Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*-
 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
 *
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_vm.h"
#include "opt_kstack_pages.h"
#include "opt_kstack_max_pages.h"
#include "opt_kstack_usage_prof.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domainset.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/racct.h>
#include <sys/refcount.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <sys/shm.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <sys/vmem.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/unistd.h>

#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_domainset.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_pager.h>
#include <vm/swap_pager.h>

#include <machine/cpu.h>

/*
 * MPSAFE
 *
 * WARNING!  This code calls vm_map_check_protection() which only checks
 * the associated vm_map_entry range.  It does not determine whether the
 * contents of the memory is actually readable or writable.  In most cases
 * just checking the vm_map_entry is sufficient within the kernel's address
 * space.
 */
int
kernacc(void *addr, int len, int rw)
{
	boolean_t rv;
	vm_offset_t saddr, eaddr;
	vm_prot_t prot;

	KASSERT((rw & ~VM_PROT_ALL) == 0,
	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));

	if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
	    (vm_offset_t)addr + len < (vm_offset_t)addr)
		return (FALSE);

	prot = rw;
	saddr = trunc_page((vm_offset_t)addr);
	eaddr = round_page((vm_offset_t)addr + len);
	vm_map_lock_read(kernel_map);
	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
	vm_map_unlock_read(kernel_map);
	return (rv == TRUE);
}

/*
 * MPSAFE
 *
 * WARNING!  This code calls vm_map_check_protection() which only checks
 * the associated vm_map_entry range.  It does not determine whether the
 * contents of the memory is actually readable or writable.  vmapbuf(),
 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
 * used in conjunction with this call.
 */
int
useracc(void *addr, int len, int rw)
{
	boolean_t rv;
	vm_prot_t prot;
	vm_map_t map;

	KASSERT((rw & ~VM_PROT_ALL) == 0,
	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
	prot = rw;
	map = &curproc->p_vmspace->vm_map;
	if ((vm_offset_t)addr + len > vm_map_max(map) ||
	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
		return (FALSE);
	}
	vm_map_lock_read(map);
	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
	    round_page((vm_offset_t)addr + len), prot);
	vm_map_unlock_read(map);
	return (rv == TRUE);
}

int
vslock(void *addr, size_t len)
{
	vm_offset_t end, last, start;
	vm_size_t npages;
	int error;

	last = (vm_offset_t)addr + len;
	start = trunc_page((vm_offset_t)addr);
	end = round_page(last);
	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
		return (EINVAL);
	npages = atop(end - start);
	if (npages > vm_page_max_user_wired)
		return (ENOMEM);
	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
	if (error == KERN_SUCCESS) {
		curthread->td_vslock_sz += len;
		return (0);
	}

	/*
	 * Return EFAULT on error to match copy{in,out}() behaviour
	 * rather than returning ENOMEM like mlock() would.
	 */
	return (EFAULT);
}

void
vsunlock(void *addr, size_t len)
{

	/* Rely on the parameter sanity checks performed by vslock(). */
	MPASS(curthread->td_vslock_sz >= len);
	curthread->td_vslock_sz -= len;
	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
}

/*
 * Pin the page contained within the given object at the given offset.  If the
 * page is not resident, allocate and load it using the given object's pager.
 * Return the pinned page if successful; otherwise, return NULL.
 */
static vm_page_t
vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
{
	vm_page_t m;
	vm_pindex_t pindex;

	pindex = OFF_TO_IDX(offset);
	(void)vm_page_grab_valid_unlocked(&m, object, pindex,
	    VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
	return (m);
}

/*
 * Return a CPU private mapping to the page at the given offset within the
 * given object.  The page is pinned before it is mapped.
 */
struct sf_buf *
vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
{
	vm_page_t m;

	m = vm_imgact_hold_page(object, offset);
	if (m == NULL)
		return (NULL);
	sched_pin();
	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
}

/*
 * Destroy the given CPU private mapping and unpin the page that it mapped.
 */
void
vm_imgact_unmap_page(struct sf_buf *sf)
{
	vm_page_t m;

	m = sf_buf_page(sf);
	sf_buf_free(sf);
	sched_unpin();
	vm_page_unwire(m, PQ_ACTIVE);
}

void
vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
{

	pmap_sync_icache(map->pmap, va, sz);
}

vm_object_t kstack_object;
static uma_zone_t kstack_cache;
static int kstack_cache_size;

static int
sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
{
	int error, oldsize;

	oldsize = kstack_cache_size;
	error = sysctl_handle_int(oidp, arg1, arg2, req);
	if (error == 0 && req->newptr && oldsize != kstack_cache_size)
		uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
	return (error);
}
SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
    CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0,
    sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");

/*
 * Create the kernel stack (including pcb for i386) for a new thread.
 */
static vm_offset_t
vm_thread_stack_create(struct domainset *ds, int pages)
{
	vm_page_t ma[KSTACK_MAX_PAGES];
	vm_offset_t ks;
	int i;

	/*
	 * Get a kernel virtual address for this thread's kstack.
	 */
#if defined(__mips__)
	/*
	 * We need to align the kstack's mapped address to fit within
	 * a single TLB entry.
	 */
	if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
	    PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
	    M_BESTFIT | M_NOWAIT, &ks)) {
		ks = 0;
	}
#else
	ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
#endif
	if (ks == 0) {
		printf("%s: kstack allocation failed\n", __func__);
		return (0);
	}

	if (KSTACK_GUARD_PAGES != 0) {
		pmap_qremove(ks, KSTACK_GUARD_PAGES);
		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
	}

	/*
	 * Allocate physical pages to back the stack.
	 */
	vm_thread_stack_back(ds, ks, ma, pages, VM_ALLOC_NORMAL);
	for (i = 0; i < pages; i++)
		vm_page_valid(ma[i]);
	pmap_qenter(ks, ma, pages);

	return (ks);
}

static void
vm_thread_stack_dispose(vm_offset_t ks, int pages)
{
	vm_page_t m;
	vm_pindex_t pindex;
	int i;

	pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);

	pmap_qremove(ks, pages);
	VM_OBJECT_WLOCK(kstack_object);
	for (i = 0; i < pages; i++) {
		m = vm_page_lookup(kstack_object, pindex + i);
		if (m == NULL)
			panic("%s: kstack already missing?", __func__);
		vm_page_xbusy_claim(m);
		vm_page_unwire_noq(m);
		vm_page_free(m);
	}
	VM_OBJECT_WUNLOCK(kstack_object);
	kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
}

/*
 * Allocate the kernel stack for a new thread.
 */
int
vm_thread_new(struct thread *td, int pages)
{
	vm_offset_t ks;

	/* Bounds check */
	if (pages <= 1)
		pages = kstack_pages;
	else if (pages > KSTACK_MAX_PAGES)
		pages = KSTACK_MAX_PAGES;

	ks = 0;
	if (pages == kstack_pages && kstack_cache != NULL)
		ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);

	/*
	 * Ensure that kstack objects can draw pages from any memory
	 * domain.  Otherwise a local memory shortage can block a process
	 * swap-in.
	 */
	if (ks == 0)
		ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
		    pages);
	if (ks == 0)
		return (0);
	td->td_kstack = ks;
	td->td_kstack_pages = pages;
	return (1);
}

/*
 * Dispose of a thread's kernel stack.
 */
void
vm_thread_dispose(struct thread *td)
{
	vm_offset_t ks;
	int pages;

	pages = td->td_kstack_pages;
	ks = td->td_kstack;
	td->td_kstack = 0;
	td->td_kstack_pages = 0;
	if (pages == kstack_pages)
		uma_zfree(kstack_cache, (void *)ks);
	else
		vm_thread_stack_dispose(ks, pages);
}

/*
 * Allocate physical pages, following the specified NUMA policy, to back a
 * kernel stack.
 */
void
vm_thread_stack_back(struct domainset *ds, vm_offset_t ks, vm_page_t ma[],
    int npages, int req_class)
{
	vm_pindex_t pindex;
	int n;

	pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);

	VM_OBJECT_WLOCK(kstack_object);
	for (n = 0; n < npages;) {
		if (vm_ndomains > 1)
			kstack_object->domain.dr_policy = ds;

		/*
		 * Use WAITFAIL to force a reset of the domain selection policy
		 * if we had to sleep for pages.
		 */
		n += vm_page_grab_pages(kstack_object, pindex + n,
		    req_class | VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL,
		    &ma[n], npages - n);
	}
	VM_OBJECT_WUNLOCK(kstack_object);
}

static int
kstack_import(void *arg, void **store, int cnt, int domain, int flags)
{
	struct domainset *ds;
	int i;

	if (domain == UMA_ANYDOMAIN)
		ds = DOMAINSET_RR();
	else
		ds = DOMAINSET_PREF(domain);

	for (i = 0; i < cnt; i++) {
		store[i] = (void *)vm_thread_stack_create(ds, kstack_pages);
		if (store[i] == NULL)
			break;
	}
	return (i);
}

static void
kstack_release(void *arg, void **store, int cnt)
{
	vm_offset_t ks;
	int i;

	for (i = 0; i < cnt; i++) {
		ks = (vm_offset_t)store[i];
		vm_thread_stack_dispose(ks, kstack_pages);
	}
}

static void
kstack_cache_init(void *null)
{
	kstack_object = vm_object_allocate(OBJT_SWAP,
	    atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
	kstack_cache = uma_zcache_create("kstack_cache",
	    kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
	    kstack_import, kstack_release, NULL,
	    UMA_ZONE_FIRSTTOUCH);
	kstack_cache_size = imax(128, mp_ncpus * 4);
	uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
}
SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);

#ifdef KSTACK_USAGE_PROF
/*
 * Track maximum stack used by a thread in kernel.
 */
static int max_kstack_used;

SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
    &max_kstack_used, 0,
    "Maxiumum stack depth used by a thread in kernel");

void
intr_prof_stack_use(struct thread *td, struct trapframe *frame)
{
	vm_offset_t stack_top;
	vm_offset_t current;
	int used, prev_used;

	/*
	 * Testing for interrupted kernel mode isn't strictly
	 * needed. It optimizes the execution, since interrupts from
	 * usermode will have only the trap frame on the stack.
	 */
	if (TRAPF_USERMODE(frame))
		return;

	stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
	current = (vm_offset_t)(uintptr_t)&stack_top;

	/*
	 * Try to detect if interrupt is using kernel thread stack.
	 * Hardware could use a dedicated stack for interrupt handling.
	 */
	if (stack_top <= current || current < td->td_kstack)
		return;

	used = stack_top - current;
	for (;;) {
		prev_used = max_kstack_used;
		if (prev_used >= used)
			break;
		if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
			break;
	}
}
#endif /* KSTACK_USAGE_PROF */

/*
 * Implement fork's actions on an address space.
 * Here we arrange for the address space to be copied or referenced,
 * allocate a user struct (pcb and kernel stack), then call the
 * machine-dependent layer to fill those in and make the new process
 * ready to run.  The new process is set up so that it returns directly
 * to user mode to avoid stack copying and relocation problems.
 */
int
vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
    struct vmspace *vm2, int flags)
{
	struct proc *p1 = td->td_proc;
	struct domainset *dset;
	int error;

	if ((flags & RFPROC) == 0) {
		/*
		 * Divorce the memory, if it is shared, essentially
		 * this changes shared memory amongst threads, into
		 * COW locally.
		 */
		if ((flags & RFMEM) == 0) {
			if (refcount_load(&p1->p_vmspace->vm_refcnt) > 1) {
				error = vmspace_unshare(p1);
				if (error)
					return (error);
			}
		}
		cpu_fork(td, p2, td2, flags);
		return (0);
	}

	if (flags & RFMEM) {
		p2->p_vmspace = p1->p_vmspace;
		refcount_acquire(&p1->p_vmspace->vm_refcnt);
	}
	dset = td2->td_domain.dr_policy;
	while (vm_page_count_severe_set(&dset->ds_mask)) {
		vm_wait_doms(&dset->ds_mask, 0);
	}

	if ((flags & RFMEM) == 0) {
		p2->p_vmspace = vm2;
		if (p1->p_vmspace->vm_shm)
			shmfork(p1, p2);
	}

	/*
	 * cpu_fork will copy and update the pcb, set up the kernel stack,
	 * and make the child ready to run.
	 */
	cpu_fork(td, p2, td2, flags);
	return (0);
}

/*
 * Called after process has been wait(2)'ed upon and is being reaped.
 * The idea is to reclaim resources that we could not reclaim while
 * the process was still executing.
 */
void
vm_waitproc(p)
	struct proc *p;
{

	vmspace_exitfree(p);		/* and clean-out the vmspace */
}

void
kick_proc0(void)
{

	wakeup(&proc0);
}