * There is plenty of margin in 64 bits of microseconds (half a million
 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
 * before divide conversion (to retain precision) we find that the
 * margin shrinks to 1.5 hours (one millionth of 146y).
 * With a three prong approach we never lose significant bits, no
 * matter what the cputick rate and length of timeinterval is.
 */

uint64_t
cputick2usec(uint64_t tick)
{

	if (tick > 18446744073709551LL)		/* floor(2^64 / 1000) */
		return (tick / (cpu_tickrate() / 1000000LL));
	else if (tick > 18446744073709LL)	/* floor(2^64 / 1000000) */
		return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
	else
		return ((tick * 1000000LL) / cpu_tickrate());
}

cpu_tick_f	*cpu_ticks = tc_cpu_ticks;

static int vdso_th_enable = 1;
static int
sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
{
	int old_vdso_th_enable, error;

	old_vdso_th_enable = vdso_th_enable;
	error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
	if (error != 0)
		return (error);
	vdso_th_enable = old_vdso_th_enable;
	return (0);
}
SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");

uint32_t
tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
{
	struct timehands *th;
	uint32_t enabled;

	th = timehands;
	vdso_th->th_scale = th->th_scale;
	vdso_th->th_offset_count = th->th_offset_count;
	vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
	vdso_th->th_offset = th->th_offset;
	vdso_th->th_boottime = th->th_boottime;
	if (th->th_counter->tc_fill_vdso_timehands != NULL) {
		enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
		    th->th_counter);
	} else
		enabled = 0;
	if (!vdso_th_enable)
		enabled = 0;
	return (enabled);
}

#ifdef COMPAT_FREEBSD32
uint32_t
tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
{
	struct timehands *th;
	uint32_t enabled;

	th = timehands;
	*(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
	vdso_th32->th_offset_count = th->th_offset_count;
	vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
	vdso_th32->th_offset.sec = th->th_offset.sec;
	*(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
	vdso_th32->th_boottime.sec = th->th_boottime.sec;
	*(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
	if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
		enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
		    th->th_counter);
	} else
		enabled = 0;
	if (!vdso_th_enable)
		enabled = 0;
	return (enabled);
}
#endif