/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1998 Doug Rabson
* Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@FreeBSD.org>
* Copyright (c) 2020 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <assert.h>
#include <err.h>
#include <fcntl.h>
#include <paths.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <uuid.h>
#include "acpidump.h"
#define BEGIN_COMMENT "/*\n"
#define END_COMMENT " */\n"
static void acpi_print_string(char *s, size_t length);
static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas);
static int acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt);
static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt);
static void acpi_print_cpu(u_char cpu_id);
static void acpi_print_cpu_uid(uint32_t uid, char *uid_string);
static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags);
static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base,
uint64_t apic_addr);
static void acpi_print_mps_flags(uint16_t flags);
static void acpi_print_intr(uint32_t intr, uint16_t mps_flags);
static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags);
static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp);
static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_lpit(ACPI_TABLE_HEADER *sdp);
static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain,
uint32_t flags);
static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp);
static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat);
static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp);
static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp);
static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit);
static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp);
static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp);
static void acpi_print_facs(ACPI_TABLE_FACS *facs);
static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp);
static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa);
static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp);
static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp);
static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *));
static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_NFIT_HEADER *));
/* Size of an address. 32-bit for ACPI 1.0, 64-bit for ACPI 2.0 and up. */
static int addr_size;
/* Strings used in the TCPA table */
static const char *tcpa_event_type_strings[] = {
"PREBOOT Certificate",
"POST Code",
"Unused",
"No Action",
"Separator",
"Action",
"Event Tag",
"S-CRTM Contents",
"S-CRTM Version",
"CPU Microcode",
"Platform Config Flags",
"Table of Devices",
"Compact Hash",
"IPL",
"IPL Partition Data",
"Non-Host Code",
"Non-Host Config",
"Non-Host Info"
};
static const char *TCPA_pcclient_strings[] = {
"<undefined>",
"SMBIOS",
"BIS Certificate",
"POST BIOS ROM Strings",
"ESCD",
"CMOS",
"NVRAM",
"Option ROM Execute",
"Option ROM Configurateion",
"<undefined>",
"Option ROM Microcode Update ",
"S-CRTM Version String",
"S-CRTM Contents",
"POST Contents",
"Table of Devices",
};
#define PRINTFLAG_END() printflag_end()
static char pf_sep = '{';
static void
printflag_end(void)
{
if (pf_sep != '{') {
printf("}");
pf_sep = '{';
}
printf("\n");
}
static void
printflag(uint64_t var, uint64_t mask, const char *name)
{
if (var & mask) {
printf("%c%s", pf_sep, name);
pf_sep = ',';
}
}
static void
acpi_print_string(char *s, size_t length)
{
int c;
/* Trim trailing spaces and NULLs */
while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0'))
length--;
while (length--) {
c = *s++;
putchar(c);
}
}
static void
acpi_print_gas(ACPI_GENERIC_ADDRESS *gas)
{
switch(gas->SpaceId) {
case ACPI_GAS_MEMORY:
printf("0x%016jx:%u[%u] (Memory)", (uintmax_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_IO:
printf("0x%02jx:%u[%u] (IO)", (uintmax_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_PCI:
printf("%x:%x+0x%x:%u[%u] (PCI)", (uint16_t)(gas->Address >> 32),
(uint16_t)((gas->Address >> 16) & 0xffff),
(uint16_t)gas->Address, gas->BitOffset, gas->BitWidth);
break;
/* XXX How to handle these below? */
case ACPI_GAS_EMBEDDED:
printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_SMBUS:
printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address,
gas->BitOffset, gas->BitWidth);
break;
case ACPI_GAS_CMOS:
case ACPI_GAS_PCIBAR:
case ACPI_GAS_DATATABLE:
case ACPI_GAS_FIXED:
default:
printf("0x%016jx (?)", (uintmax_t)gas->Address);
break;
}
}
/* The FADT revision indicates whether we use the DSDT or X_DSDT addresses. */
static int
acpi_get_fadt_revision(ACPI_TABLE_FADT *fadt)
{
int fadt_revision;
/* Set the FADT revision separately from the RSDP version. */
if (addr_size == 8) {
fadt_revision = 2;
/*
* A few systems (e.g., IBM T23) have an RSDP that claims
* revision 2 but the 64 bit addresses are invalid. If
* revision 2 and the 32 bit address is non-zero but the
* 32 and 64 bit versions don't match, prefer the 32 bit
* version for all subsequent tables.
*/
if (fadt->Facs != 0 &&
(fadt->XFacs & 0xffffffff) != fadt->Facs)
fadt_revision = 1;
} else
fadt_revision = 1;
return (fadt_revision);
}
static void
acpi_handle_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HEADER *dsdp;
ACPI_TABLE_FACS *facs;
ACPI_TABLE_FADT *fadt;
vm_offset_t addr;
int fadt_revision;
fadt = (ACPI_TABLE_FADT *)sdp;
acpi_print_fadt(sdp);
fadt_revision = acpi_get_fadt_revision(fadt);
if (fadt_revision == 1)
addr = fadt->Facs;
else
addr = fadt->XFacs;
if (addr != 0) {
facs = (ACPI_TABLE_FACS *)acpi_map_sdt(addr);
if (memcmp(facs->Signature, ACPI_SIG_FACS, 4) != 0 ||
facs->Length < 64)
errx(1, "FACS is corrupt");
acpi_print_facs(facs);
}
if (fadt_revision == 1)
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(dsdp, dsdp->Length))
errx(1, "DSDT is corrupt");
acpi_print_dsdt(dsdp);
}
static void
acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_SUBTABLE_HEADER *))
{
ACPI_SUBTABLE_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_SUBTABLE_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_NFIT_HEADER *))
{
ACPI_NFIT_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_NFIT_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_NFIT_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_print_cpu(u_char cpu_id)
{
printf("\tACPI CPU=");
if (cpu_id == 0xff)
printf("ALL\n");
else
printf("%d\n", (u_int)cpu_id);
}
static void
acpi_print_cpu_uid(uint32_t uid, char *uid_string)
{
printf("\tUID=%d", uid);
if (uid_string != NULL)
printf(" (%s)", uid_string);
printf("\n");
}
static void
acpi_print_local_apic(uint32_t apic_id, uint32_t flags)
{
printf("\tFlags={");
if (flags & ACPI_MADT_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
}
static void
acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr)
{
printf("\tAPIC ID=%d\n", apic_id);
printf("\tINT BASE=%d\n", int_base);
printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr);
}
static void
acpi_print_mps_flags(uint16_t flags)
{
printf("\tFlags={Polarity=");
switch (flags & ACPI_MADT_POLARITY_MASK) {
case ACPI_MADT_POLARITY_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_POLARITY_ACTIVE_HIGH:
printf("active-hi");
break;
case ACPI_MADT_POLARITY_ACTIVE_LOW:
printf("active-lo");
break;
default:
printf("0x%x", flags & ACPI_MADT_POLARITY_MASK);
break;
}
printf(", Trigger=");
switch (flags & ACPI_MADT_TRIGGER_MASK) {
case ACPI_MADT_TRIGGER_CONFORMS:
printf("conforming");
break;
case ACPI_MADT_TRIGGER_EDGE:
printf("edge");
break;
case ACPI_MADT_TRIGGER_LEVEL:
printf("level");
break;
default:
printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2);
}
printf("}\n");
}
static void
acpi_print_gicc_flags(uint32_t flags)
{
printf("\tFlags={Performance intr=");
if (flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
printf("edge");
else
printf("level");
printf(", VGIC intr=");
if (flags & ACPI_MADT_VGIC_IRQ_MODE)
printf("edge");
else
printf("level");
printf("}\n");
}
static void
acpi_print_intr(uint32_t intr, uint16_t mps_flags)
{
printf("\tINTR=%d\n", intr);
acpi_print_mps_flags(mps_flags);
}
static void
acpi_print_local_nmi(u_int lint, uint16_t mps_flags)
{
printf("\tLINT Pin=%d\n", lint);
acpi_print_mps_flags(mps_flags);
}
static const char *apic_types[] = {
[ACPI_MADT_TYPE_LOCAL_APIC] = "Local APIC",
[ACPI_MADT_TYPE_IO_APIC] = "IO APIC",
[ACPI_MADT_TYPE_INTERRUPT_OVERRIDE] = "INT Override",
[ACPI_MADT_TYPE_NMI_SOURCE] = "NMI",
[ACPI_MADT_TYPE_LOCAL_APIC_NMI] = "Local APIC NMI",
[ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE] = "Local APIC Override",
[ACPI_MADT_TYPE_IO_SAPIC] = "IO SAPIC",
[ACPI_MADT_TYPE_LOCAL_SAPIC] = "Local SAPIC",
[ACPI_MADT_TYPE_INTERRUPT_SOURCE] = "Platform Interrupt",
[ACPI_MADT_TYPE_LOCAL_X2APIC] = "Local X2APIC",
[ACPI_MADT_TYPE_LOCAL_X2APIC_NMI] = "Local X2APIC NMI",
[ACPI_MADT_TYPE_GENERIC_INTERRUPT] = "GIC CPU Interface Structure",
[ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR] = "GIC Distributor Structure",
[ACPI_MADT_TYPE_GENERIC_MSI_FRAME] = "GICv2m MSI Frame",
[ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR] = "GIC Redistributor Structure",
[ACPI_MADT_TYPE_GENERIC_TRANSLATOR] = "GIC ITS Structure"
};
static const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT",
"Corrected Platform Error" };
static void
acpi_print_madt(ACPI_SUBTABLE_HEADER *mp)
{
ACPI_MADT_LOCAL_APIC *lapic;
ACPI_MADT_IO_APIC *ioapic;
ACPI_MADT_INTERRUPT_OVERRIDE *over;
ACPI_MADT_NMI_SOURCE *nmi;
ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi;
ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over;
ACPI_MADT_IO_SAPIC *iosapic;
ACPI_MADT_LOCAL_SAPIC *lsapic;
ACPI_MADT_INTERRUPT_SOURCE *isrc;
ACPI_MADT_LOCAL_X2APIC *x2apic;
ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi;
ACPI_MADT_GENERIC_INTERRUPT *gicc;
ACPI_MADT_GENERIC_DISTRIBUTOR *gicd;
ACPI_MADT_GENERIC_REDISTRIBUTOR *gicr;
ACPI_MADT_GENERIC_TRANSLATOR *gict;
if (mp->Type < nitems(apic_types))
printf("\tType=%s\n", apic_types[mp->Type]);
else
printf("\tType=%d (unknown)\n", mp->Type);
switch (mp->Type) {
case ACPI_MADT_TYPE_LOCAL_APIC:
lapic = (ACPI_MADT_LOCAL_APIC *)mp;
acpi_print_cpu(lapic->ProcessorId);
acpi_print_local_apic(lapic->Id, lapic->LapicFlags);
break;
case ACPI_MADT_TYPE_IO_APIC:
ioapic = (ACPI_MADT_IO_APIC *)mp;
acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase,
ioapic->Address);
break;
case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE:
over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp;
printf("\tBUS=%d\n", (u_int)over->Bus);
printf("\tIRQ=%d\n", (u_int)over->SourceIrq);
acpi_print_intr(over->GlobalIrq, over->IntiFlags);
break;
case ACPI_MADT_TYPE_NMI_SOURCE:
nmi = (ACPI_MADT_NMI_SOURCE *)mp;
acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_NMI:
lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp;
acpi_print_cpu(lapic_nmi->ProcessorId);
acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE:
lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp;
printf("\tLocal APIC ADDR=0x%016jx\n",
(uintmax_t)lapic_over->Address);
break;
case ACPI_MADT_TYPE_IO_SAPIC:
iosapic = (ACPI_MADT_IO_SAPIC *)mp;
acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase,
iosapic->Address);
break;
case ACPI_MADT_TYPE_LOCAL_SAPIC:
lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp;
acpi_print_cpu(lsapic->ProcessorId);
acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags);
printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid);
if (mp->Length > __offsetof(ACPI_MADT_LOCAL_SAPIC, Uid))
acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString);
break;
case ACPI_MADT_TYPE_INTERRUPT_SOURCE:
isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp;
if (isrc->Type < nitems(platform_int_types))
printf("\tType=%s\n", platform_int_types[isrc->Type]);
else
printf("\tType=%d (unknown)\n", isrc->Type);
printf("\tAPIC ID=%d\n", (u_int)isrc->Id);
printf("\tAPIC EID=%d\n", (u_int)isrc->Eid);
printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector);
acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC:
x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp;
acpi_print_cpu_uid(x2apic->Uid, NULL);
acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags);
break;
case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI:
x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp;
acpi_print_cpu_uid(x2apic_nmi->Uid, NULL);
acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags);
break;
case ACPI_MADT_TYPE_GENERIC_INTERRUPT:
gicc = (ACPI_MADT_GENERIC_INTERRUPT *)mp;
acpi_print_cpu_uid(gicc->Uid, NULL);
printf("\tCPU INTERFACE=%x\n", gicc->CpuInterfaceNumber);
acpi_print_gicc_flags(gicc->Flags);
printf("\tParking Protocol Version=%x\n", gicc->ParkingVersion);
printf("\tPERF INTR=%d\n", gicc->PerformanceInterrupt);
printf("\tParked ADDR=%016jx\n",
(uintmax_t)gicc->ParkedAddress);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicc->BaseAddress);
printf("\tGICV=%016jx\n", (uintmax_t)gicc->GicvBaseAddress);
printf("\tGICH=%016jx\n", (uintmax_t)gicc->GichBaseAddress);
printf("\tVGIC INTR=%d\n", gicc->VgicInterrupt);
printf("\tGICR ADDR=%016jx\n",
(uintmax_t)gicc->GicrBaseAddress);
printf("\tMPIDR=%jx\n", (uintmax_t)gicc->ArmMpidr);
printf("\tEfficency Class=%d\n", (u_int)gicc->EfficiencyClass);
break;
case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR:
gicd = (ACPI_MADT_GENERIC_DISTRIBUTOR *)mp;
printf("\tGIC ID=%d\n", (u_int)gicd->GicId);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicd->BaseAddress);
printf("\tVector Base=%d\n", gicd->GlobalIrqBase);
printf("\tGIC VERSION=%d\n", (u_int)gicd->Version);
break;
case ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR:
gicr = (ACPI_MADT_GENERIC_REDISTRIBUTOR *)mp;
printf("\tBase ADDR=%016jx\n", (uintmax_t)gicr->BaseAddress);
printf("\tLength=%08x\n", gicr->Length);
break;
case ACPI_MADT_TYPE_GENERIC_TRANSLATOR:
gict = (ACPI_MADT_GENERIC_TRANSLATOR *)mp;
printf("\tGIC ITS ID=%d\n", gict->TranslationId);
printf("\tBase ADDR=%016jx\n", (uintmax_t)gict->BaseAddress);
break;
}
}
static void
acpi_handle_madt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MADT *madt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
madt = (ACPI_TABLE_MADT *)sdp;
printf("\tLocal APIC ADDR=0x%08x\n", madt->Address);
printf("\tFlags={");
if (madt->Flags & ACPI_MADT_PCAT_COMPAT)
printf("PC-AT");
printf("}\n");
acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt);
printf(END_COMMENT);
}
static void
acpi_handle_bert(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_BERT *bert;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
bert = (ACPI_TABLE_BERT *)sdp;
printf("\tRegionLength=%d\n", bert->RegionLength);
printf("\tAddress=0x%016jx\n", bert->Address);
printf(END_COMMENT);
}
static void
acpi_print_whea(ACPI_WHEA_HEADER *w)
{
printf("\n\tAction=%d\n", w->Action);
printf("\tInstruction=%d\n", w->Instruction);
printf("\tFlags=%02x\n", w->Flags);
printf("\tRegisterRegion=");
acpi_print_gas(&w->RegisterRegion);
printf("\n\tValue=0x%016jx\n", w->Value);
printf("\tMask=0x%016jx\n", w->Mask);
}
static void
acpi_handle_einj(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_EINJ *einj;
ACPI_WHEA_HEADER *w;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
einj = (ACPI_TABLE_EINJ *)sdp;
printf("\tHeaderLength=%d\n", einj->HeaderLength);
printf("\tFlags=0x%02x\n", einj->Flags);
printf("\tEntries=%d\n", einj->Entries);
w = (ACPI_WHEA_HEADER *)(einj + 1);
for (i = 0; i < MIN(einj->Entries, (sdp->Length -
sizeof(ACPI_TABLE_EINJ)) / sizeof(ACPI_WHEA_HEADER)); i++)
acpi_print_whea(w + i);
printf(END_COMMENT);
}
static void
acpi_handle_erst(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ERST *erst;
ACPI_WHEA_HEADER *w;
u_int i;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
erst = (ACPI_TABLE_ERST *)sdp;
printf("\tHeaderLength=%d\n", erst->HeaderLength);
printf("\tEntries=%d\n", erst->Entries);
w = (ACPI_WHEA_HEADER *)(erst + 1);
for (i = 0; i < MIN(erst->Entries, (sdp->Length -
sizeof(ACPI_TABLE_ERST)) / sizeof(ACPI_WHEA_HEADER)); i++)
acpi_print_whea(w + i);
printf(END_COMMENT);
}
static void
acpi_print_hest_bank(ACPI_HEST_IA_ERROR_BANK *b)
{
printf("\tBank:\n");
printf("\t\tBankNumber=%d\n", b->BankNumber);
printf("\t\tClearStatusOnInit=%d\n", b->ClearStatusOnInit);
printf("\t\tStatusFormat=%d\n", b->StatusFormat);
printf("\t\tControlRegister=%x\n", b->ControlRegister);
printf("\t\tControlData=%jx\n", b->ControlData);
printf("\t\tStatusRegister=%x\n", b->StatusRegister);
printf("\t\tAddressRegister=%x\n", b->AddressRegister);
printf("\t\tMiscRegister=%x\n", b->MiscRegister);
}
static void
acpi_print_hest_notify(ACPI_HEST_NOTIFY *n)
{
printf("\t\tType=%d\n", n->Type);
printf("\t\tLength=%d\n", n->Length);
printf("\t\tConfigWriteEnable=%04x\n", n->ConfigWriteEnable);
printf("\t\tPollInterval=%d\n", n->PollInterval);
printf("\t\tVector=%d\n", n->Vector);
printf("\t\tPollingThresholdValue=%d\n", n->PollingThresholdValue);
printf("\t\tPollingThresholdWindow=%d\n", n->PollingThresholdWindow);
printf("\t\tErrorThresholdValue=%d\n", n->ErrorThresholdValue);
printf("\t\tErrorThresholdWindow=%d\n", n->ErrorThresholdWindow);
}
static void
acpi_print_hest_aer(ACPI_HEST_AER_COMMON *a)
{
printf("\tFlags=%02x\n", a->Flags);
printf("\tEnabled=%d\n", a->Enabled);
printf("\tRecordsToPreallocate=%d\n", a->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", a->MaxSectionsPerRecord);
printf("\tBus=%d\n", a->Bus);
printf("\tDevice=%d\n", a->Device);
printf("\tFunction=%d\n", a->Function);
printf("\tDeviceControl=%d\n", a->DeviceControl);
printf("\tUncorrectableMask=%d\n", a->UncorrectableMask);
printf("\tUncorrectableSeverity=%d\n", a->UncorrectableSeverity);
printf("\tCorrectableMask=%d\n", a->CorrectableMask);
printf("\tAdvancedCapabilities=%d\n", a->AdvancedCapabilities);
}
static int
acpi_handle_hest_structure(void *addr, int remaining)
{
ACPI_HEST_HEADER *hdr = addr;
int i;
if (remaining < (int)sizeof(ACPI_HEST_HEADER))
return (-1);
printf("\n\tType=%d\n", hdr->Type);
printf("\tSourceId=%d\n", hdr->SourceId);
switch (hdr->Type) {
case ACPI_HEST_TYPE_IA32_CHECK: {
ACPI_HEST_IA_MACHINE_CHECK *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tGlobalCapabilityData=%jd\n", s->GlobalCapabilityData);
printf("\tGlobalControlData=%jd\n", s->GlobalControlData);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: {
ACPI_HEST_IA_CORRECTED *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
case ACPI_HEST_TYPE_IA32_NMI: {
ACPI_HEST_IA_NMI *s = addr;
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_ROOT_PORT: {
ACPI_HEST_AER_ROOT *s = addr;
acpi_print_hest_aer(&s->Aer);
printf("\tRootErrorCommand=%d\n", s->RootErrorCommand);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_ENDPOINT: {
ACPI_HEST_AER *s = addr;
acpi_print_hest_aer(&s->Aer);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_AER_BRIDGE: {
ACPI_HEST_AER_BRIDGE *s = addr;
acpi_print_hest_aer(&s->Aer);
printf("\tUncorrectableMask2=%d\n", s->UncorrectableMask2);
printf("\tUncorrectableSeverity2=%d\n", s->UncorrectableSeverity2);
printf("\tAdvancedCapabilities2=%d\n", s->AdvancedCapabilities2);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_GENERIC_ERROR: {
ACPI_HEST_GENERIC *s = addr;
printf("\tRelatedSourceId=%d\n", s->RelatedSourceId);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
printf("\tErrorStatusAddress=");
acpi_print_gas(&s->ErrorStatusAddress);
printf("\n");
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tErrorBlockLength=%d\n", s->ErrorBlockLength);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_GENERIC_ERROR_V2: {
ACPI_HEST_GENERIC_V2 *s = addr;
printf("\tRelatedSourceId=%d\n", s->RelatedSourceId);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tMaxRawDataLength=%d\n", s->MaxRawDataLength);
printf("\tErrorStatusAddress=");
acpi_print_gas(&s->ErrorStatusAddress);
printf("\n");
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tErrorBlockLength=%d\n", s->ErrorBlockLength);
printf("\tReadAckRegister=");
acpi_print_gas(&s->ReadAckRegister);
printf("\n");
printf("\tReadAckPreserve=%jd\n", s->ReadAckPreserve);
printf("\tReadAckWrite=%jd\n", s->ReadAckWrite);
return (sizeof(*s));
}
case ACPI_HEST_TYPE_IA32_DEFERRED_CHECK: {
ACPI_HEST_IA_DEFERRED_CHECK *s = addr;
printf("\tFlags=%02x\n", s->Flags);
printf("\tEnabled=%d\n", s->Enabled);
printf("\tRecordsToPreallocate=%d\n", s->RecordsToPreallocate);
printf("\tMaxSectionsPerRecord=%d\n", s->MaxSectionsPerRecord);
printf("\tNotify:\n");
acpi_print_hest_notify(&s->Notify);
printf("\tNumHardwareBanks=%d\n", s->NumHardwareBanks);
for (i = 0; i < s->NumHardwareBanks; i++) {
acpi_print_hest_bank((ACPI_HEST_IA_ERROR_BANK *)
(s + 1) + i);
}
return (sizeof(*s) + s->NumHardwareBanks *
sizeof(ACPI_HEST_IA_ERROR_BANK));
}
default:
return (-1);
}
}
static void
acpi_handle_hest(ACPI_TABLE_HEADER *sdp)
{
char *cp;
int remaining, consumed;
ACPI_TABLE_HEST *hest;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hest = (ACPI_TABLE_HEST *)sdp;
printf("\tErrorSourceCount=%d\n", hest->ErrorSourceCount);
remaining = sdp->Length - sizeof(ACPI_TABLE_HEST);
while (remaining > 0) {
cp = (char *)sdp + sdp->Length - remaining;
consumed = acpi_handle_hest_structure(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
printf(END_COMMENT);
}
static void
acpi_handle_hpet(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_HPET *hpet;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
hpet = (ACPI_TABLE_HPET *)sdp;
printf("\tHPET Number=%d\n", hpet->Sequence);
printf("\tADDR=");
acpi_print_gas(&hpet->Address);
printf("\n\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID);
printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >>
8);
printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ?
1 : 0);
printf("\tLegacy IRQ routing capable={");
if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE)
printf("TRUE}\n");
else
printf("FALSE}\n");
printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16);
printf("\tMinimal Tick=%d\n", hpet->MinimumTick);
printf("\tFlags=0x%02x\n", hpet->Flags);
printf(END_COMMENT);
}
static void
acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_ECDT *ecdt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
ecdt = (ACPI_TABLE_ECDT *)sdp;
printf("\tEC_CONTROL=");
acpi_print_gas(&ecdt->Control);
printf("\n\tEC_DATA=");
acpi_print_gas(&ecdt->Data);
printf("\n\tUID=%#x, ", ecdt->Uid);
printf("GPE_BIT=%#x\n", ecdt->Gpe);
printf("\tEC_ID=%s\n", ecdt->Id);
printf(END_COMMENT);
}
static void
acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_MCFG *mcfg;
ACPI_MCFG_ALLOCATION *alloc;
u_int i, entries;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
mcfg = (ACPI_TABLE_MCFG *)sdp;
entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) /
sizeof(ACPI_MCFG_ALLOCATION);
alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1);
for (i = 0; i < entries; i++, alloc++) {
printf("\n");
printf("\tBase Address=0x%016jx\n", (uintmax_t)alloc->Address);
printf("\tSegment Group=0x%04x\n", alloc->PciSegment);
printf("\tStart Bus=%d\n", alloc->StartBusNumber);
printf("\tEnd Bus=%d\n", alloc->EndBusNumber);
}
printf(END_COMMENT);
}
static void
acpi_handle_slit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SLIT *slit;
UINT64 i, j;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
slit = (ACPI_TABLE_SLIT *)sdp;
printf("\tLocality Count=%ju\n", (uintmax_t)slit->LocalityCount);
printf("\n\t ");
for (i = 0; i < slit->LocalityCount; i++)
printf(" %3ju", (uintmax_t)i);
printf("\n\t +");
for (i = 0; i < slit->LocalityCount; i++)
printf("----");
printf("\n");
for (i = 0; i < slit->LocalityCount; i++) {
printf("\t %3ju |", (uintmax_t)i);
for (j = 0; j < slit->LocalityCount; j++)
printf(" %3d",
slit->Entry[i * slit->LocalityCount + j]);
printf("\n");
}
printf(END_COMMENT);
}
static void
acpi_handle_wddt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_WDDT *wddt;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
wddt = (ACPI_TABLE_WDDT *)sdp;
printf("\tSpecVersion=0x%04x, TableVersion=0x%04x\n",
wddt->SpecVersion, wddt->TableVersion);
printf("\tPciVendorId=0x%04x, Address=", wddt->PciVendorId);
acpi_print_gas(&wddt->Address);
printf("\n\tMaxCount=%u, MinCount=%u, Period=%ums\n",
wddt->MaxCount, wddt->MinCount, wddt->Period);
#define PRINTFLAG(var, flag) printflag((var), ACPI_WDDT_## flag, #flag)
printf("\tStatus=");
PRINTFLAG(wddt->Status, AVAILABLE);
PRINTFLAG(wddt->Status, ACTIVE);
PRINTFLAG(wddt->Status, TCO_OS_OWNED);
PRINTFLAG(wddt->Status, USER_RESET);
PRINTFLAG(wddt->Status, WDT_RESET);
PRINTFLAG(wddt->Status, POWER_FAIL);
PRINTFLAG(wddt->Status, UNKNOWN_RESET);
PRINTFLAG_END();
printf("\tCapability=");
PRINTFLAG(wddt->Capability, AUTO_RESET);
PRINTFLAG(wddt->Capability, ALERT_SUPPORT);
PRINTFLAG_END();
#undef PRINTFLAG
printf(END_COMMENT);
}
static void
acpi_print_native_lpit(ACPI_LPIT_NATIVE *nl)
{
printf("\tEntryTrigger=");
acpi_print_gas(&nl->EntryTrigger);
printf("\n\tResidency=%u\n", nl->Residency);
printf("\tLatency=%u\n", nl->Latency);
if (nl->Header.Flags & ACPI_LPIT_NO_COUNTER)
printf("\tResidencyCounter=Not Present");
else {
printf("\tResidencyCounter=");
acpi_print_gas(&nl->ResidencyCounter);
printf("\n");
}
if (nl->CounterFrequency)
printf("\tCounterFrequency=%ju\n", nl->CounterFrequency);
else
printf("\tCounterFrequency=TSC\n");
}
static void
acpi_print_lpit(ACPI_LPIT_HEADER *lpit)
{
if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE)
printf("\tType=ACPI_LPIT_TYPE_NATIVE_CSTATE\n");
else
warnx("unknown LPIT type %u", lpit->Type);
printf("\tLength=%u\n", lpit->Length);
printf("\tUniqueId=0x%04x\n", lpit->UniqueId);
#define PRINTFLAG(var, flag) printflag((var), ACPI_LPIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(lpit->Flags, STATE_DISABLED);
PRINTFLAG_END();
#undef PRINTFLAG
if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE)
return acpi_print_native_lpit((ACPI_LPIT_NATIVE *)lpit);
}
static void
acpi_walk_lpit(ACPI_TABLE_HEADER *table, void *first,
void (*action)(ACPI_LPIT_HEADER *))
{
ACPI_LPIT_HEADER *subtable;
char *end;
subtable = first;
end = (char *)table + table->Length;
while ((char *)subtable < end) {
printf("\n");
if (subtable->Length < sizeof(ACPI_LPIT_HEADER)) {
warnx("invalid subtable length %u", subtable->Length);
return;
}
action(subtable);
subtable = (ACPI_LPIT_HEADER *)((char *)subtable +
subtable->Length);
}
}
static void
acpi_handle_lpit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_LPIT *lpit;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
lpit = (ACPI_TABLE_LPIT *)sdp;
acpi_walk_lpit(sdp, (lpit + 1), acpi_print_lpit);
printf(END_COMMENT);
}
static void
acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain,
uint32_t flags)
{
printf("\tFlags={");
if (flags & ACPI_SRAT_CPU_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
printf("}\n");
printf("\tAPIC ID=%d\n", apic_id);
printf("\tProximity Domain=%d\n", proximity_domain);
}
static char *
acpi_tcpa_evname(struct TCPAevent *event)
{
struct TCPApc_event *pc_event;
char *eventname = NULL;
pc_event = (struct TCPApc_event *)(event + 1);
switch(event->event_type) {
case PREBOOT:
case POST_CODE:
case UNUSED:
case NO_ACTION:
case SEPARATOR:
case SCRTM_CONTENTS:
case SCRTM_VERSION:
case CPU_MICROCODE:
case PLATFORM_CONFIG_FLAGS:
case TABLE_OF_DEVICES:
case COMPACT_HASH:
case IPL:
case IPL_PARTITION_DATA:
case NONHOST_CODE:
case NONHOST_CONFIG:
case NONHOST_INFO:
asprintf(&eventname, "%s",
tcpa_event_type_strings[event->event_type]);
break;
case ACTION:
eventname = calloc(event->event_size + 1, sizeof(char));
memcpy(eventname, pc_event, event->event_size);
break;
case EVENT_TAG:
switch (pc_event->event_id) {
case SMBIOS:
case BIS_CERT:
case CMOS:
case NVRAM:
case OPTION_ROM_EXEC:
case OPTION_ROM_CONFIG:
case S_CRTM_VERSION:
case POST_BIOS_ROM:
case ESCD:
case OPTION_ROM_MICROCODE:
case S_CRTM_CONTENTS:
case POST_CONTENTS:
asprintf(&eventname, "%s",
TCPA_pcclient_strings[pc_event->event_id]);
break;
default:
asprintf(&eventname, "<unknown tag 0x%02x>",
pc_event->event_id);
break;
}
break;
default:
asprintf(&eventname, "<unknown 0x%02x>", event->event_type);
break;
}
return eventname;
}
static void
acpi_print_tcpa(struct TCPAevent *event)
{
int i;
char *eventname;
eventname = acpi_tcpa_evname(event);
printf("\t%d", event->pcr_index);
printf(" 0x");
for (i = 0; i < 20; i++)
printf("%02x", event->pcr_value[i]);
printf(" [%s]\n", eventname ? eventname : "<unknown>");
free(eventname);
}
static void
acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp)
{
struct TCPAbody *tcpa;
struct TCPAevent *event;
uintmax_t len, paddr;
unsigned char *vaddr = NULL;
unsigned char *vend = NULL;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
tcpa = (struct TCPAbody *) sdp;
switch (tcpa->platform_class) {
case ACPI_TCPA_BIOS_CLIENT:
len = tcpa->client.log_max_len;
paddr = tcpa->client.log_start_addr;
break;
case ACPI_TCPA_BIOS_SERVER:
len = tcpa->server.log_max_len;
paddr = tcpa->server.log_start_addr;
break;
default:
printf("XXX");
printf(END_COMMENT);
return;
}
printf("\tClass %u Base Address 0x%jx Length %ju\n\n",
tcpa->platform_class, paddr, len);
if (len == 0) {
printf("\tEmpty TCPA table\n");
printf(END_COMMENT);
return;
}
if(sdp->Revision == 1){
printf("\tOLD TCPA spec log found. Dumping not supported.\n");
printf(END_COMMENT);
return;
}
vaddr = (unsigned char *)acpi_map_physical(paddr, len);
vend = vaddr + len;
while (vaddr != NULL) {
if ((vaddr + sizeof(struct TCPAevent) >= vend)||
(vaddr + sizeof(struct TCPAevent) < vaddr))
break;
event = (struct TCPAevent *)(void *)vaddr;
if (vaddr + event->event_size >= vend)
break;
if (vaddr + event->event_size < vaddr)
break;
if (event->event_type == 0 && event->event_size == 0)
break;
#if 0
{
unsigned int i, j, k;
printf("\n\tsize %d\n\t\t%p ", event->event_size, vaddr);
for (j = 0, i = 0; i <
sizeof(struct TCPAevent) + event->event_size; i++) {
printf("%02x ", vaddr[i]);
if ((i+1) % 8 == 0) {
for (k = 0; k < 8; k++)
printf("%c", isprint(vaddr[j+k]) ?
vaddr[j+k] : '.');
printf("\n\t\t%p ", &vaddr[i + 1]);
j = i + 1;
}
}
printf("\n"); }
#endif
acpi_print_tcpa(event);
vaddr += sizeof(struct TCPAevent) + event->event_size;
}
printf(END_COMMENT);
}
static void acpi_handle_tpm2(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_TPM2 *tpm2;
printf (BEGIN_COMMENT);
acpi_print_sdt(sdp);
tpm2 = (ACPI_TABLE_TPM2 *) sdp;
printf ("\t\tControlArea=%jx\n", tpm2->ControlAddress);
printf ("\t\tStartMethod=%x\n", tpm2->StartMethod);
printf (END_COMMENT);
}
static const char *
devscope_type2str(int type)
{
static char typebuf[16];
switch (type) {
case 1:
return ("PCI Endpoint Device");
case 2:
return ("PCI Sub-Hierarchy");
case 3:
return ("IOAPIC");
case 4:
return ("HPET");
default:
snprintf(typebuf, sizeof(typebuf), "%d", type);
return (typebuf);
}
}
static int
acpi_handle_dmar_devscope(void *addr, int remaining)
{
char sep;
int pathlen;
ACPI_DMAR_PCI_PATH *path, *pathend;
ACPI_DMAR_DEVICE_SCOPE *devscope = addr;
if (remaining < (int)sizeof(ACPI_DMAR_DEVICE_SCOPE))
return (-1);
if (remaining < devscope->Length)
return (-1);
printf("\n");
printf("\t\tType=%s\n", devscope_type2str(devscope->EntryType));
printf("\t\tLength=%d\n", devscope->Length);
printf("\t\tEnumerationId=%d\n", devscope->EnumerationId);
printf("\t\tStartBusNumber=%d\n", devscope->Bus);
path = (ACPI_DMAR_PCI_PATH *)(devscope + 1);
pathlen = devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE);
pathend = path + pathlen / sizeof(ACPI_DMAR_PCI_PATH);
if (path < pathend) {
sep = '{';
printf("\t\tPath=");
do {
printf("%c%d:%d", sep, path->Device, path->Function);
sep=',';
path++;
} while (path < pathend);
printf("}\n");
}
return (devscope->Length);
}
static void
acpi_handle_dmar_drhd(ACPI_DMAR_HARDWARE_UNIT *drhd)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=DRHD\n");
printf("\tLength=%d\n", drhd->Header.Length);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(drhd->Flags, INCLUDE_ALL);
PRINTFLAG_END();
#undef PRINTFLAG
printf("\tSegment=%d\n", drhd->Segment);
printf("\tAddress=0x%016jx\n", (uintmax_t)drhd->Address);
remaining = drhd->Header.Length - sizeof(ACPI_DMAR_HARDWARE_UNIT);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)drhd + drhd->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_rmrr(ACPI_DMAR_RESERVED_MEMORY *rmrr)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=RMRR\n");
printf("\tLength=%d\n", rmrr->Header.Length);
printf("\tSegment=%d\n", rmrr->Segment);
printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rmrr->BaseAddress);
printf("\tLimitAddress=0x%016jx\n", (uintmax_t)rmrr->EndAddress);
remaining = rmrr->Header.Length - sizeof(ACPI_DMAR_RESERVED_MEMORY);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)rmrr + rmrr->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_atsr(ACPI_DMAR_ATSR *atsr)
{
char *cp;
int remaining, consumed;
printf("\n");
printf("\tType=ATSR\n");
printf("\tLength=%d\n", atsr->Header.Length);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(atsr->Flags, ALL_PORTS);
PRINTFLAG_END();
#undef PRINTFLAG
printf("\tSegment=%d\n", atsr->Segment);
remaining = atsr->Header.Length - sizeof(ACPI_DMAR_ATSR);
if (remaining > 0)
printf("\tDevice Scope:");
while (remaining > 0) {
cp = (char *)atsr + atsr->Header.Length - remaining;
consumed = acpi_handle_dmar_devscope(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
}
static void
acpi_handle_dmar_rhsa(ACPI_DMAR_RHSA *rhsa)
{
printf("\n");
printf("\tType=RHSA\n");
printf("\tLength=%d\n", rhsa->Header.Length);
printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rhsa->BaseAddress);
printf("\tProximityDomain=0x%08x\n", rhsa->ProximityDomain);
}
static int
acpi_handle_dmar_remapping_structure(void *addr, int remaining)
{
ACPI_DMAR_HEADER *hdr = addr;
if (remaining < (int)sizeof(ACPI_DMAR_HEADER))
return (-1);
if (remaining < hdr->Length)
return (-1);
switch (hdr->Type) {
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
acpi_handle_dmar_drhd(addr);
break;
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
acpi_handle_dmar_rmrr(addr);
break;
case ACPI_DMAR_TYPE_ROOT_ATS:
acpi_handle_dmar_atsr(addr);
break;
case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
acpi_handle_dmar_rhsa(addr);
break;
default:
printf("\n");
printf("\tType=%d\n", hdr->Type);
printf("\tLength=%d\n", hdr->Length);
break;
}
return (hdr->Length);
}
#ifndef ACPI_DMAR_X2APIC_OPT_OUT
#define ACPI_DMAR_X2APIC_OPT_OUT (0x2)
#endif
static void
acpi_handle_dmar(ACPI_TABLE_HEADER *sdp)
{
char *cp;
int remaining, consumed;
ACPI_TABLE_DMAR *dmar;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
dmar = (ACPI_TABLE_DMAR *)sdp;
printf("\tHost Address Width=%d\n", dmar->Width + 1);
#define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(dmar->Flags, INTR_REMAP);
PRINTFLAG(dmar->Flags, X2APIC_OPT_OUT);
PRINTFLAG_END();
#undef PRINTFLAG
remaining = sdp->Length - sizeof(ACPI_TABLE_DMAR);
while (remaining > 0) {
cp = (char *)sdp + sdp->Length - remaining;
consumed = acpi_handle_dmar_remapping_structure(cp, remaining);
if (consumed <= 0)
break;
else
remaining -= consumed;
}
printf(END_COMMENT);
}
static void
acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp)
{
printf("\tFlags={");
if (mp->Flags & ACPI_SRAT_MEM_ENABLED)
printf("ENABLED");
else
printf("DISABLED");
if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE)
printf(",HOT_PLUGGABLE");
if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE)
printf(",NON_VOLATILE");
printf("}\n");
printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress);
printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length);
printf("\tProximity Domain=%d\n", mp->ProximityDomain);
}
static const char *srat_types[] = {
[ACPI_SRAT_TYPE_CPU_AFFINITY] = "CPU",
[ACPI_SRAT_TYPE_MEMORY_AFFINITY] = "Memory",
[ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY] = "X2APIC",
[ACPI_SRAT_TYPE_GICC_AFFINITY] = "GICC",
[ACPI_SRAT_TYPE_GIC_ITS_AFFINITY] = "GIC ITS",
};
static void
acpi_print_srat(ACPI_SUBTABLE_HEADER *srat)
{
ACPI_SRAT_CPU_AFFINITY *cpu;
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
ACPI_SRAT_GICC_AFFINITY *gic;
if (srat->Type < nitems(srat_types))
printf("\tType=%s\n", srat_types[srat->Type]);
else
printf("\tType=%d (unknown)\n", srat->Type);
switch (srat->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
cpu = (ACPI_SRAT_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(cpu->ApicId,
cpu->ProximityDomainHi[2] << 24 |
cpu->ProximityDomainHi[1] << 16 |
cpu->ProximityDomainHi[0] << 0 |
cpu->ProximityDomainLo, cpu->Flags);
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat);
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat;
acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain,
x2apic->Flags);
break;
case ACPI_SRAT_TYPE_GICC_AFFINITY:
gic = (ACPI_SRAT_GICC_AFFINITY *)srat;
acpi_print_srat_cpu(gic->AcpiProcessorUid, gic->ProximityDomain,
gic->Flags);
break;
}
}
static void
acpi_handle_srat(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_SRAT *srat;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
srat = (ACPI_TABLE_SRAT *)sdp;
printf("\tTable Revision=%d\n", srat->TableRevision);
acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat);
printf(END_COMMENT);
}
static const char *nfit_types[] = {
[ACPI_NFIT_TYPE_SYSTEM_ADDRESS] = "System Address",
[ACPI_NFIT_TYPE_MEMORY_MAP] = "Memory Map",
[ACPI_NFIT_TYPE_INTERLEAVE] = "Interleave",
[ACPI_NFIT_TYPE_SMBIOS] = "SMBIOS",
[ACPI_NFIT_TYPE_CONTROL_REGION] = "Control Region",
[ACPI_NFIT_TYPE_DATA_REGION] = "Data Region",
[ACPI_NFIT_TYPE_FLUSH_ADDRESS] = "Flush Address"
};
static void
acpi_print_nfit(ACPI_NFIT_HEADER *nfit)
{
char *uuidstr;
uint32_t status;
ACPI_NFIT_SYSTEM_ADDRESS *sysaddr;
ACPI_NFIT_MEMORY_MAP *mmap;
ACPI_NFIT_INTERLEAVE *ileave;
ACPI_NFIT_SMBIOS *smbios;
ACPI_NFIT_CONTROL_REGION *ctlreg;
ACPI_NFIT_DATA_REGION *datareg;
ACPI_NFIT_FLUSH_ADDRESS *fladdr;
if (nfit->Type < nitems(nfit_types))
printf("\tType=%s\n", nfit_types[nfit->Type]);
else
printf("\tType=%u (unknown)\n", nfit->Type);
switch (nfit->Type) {
case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
sysaddr = (ACPI_NFIT_SYSTEM_ADDRESS *)nfit;
printf("\tRangeIndex=%u\n", (u_int)sysaddr->RangeIndex);
printf("\tProximityDomain=%u\n",
(u_int)sysaddr->ProximityDomain);
uuid_to_string((uuid_t *)(sysaddr->RangeGuid),
&uuidstr, &status);
if (status != uuid_s_ok)
errx(1, "uuid_to_string: status=%u", status);
printf("\tRangeGuid=%s\n", uuidstr);
free(uuidstr);
printf("\tAddress=0x%016jx\n", (uintmax_t)sysaddr->Address);
printf("\tLength=0x%016jx\n", (uintmax_t)sysaddr->Length);
printf("\tMemoryMapping=0x%016jx\n",
(uintmax_t)sysaddr->MemoryMapping);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(sysaddr->Flags, ADD_ONLINE_ONLY);
PRINTFLAG(sysaddr->Flags, PROXIMITY_VALID);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_MEMORY_MAP:
mmap = (ACPI_NFIT_MEMORY_MAP *)nfit;
printf("\tDeviceHandle=%u\n", (u_int)mmap->DeviceHandle);
printf("\tPhysicalId=%u\n", (u_int)mmap->PhysicalId);
printf("\tRegionId=%u\n", (u_int)mmap->RegionId);
printf("\tRangeIndex=%u\n", (u_int)mmap->RangeIndex);
printf("\tRegionIndex=%u\n", (u_int)mmap->RegionIndex);
printf("\tRegionSize=0x%016jx\n", (uintmax_t)mmap->RegionSize);
printf("\tRegionOffset=0x%016jx\n",
(uintmax_t)mmap->RegionOffset);
printf("\tAddress=0x%016jx\n", (uintmax_t)mmap->Address);
printf("\tInterleaveIndex=%u\n", (u_int)mmap->InterleaveIndex);
printf("\tInterleaveWays=%u\n", (u_int)mmap->InterleaveWays);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_MEM_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(mmap->Flags, SAVE_FAILED);
PRINTFLAG(mmap->Flags, RESTORE_FAILED);
PRINTFLAG(mmap->Flags, FLUSH_FAILED);
PRINTFLAG(mmap->Flags, NOT_ARMED);
PRINTFLAG(mmap->Flags, HEALTH_OBSERVED);
PRINTFLAG(mmap->Flags, HEALTH_ENABLED);
PRINTFLAG(mmap->Flags, MAP_FAILED);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_INTERLEAVE:
ileave = (ACPI_NFIT_INTERLEAVE *)nfit;
printf("\tInterleaveIndex=%u\n",
(u_int)ileave->InterleaveIndex);
printf("\tLineCount=%u\n", (u_int)ileave->LineCount);
printf("\tLineSize=%u\n", (u_int)ileave->LineSize);
/* XXX ileave->LineOffset[i] output is not supported */
break;
case ACPI_NFIT_TYPE_SMBIOS:
smbios = (ACPI_NFIT_SMBIOS *)nfit;
/* XXX smbios->Data[x] output is not supported */
break;
case ACPI_NFIT_TYPE_CONTROL_REGION:
ctlreg = (ACPI_NFIT_CONTROL_REGION *)nfit;
printf("\tRegionIndex=%u\n", (u_int)ctlreg->RegionIndex);
printf("\tVendorId=0x%04x\n", (u_int)ctlreg->VendorId);
printf("\tDeviceId=0x%04x\n", (u_int)ctlreg->DeviceId);
printf("\tRevisionId=%u\n", (u_int)ctlreg->RevisionId);
printf("\tSubsystemVendorId=0x%04x\n",
(u_int)ctlreg->SubsystemVendorId);
printf("\tSubsystemDeviceId=0x%04x\n",
(u_int)ctlreg->SubsystemDeviceId);
printf("\tSubsystemRevisionId=%u\n",
(u_int)ctlreg->SubsystemRevisionId);
printf("\tValidFields=0x%02x\n", (u_int)ctlreg->ValidFields);
printf("\tManufacturingLocation=%u\n",
(u_int)ctlreg->ManufacturingLocation);
printf("\tManufacturingDate=%u\n",
(u_int)ctlreg->ManufacturingDate);
printf("\tSerialNumber=%u\n",
(u_int)ctlreg->SerialNumber);
printf("\tCode=0x%04x\n", (u_int)ctlreg->Code);
printf("\tWindows=%u\n", (u_int)ctlreg->Windows);
printf("\tWindowSize=0x%016jx\n",
(uintmax_t)ctlreg->WindowSize);
printf("\tCommandOffset=0x%016jx\n",
(uintmax_t)ctlreg->CommandOffset);
printf("\tCommandSize=0x%016jx\n",
(uintmax_t)ctlreg->CommandSize);
printf("\tStatusOffset=0x%016jx\n",
(uintmax_t)ctlreg->StatusOffset);
printf("\tStatusSize=0x%016jx\n",
(uintmax_t)ctlreg->StatusSize);
#define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag)
printf("\tFlags=");
PRINTFLAG(ctlreg->Flags, CONTROL_BUFFERED);
PRINTFLAG_END();
#undef PRINTFLAG
break;
case ACPI_NFIT_TYPE_DATA_REGION:
datareg = (ACPI_NFIT_DATA_REGION *)nfit;
printf("\tRegionIndex=%u\n", (u_int)datareg->RegionIndex);
printf("\tWindows=%u\n", (u_int)datareg->Windows);
printf("\tOffset=0x%016jx\n", (uintmax_t)datareg->Offset);
printf("\tSize=0x%016jx\n", (uintmax_t)datareg->Size);
printf("\tCapacity=0x%016jx\n", (uintmax_t)datareg->Capacity);
printf("\tStartAddress=0x%016jx\n",
(uintmax_t)datareg->StartAddress);
break;
case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
fladdr = (ACPI_NFIT_FLUSH_ADDRESS *)nfit;
printf("\tDeviceHandle=%u\n", (u_int)fladdr->DeviceHandle);
printf("\tHintCount=%u\n", (u_int)fladdr->HintCount);
/* XXX fladdr->HintAddress[i] output is not supported */
break;
}
}
static void
acpi_handle_nfit(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_NFIT *nfit;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
nfit = (ACPI_TABLE_NFIT *)sdp;
acpi_walk_nfit(sdp, (nfit + 1), acpi_print_nfit);
printf(END_COMMENT);
}
static void
acpi_print_sdt(ACPI_TABLE_HEADER *sdp)
{
printf(" ");
acpi_print_string(sdp->Signature, ACPI_NAMESEG_SIZE);
printf(": Length=%d, Revision=%d, Checksum=%d,\n",
sdp->Length, sdp->Revision, sdp->Checksum);
printf("\tOEMID=");
acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE);
printf(", OEM Table ID=");
acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
printf(", OEM Revision=0x%x,\n", sdp->OemRevision);
printf("\tCreator ID=");
acpi_print_string(sdp->AslCompilerId, ACPI_NAMESEG_SIZE);
printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision);
}
static void
acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp)
{
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
int i, entries;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(rsdp);
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
printf("\tEntries={ ");
for (i = 0; i < entries; i++) {
if (i > 0)
printf(", ");
if (addr_size == 4)
printf("0x%08x", le32toh(rsdt->TableOffsetEntry[i]));
else
printf("0x%016jx",
(uintmax_t)le64toh(xsdt->TableOffsetEntry[i]));
}
printf(" }\n");
printf(END_COMMENT);
}
static const char *acpi_pm_profiles[] = {
"Unspecified", "Desktop", "Mobile", "Workstation",
"Enterprise Server", "SOHO Server", "Appliance PC"
};
static void
acpi_print_fadt(ACPI_TABLE_HEADER *sdp)
{
ACPI_TABLE_FADT *fadt;
const char *pm;
fadt = (ACPI_TABLE_FADT *)sdp;
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs,
fadt->Dsdt);
printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC");
if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *))
pm = "Reserved";
else
pm = acpi_pm_profiles[fadt->PreferredProfile];
printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile);
printf("\tSCI_INT=%d\n", fadt->SciInterrupt);
printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand);
printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable);
printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable);
printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest);
printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl);
printf("\tPM1a_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1aEventBlock,
fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1);
if (fadt->Pm1bEventBlock != 0)
printf("\tPM1b_EVT_BLK=0x%x-0x%x\n",
fadt->Pm1bEventBlock,
fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1);
printf("\tPM1a_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1aControlBlock,
fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm1bControlBlock != 0)
printf("\tPM1b_CNT_BLK=0x%x-0x%x\n",
fadt->Pm1bControlBlock,
fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1);
if (fadt->Pm2ControlBlock != 0)
printf("\tPM2_CNT_BLK=0x%x-0x%x\n",
fadt->Pm2ControlBlock,
fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1);
printf("\tPM_TMR_BLK=0x%x-0x%x\n",
fadt->PmTimerBlock,
fadt->PmTimerBlock + fadt->PmTimerLength - 1);
if (fadt->Gpe0Block != 0)
printf("\tGPE0_BLK=0x%x-0x%x\n",
fadt->Gpe0Block,
fadt->Gpe0Block + fadt->Gpe0BlockLength - 1);
if (fadt->Gpe1Block != 0)
printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n",
fadt->Gpe1Block,
fadt->Gpe1Block + fadt->Gpe1BlockLength - 1,
fadt->Gpe1Base);
if (fadt->CstControl != 0)
printf("\tCST_CNT=0x%x\n", fadt->CstControl);
printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n",
fadt->C2Latency, fadt->C3Latency);
printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n",
fadt->FlushSize, fadt->FlushStride);
printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n",
fadt->DutyOffset, fadt->DutyWidth);
printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n",
fadt->DayAlarm, fadt->MonthAlarm, fadt->Century);
#define PRINTFLAG(var, flag) printflag((var), ACPI_FADT_## flag, #flag)
printf("\tIAPC_BOOT_ARCH=");
PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES);
PRINTFLAG(fadt->BootFlags, 8042);
PRINTFLAG(fadt->BootFlags, NO_VGA);
PRINTFLAG(fadt->BootFlags, NO_MSI);
PRINTFLAG(fadt->BootFlags, NO_ASPM);
PRINTFLAG(fadt->BootFlags, NO_CMOS_RTC);
PRINTFLAG_END();
printf("\tFlags=");
PRINTFLAG(fadt->Flags, WBINVD);
PRINTFLAG(fadt->Flags, WBINVD_FLUSH);
PRINTFLAG(fadt->Flags, C1_SUPPORTED);
PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED);
PRINTFLAG(fadt->Flags, POWER_BUTTON);
PRINTFLAG(fadt->Flags, SLEEP_BUTTON);
PRINTFLAG(fadt->Flags, FIXED_RTC);
PRINTFLAG(fadt->Flags, S4_RTC_WAKE);
PRINTFLAG(fadt->Flags, 32BIT_TIMER);
PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED);
PRINTFLAG(fadt->Flags, RESET_REGISTER);
PRINTFLAG(fadt->Flags, SEALED_CASE);
PRINTFLAG(fadt->Flags, HEADLESS);
PRINTFLAG(fadt->Flags, SLEEP_TYPE);
PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE);
PRINTFLAG(fadt->Flags, PLATFORM_CLOCK);
PRINTFLAG(fadt->Flags, S4_RTC_VALID);
PRINTFLAG(fadt->Flags, REMOTE_POWER_ON);
PRINTFLAG(fadt->Flags, APIC_CLUSTER);
PRINTFLAG(fadt->Flags, APIC_PHYSICAL);
PRINTFLAG(fadt->Flags, HW_REDUCED);
PRINTFLAG(fadt->Flags, LOW_POWER_S0);
PRINTFLAG_END();
#undef PRINTFLAG
if (fadt->Flags & ACPI_FADT_RESET_REGISTER) {
printf("\tRESET_REG=");
acpi_print_gas(&fadt->ResetRegister);
printf(", RESET_VALUE=%#x\n", fadt->ResetValue);
}
if (acpi_get_fadt_revision(fadt) > 1) {
printf("\tX_FACS=0x%016jx, ", (uintmax_t)fadt->XFacs);
printf("X_DSDT=0x%016jx\n", (uintmax_t)fadt->XDsdt);
printf("\tX_PM1a_EVT_BLK=");
acpi_print_gas(&fadt->XPm1aEventBlock);
if (fadt->XPm1bEventBlock.Address != 0) {
printf("\n\tX_PM1b_EVT_BLK=");
acpi_print_gas(&fadt->XPm1bEventBlock);
}
printf("\n\tX_PM1a_CNT_BLK=");
acpi_print_gas(&fadt->XPm1aControlBlock);
if (fadt->XPm1bControlBlock.Address != 0) {
printf("\n\tX_PM1b_CNT_BLK=");
acpi_print_gas(&fadt->XPm1bControlBlock);
}
if (fadt->XPm2ControlBlock.Address != 0) {
printf("\n\tX_PM2_CNT_BLK=");
acpi_print_gas(&fadt->XPm2ControlBlock);
}
printf("\n\tX_PM_TMR_BLK=");
acpi_print_gas(&fadt->XPmTimerBlock);
if (fadt->XGpe0Block.Address != 0) {
printf("\n\tX_GPE0_BLK=");
acpi_print_gas(&fadt->XGpe0Block);
}
if (fadt->XGpe1Block.Address != 0) {
printf("\n\tX_GPE1_BLK=");
acpi_print_gas(&fadt->XGpe1Block);
}
printf("\n");
}
printf(END_COMMENT);
}
static void
acpi_print_facs(ACPI_TABLE_FACS *facs)
{
printf(BEGIN_COMMENT);
printf(" FACS:\tLength=%u, ", facs->Length);
printf("HwSig=0x%08x, ", facs->HardwareSignature);
printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector);
printf("\tGlobal_Lock=");
if (facs->GlobalLock != 0) {
if (facs->GlobalLock & ACPI_GLOCK_PENDING)
printf("PENDING,");
if (facs->GlobalLock & ACPI_GLOCK_OWNED)
printf("OWNED");
}
printf("\n");
printf("\tFlags=");
if (facs->Flags & ACPI_FACS_S4_BIOS_PRESENT)
printf("S4BIOS");
printf("\n");
if (facs->XFirmwareWakingVector != 0)
printf("\tX_Firm_Wake_Vec=%016jx\n",
(uintmax_t)facs->XFirmwareWakingVector);
printf("\tVersion=%u\n", facs->Version);
printf(END_COMMENT);
}
static void
acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp)
{
printf(BEGIN_COMMENT);
acpi_print_sdt(dsdp);
printf(END_COMMENT);
}
int
acpi_checksum(void *p, size_t length)
{
uint8_t *bp;
uint8_t sum;
bp = p;
sum = 0;
while (length--)
sum += *bp++;
return (sum);
}
static ACPI_TABLE_HEADER *
acpi_map_sdt(vm_offset_t pa)
{
ACPI_TABLE_HEADER *sp;
sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER));
sp = acpi_map_physical(pa, sp->Length);
return (sp);
}
static void
acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp)
{
printf(BEGIN_COMMENT);
printf(" RSD PTR: OEM=");
acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE);
printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x",
rp->Revision);
if (rp->Revision < 2) {
printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress,
rp->Checksum);
} else {
printf("\tXSDT=0x%016jx, length=%u, cksum=%u\n",
(uintmax_t)rp->XsdtPhysicalAddress, rp->Length,
rp->ExtendedChecksum);
}
printf(END_COMMENT);
}
static void
acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp)
{
ACPI_TABLE_HEADER *sdp;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
acpi_print_rsdt(rsdp);
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
if (addr_size == 4)
addr = le32toh(rsdt->TableOffsetEntry[i]);
else
addr = le64toh(xsdt->TableOffsetEntry[i]);
if (addr == 0)
continue;
sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (acpi_checksum(sdp, sdp->Length)) {
warnx("RSDT entry %d (sig %.4s) is corrupt", i,
sdp->Signature);
continue;
}
if (!memcmp(sdp->Signature, ACPI_SIG_BERT, 4))
acpi_handle_bert(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_EINJ, 4))
acpi_handle_einj(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_ERST, 4))
acpi_handle_erst(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_FADT, 4))
acpi_handle_fadt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_MADT, 4))
acpi_handle_madt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_HEST, 4))
acpi_handle_hest(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_HPET, 4))
acpi_handle_hpet(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_ECDT, 4))
acpi_handle_ecdt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_MCFG, 4))
acpi_handle_mcfg(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SLIT, 4))
acpi_handle_slit(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_SRAT, 4))
acpi_handle_srat(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_TCPA, 4))
acpi_handle_tcpa(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_DMAR, 4))
acpi_handle_dmar(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_NFIT, 4))
acpi_handle_nfit(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_WDDT, 4))
acpi_handle_wddt(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_LPIT, 4))
acpi_handle_lpit(sdp);
else if (!memcmp(sdp->Signature, ACPI_SIG_TPM2, 4))
acpi_handle_tpm2(sdp);
else {
printf(BEGIN_COMMENT);
acpi_print_sdt(sdp);
printf(END_COMMENT);
}
}
}
ACPI_TABLE_HEADER *
sdt_load_devmem(void)
{
ACPI_TABLE_RSDP *rp;
ACPI_TABLE_HEADER *rsdp;
rp = acpi_find_rsd_ptr();
if (!rp)
errx(1, "Can't find ACPI information");
if (tflag)
acpi_print_rsd_ptr(rp);
if (rp->Revision < 2) {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "RSDT", 4) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(1, "RSDT is corrupted");
addr_size = sizeof(uint32_t);
} else {
rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress);
if (memcmp(rsdp->Signature, "XSDT", 4) != 0 ||
acpi_checksum(rsdp, rsdp->Length) != 0)
errx(1, "XSDT is corrupted");
addr_size = sizeof(uint64_t);
}
return (rsdp);
}
/* Write the DSDT to a file, concatenating any SSDTs (if present). */
static int
write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt)
{
ACPI_TABLE_HEADER sdt;
ACPI_TABLE_HEADER *ssdt;
uint8_t sum;
/* Create a new checksum to account for the DSDT and any SSDTs. */
sdt = *dsdt;
if (rsdt != NULL) {
sdt.Checksum = 0;
sum = acpi_checksum(dsdt + 1, dsdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL);
while (ssdt != NULL) {
sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER);
sum += acpi_checksum(ssdt + 1,
ssdt->Length - sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt);
}
sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER));
sdt.Checksum -= sum;
}
/* Write out the DSDT header and body. */
write(fd, &sdt, sizeof(ACPI_TABLE_HEADER));
write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER));
/* Write out any SSDTs (if present.) */
if (rsdt != NULL) {
ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL);
while (ssdt != NULL) {
write(fd, ssdt + 1, ssdt->Length -
sizeof(ACPI_TABLE_HEADER));
ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt);
}
}
return (0);
}
void
dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
int fd;
mode_t mode;
assert(outfile != NULL);
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode);
if (fd == -1) {
perror("dsdt_save_file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
}
void
aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp)
{
char buf[PATH_MAX], tmpstr[PATH_MAX], wrkdir[PATH_MAX];
const char *iname = "/acpdump.din";
const char *oname = "/acpdump.dsl";
const char *tmpdir;
FILE *fp;
size_t len;
int fd, status;
pid_t pid;
tmpdir = getenv("TMPDIR");
if (tmpdir == NULL)
tmpdir = _PATH_TMP;
if (realpath(tmpdir, buf) == NULL) {
perror("realpath tmp dir");
return;
}
len = sizeof(wrkdir) - strlen(iname);
if ((size_t)snprintf(wrkdir, len, "%s/acpidump.XXXXXX", buf) > len-1 ) {
fprintf(stderr, "$TMPDIR too long\n");
return;
}
if (mkdtemp(wrkdir) == NULL) {
perror("mkdtemp tmp working dir");
return;
}
len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, iname);
assert(len <= sizeof(tmpstr) - 1);
fd = open(tmpstr, O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR);
if (fd < 0) {
perror("iasl tmp file");
return;
}
write_dsdt(fd, rsdt, dsdp);
close(fd);
/* Run iasl -d on the temp file */
if ((pid = fork()) == 0) {
close(STDOUT_FILENO);
if (vflag == 0)
close(STDERR_FILENO);
execl("/usr/sbin/iasl", "iasl", "-d", tmpstr, NULL);
err(1, "exec");
}
if (pid > 0)
wait(&status);
if (unlink(tmpstr) < 0) {
perror("unlink");
goto out;
}
if (pid < 0) {
perror("fork");
goto out;
}
if (status != 0) {
fprintf(stderr, "iast exit status = %d\n", status);
}
/* Dump iasl's output to stdout */
len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, oname);
assert(len <= sizeof(tmpstr) - 1);
fp = fopen(tmpstr, "r");
if (unlink(tmpstr) < 0) {
perror("unlink");
goto out;
}
if (fp == NULL) {
perror("iasl tmp file (read)");
goto out;
}
while ((len = fread(buf, 1, sizeof(buf), fp)) > 0)
fwrite(buf, 1, len, stdout);
fclose(fp);
out:
if (rmdir(wrkdir) < 0)
perror("rmdir");
}
void
sdt_print_all(ACPI_TABLE_HEADER *rsdp)
{
acpi_handle_rsdt(rsdp);
}
/* Fetch a table matching the given signature via the RSDT. */
ACPI_TABLE_HEADER *
sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last)
{
ACPI_TABLE_HEADER *sdt;
ACPI_TABLE_RSDT *rsdt;
ACPI_TABLE_XSDT *xsdt;
vm_offset_t addr;
int entries, i;
rsdt = (ACPI_TABLE_RSDT *)rsdp;
xsdt = (ACPI_TABLE_XSDT *)rsdp;
entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size;
for (i = 0; i < entries; i++) {
if (addr_size == 4)
addr = le32toh(rsdt->TableOffsetEntry[i]);
else
addr = le64toh(xsdt->TableOffsetEntry[i]);
if (addr == 0)
continue;
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr);
if (last != NULL) {
if (sdt == last)
last = NULL;
continue;
}
if (memcmp(sdt->Signature, sig, strlen(sig)))
continue;
if (acpi_checksum(sdt, sdt->Length))
errx(1, "RSDT entry %d is corrupt", i);
return (sdt);
}
return (NULL);
}
ACPI_TABLE_HEADER *
dsdt_from_fadt(ACPI_TABLE_FADT *fadt)
{
ACPI_TABLE_HEADER *sdt;
/* Use the DSDT address if it is version 1, otherwise use XDSDT. */
if (acpi_get_fadt_revision(fadt) == 1)
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->Dsdt);
else
sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(fadt->XDsdt);
if (acpi_checksum(sdt, sdt->Length))
errx(1, "DSDT is corrupt\n");
return (sdt);
}