Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
.\"
.\" SPDX-License-Identifier: BSD-2-Clause
.\"
.\" Copyright (c) 2018-2020 Gavin D. Howard and contributors.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions are met:
.\"
.\" * Redistributions of source code must retain the above copyright notice,
.\"   this list of conditions and the following disclaimer.
.\"
.\" * Redistributions in binary form must reproduce the above copyright notice,
.\"   this list of conditions and the following disclaimer in the documentation
.\"   and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
.\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
.\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
.\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
.\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
.\" POSSIBILITY OF SUCH DAMAGE.
.\"
.TH "BC" "1" "July 2020" "Gavin D. Howard" "General Commands Manual"
.SH NAME
.PP
bc \- arbitrary\-precision arithmetic language and calculator
.SH SYNOPSIS
.PP
\f[B]bc\f[] [\f[B]\-ghilPqsvVw\f[]] [\f[B]\-\-global\-stacks\f[]]
[\f[B]\-\-help\f[]] [\f[B]\-\-interactive\f[]] [\f[B]\-\-mathlib\f[]]
[\f[B]\-\-no\-prompt\f[]] [\f[B]\-\-quiet\f[]] [\f[B]\-\-standard\f[]]
[\f[B]\-\-warn\f[]] [\f[B]\-\-version\f[]] [\f[B]\-e\f[] \f[I]expr\f[]]
[\f[B]\-\-expression\f[]=\f[I]expr\f[]...] [\f[B]\-f\f[]
\f[I]file\f[]...] [\f[B]\-file\f[]=\f[I]file\f[]...] [\f[I]file\f[]...]
.SH DESCRIPTION
.PP
bc(1) is an interactive processor for a language first standardized in
1991 by POSIX.
(The current standard is
here (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html).)
The language provides unlimited precision decimal arithmetic and is
somewhat C\-like, but there are differences.
Such differences will be noted in this document.
.PP
After parsing and handling options, this bc(1) reads any files given on
the command line and executes them before reading from \f[B]stdin\f[].
.SH OPTIONS
.PP
The following are the options that bc(1) accepts.
.PP
\f[B]\-g\f[], \f[B]\-\-global\-stacks\f[]
.IP
.nf
\f[C]
Turns\ the\ globals\ **ibase**,\ **obase**,\ and\ **scale**\ into\ stacks.

This\ has\ the\ effect\ that\ a\ copy\ of\ the\ current\ value\ of\ all\ three\ are\ pushed
onto\ a\ stack\ for\ every\ function\ call,\ as\ well\ as\ popped\ when\ every\ function
returns.\ This\ means\ that\ functions\ can\ assign\ to\ any\ and\ all\ of\ those
globals\ without\ worrying\ that\ the\ change\ will\ affect\ other\ functions.
Thus,\ a\ hypothetical\ function\ named\ **output(x,b)**\ that\ simply\ printed
**x**\ in\ base\ **b**\ could\ be\ written\ like\ this:

\ \ \ \ define\ void\ output(x,\ b)\ {
\ \ \ \ \ \ \ \ obase=b
\ \ \ \ \ \ \ \ x
\ \ \ \ }

instead\ of\ like\ this:

\ \ \ \ define\ void\ output(x,\ b)\ {
\ \ \ \ \ \ \ \ auto\ c
\ \ \ \ \ \ \ \ c=obase
\ \ \ \ \ \ \ \ obase=b
\ \ \ \ \ \ \ \ x
\ \ \ \ \ \ \ \ obase=c
\ \ \ \ }

This\ makes\ writing\ functions\ much\ easier.

However,\ since\ using\ this\ flag\ means\ that\ functions\ cannot\ set\ **ibase**,
**obase**,\ or\ **scale**\ globally,\ functions\ that\ are\ made\ to\ do\ so\ cannot
work\ anymore.\ There\ are\ two\ possible\ use\ cases\ for\ that,\ and\ each\ has\ a
solution.

First,\ if\ a\ function\ is\ called\ on\ startup\ to\ turn\ bc(1)\ into\ a\ number
converter,\ it\ is\ possible\ to\ replace\ that\ capability\ with\ various\ shell
aliases.\ Examples:

\ \ \ \ alias\ d2o="bc\ \-e\ ibase=A\ \-e\ obase=8"
\ \ \ \ alias\ h2b="bc\ \-e\ ibase=G\ \-e\ obase=2"

Second,\ if\ the\ purpose\ of\ a\ function\ is\ to\ set\ **ibase**,\ **obase**,\ or
**scale**\ globally\ for\ any\ other\ purpose,\ it\ could\ be\ split\ into\ one\ to
three\ functions\ (based\ on\ how\ many\ globals\ it\ sets)\ and\ each\ of\ those
functions\ could\ return\ the\ desired\ value\ for\ a\ global.

If\ the\ behavior\ of\ this\ option\ is\ desired\ for\ every\ run\ of\ bc(1),\ then\ users
could\ make\ sure\ to\ define\ **BC_ENV_ARGS**\ and\ include\ this\ option\ (see\ the
**ENVIRONMENT\ VARIABLES**\ section\ for\ more\ details).

If\ **\-s**,\ **\-w**,\ or\ any\ equivalents\ are\ used,\ this\ option\ is\ ignored.

This\ is\ a\ **non\-portable\ extension**.
\f[]
.fi
.TP
.B \f[B]\-h\f[], \f[B]\-\-help\f[]
Prints a usage message and quits.
.RS
.RE
.TP
.B \f[B]\-i\f[], \f[B]\-\-interactive\f[]
Forces interactive mode.
(See the \f[B]INTERACTIVE MODE\f[] section.)
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-l\f[], \f[B]\-\-mathlib\f[]
Sets \f[B]scale\f[] (see the \f[B]SYNTAX\f[] section) to \f[B]20\f[] and
loads the included math library before running any code, including any
expressions or files specified on the command line.
.RS
.PP
To learn what is in the library, see the \f[B]LIBRARY\f[] section.
.RE
.TP
.B \f[B]\-P\f[], \f[B]\-\-no\-prompt\f[]
This option is a no\-op.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-q\f[], \f[B]\-\-quiet\f[]
This option is for compatibility with the GNU
bc(1) (https://www.gnu.org/software/bc/); it is a no\-op.
Without this option, GNU bc(1) prints a copyright header.
This bc(1) only prints the copyright header if one or more of the
\f[B]\-v\f[], \f[B]\-V\f[], or \f[B]\-\-version\f[] options are given.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-s\f[], \f[B]\-\-standard\f[]
Process exactly the language defined by the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
and error if any extensions are used.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-v\f[], \f[B]\-V\f[], \f[B]\-\-version\f[]
Print the version information (copyright header) and exit.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-w\f[], \f[B]\-\-warn\f[]
Like \f[B]\-s\f[] and \f[B]\-\-standard\f[], except that warnings (and
not errors) are printed for non\-standard extensions and execution
continues normally.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-e\f[] \f[I]expr\f[], \f[B]\-\-expression\f[]=\f[I]expr\f[]
Evaluates \f[I]expr\f[].
If multiple expressions are given, they are evaluated in order.
If files are given as well (see below), the expressions and files are
evaluated in the order given.
This means that if a file is given before an expression, the file is
read in and evaluated first.
.RS
.PP
After processing all expressions and files, bc(1) will exit, unless
\f[B]\-\f[] (\f[B]stdin\f[]) was given as an argument at least once to
\f[B]\-f\f[] or \f[B]\-\-file\f[].
However, if any other \f[B]\-e\f[], \f[B]\-\-expression\f[],
\f[B]\-f\f[], or \f[B]\-\-file\f[] arguments are given after that, bc(1)
will give a fatal error and exit.
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]\-f\f[] \f[I]file\f[], \f[B]\-\-file\f[]=\f[I]file\f[]
Reads in \f[I]file\f[] and evaluates it, line by line, as though it were
read through \f[B]stdin\f[].
If expressions are also given (see above), the expressions are evaluated
in the order given.
.RS
.PP
After processing all expressions and files, bc(1) will exit, unless
\f[B]\-\f[] (\f[B]stdin\f[]) was given as an argument at least once to
\f[B]\-f\f[] or \f[B]\-\-file\f[].
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.PP
All long options are \f[B]non\-portable extensions\f[].
.SH STDOUT
.PP
Any non\-error output is written to \f[B]stdout\f[].
.PP
\f[B]Note\f[]: Unlike other bc(1) implementations, this bc(1) will issue
a fatal error (see the \f[B]EXIT STATUS\f[] section) if it cannot write
to \f[B]stdout\f[], so if \f[B]stdout\f[] is closed, as in \f[B]bc
>&\-\f[], it will quit with an error.
This is done so that bc(1) can report problems when \f[B]stdout\f[] is
redirected to a file.
.PP
If there are scripts that depend on the behavior of other bc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stdout\f[] to \f[B]/dev/null\f[].
.SH STDERR
.PP
Any error output is written to \f[B]stderr\f[].
.PP
\f[B]Note\f[]: Unlike other bc(1) implementations, this bc(1) will issue
a fatal error (see the \f[B]EXIT STATUS\f[] section) if it cannot write
to \f[B]stderr\f[], so if \f[B]stderr\f[] is closed, as in \f[B]bc
2>&\-\f[], it will quit with an error.
This is done so that bc(1) can exit with an error code when
\f[B]stderr\f[] is redirected to a file.
.PP
If there are scripts that depend on the behavior of other bc(1)
implementations, it is recommended that those scripts be changed to
redirect \f[B]stderr\f[] to \f[B]/dev/null\f[].
.SH SYNTAX
.PP
The syntax for bc(1) programs is mostly C\-like, with some differences.
This bc(1) follows the POSIX
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
which is a much more thorough resource for the language this bc(1)
accepts.
This section is meant to be a summary and a listing of all the
extensions to the standard.
.PP
In the sections below, \f[B]E\f[] means expression, \f[B]S\f[] means
statement, and \f[B]I\f[] means identifier.
.PP
Identifiers (\f[B]I\f[]) start with a lowercase letter and can be
followed by any number (up to \f[B]BC_NAME_MAX\-1\f[]) of lowercase
letters (\f[B]a\-z\f[]), digits (\f[B]0\-9\f[]), and underscores
(\f[B]_\f[]).
The regex is \f[B][a\-z][a\-z0\-9_]*\f[].
Identifiers with more than one character (letter) are a
\f[B]non\-portable extension\f[].
.PP
\f[B]ibase\f[] is a global variable determining how to interpret
constant numbers.
It is the "input" base, or the number base used for interpreting input
numbers.
\f[B]ibase\f[] is initially \f[B]10\f[].
If the \f[B]\-s\f[] (\f[B]\-\-standard\f[]) and \f[B]\-w\f[]
(\f[B]\-\-warn\f[]) flags were not given on the command line, the max
allowable value for \f[B]ibase\f[] is \f[B]36\f[].
Otherwise, it is \f[B]16\f[].
The min allowable value for \f[B]ibase\f[] is \f[B]2\f[].
The max allowable value for \f[B]ibase\f[] can be queried in bc(1)
programs with the \f[B]maxibase()\f[] built\-in function.
.PP
\f[B]obase\f[] is a global variable determining how to output results.
It is the "output" base, or the number base used for outputting numbers.
\f[B]obase\f[] is initially \f[B]10\f[].
The max allowable value for \f[B]obase\f[] is \f[B]BC_BASE_MAX\f[] and
can be queried in bc(1) programs with the \f[B]maxobase()\f[] built\-in
function.
The min allowable value for \f[B]obase\f[] is \f[B]2\f[].
Values are output in the specified base.
.PP
The \f[I]scale\f[] of an expression is the number of digits in the
result of the expression right of the decimal point, and \f[B]scale\f[]
is a global variable that sets the precision of any operations, with
exceptions.
\f[B]scale\f[] is initially \f[B]0\f[].
\f[B]scale\f[] cannot be negative.
The max allowable value for \f[B]scale\f[] is \f[B]BC_SCALE_MAX\f[] and
can be queried in bc(1) programs with the \f[B]maxscale()\f[] built\-in
function.
.PP
bc(1) has both \f[I]global\f[] variables and \f[I]local\f[] variables.
All \f[I]local\f[] variables are local to the function; they are
parameters or are introduced in the \f[B]auto\f[] list of a function
(see the \f[B]FUNCTIONS\f[] section).
If a variable is accessed which is not a parameter or in the
\f[B]auto\f[] list, it is assumed to be \f[I]global\f[].
If a parent function has a \f[I]local\f[] variable version of a variable
that a child function considers \f[I]global\f[], the value of that
\f[I]global\f[] variable in the child function is the value of the
variable in the parent function, not the value of the actual
\f[I]global\f[] variable.
.PP
All of the above applies to arrays as well.
.PP
The value of a statement that is an expression (i.e., any of the named
expressions or operands) is printed unless the lowest precedence
operator is an assignment operator \f[I]and\f[] the expression is
notsurrounded by parentheses.
.PP
The value that is printed is also assigned to the special variable
\f[B]last\f[].
A single dot (\f[B].\f[]) may also be used as a synonym for
\f[B]last\f[].
These are \f[B]non\-portable extensions\f[].
.PP
Either semicolons or newlines may separate statements.
.SS Comments
.PP
There are two kinds of comments:
.IP "1." 3
Block comments are enclosed in \f[B]/*\f[] and \f[B]*/\f[].
.IP "2." 3
Line comments go from \f[B]#\f[] until, and not including, the next
newline.
This is a \f[B]non\-portable extension\f[].
.SS Named Expressions
.PP
The following are named expressions in bc(1):
.IP "1." 3
Variables: \f[B]I\f[]
.IP "2." 3
Array Elements: \f[B]I[E]\f[]
.IP "3." 3
\f[B]ibase\f[]
.IP "4." 3
\f[B]obase\f[]
.IP "5." 3
\f[B]scale\f[]
.IP "6." 3
\f[B]last\f[] or a single dot (\f[B].\f[])
.PP
Number 6 is a \f[B]non\-portable extension\f[].
.PP
Variables and arrays do not interfere; users can have arrays named the
same as variables.
This also applies to functions (see the \f[B]FUNCTIONS\f[] section), so
a user can have a variable, array, and function that all have the same
name, and they will not shadow each other, whether inside of functions
or not.
.PP
Named expressions are required as the operand of
\f[B]increment\f[]/\f[B]decrement\f[] operators and as the left side of
\f[B]assignment\f[] operators (see the \f[I]Operators\f[] subsection).
.SS Operands
.PP
The following are valid operands in bc(1):
.IP " 1." 4
Numbers (see the \f[I]Numbers\f[] subsection below).
.IP " 2." 4
Array indices (\f[B]I[E]\f[]).
.IP " 3." 4
\f[B](E)\f[]: The value of \f[B]E\f[] (used to change precedence).
.IP " 4." 4
\f[B]sqrt(E)\f[]: The square root of \f[B]E\f[].
\f[B]E\f[] must be non\-negative.
.IP " 5." 4
\f[B]length(E)\f[]: The number of significant decimal digits in
\f[B]E\f[].
.IP " 6." 4
\f[B]length(I[])\f[]: The number of elements in the array \f[B]I\f[].
This is a \f[B]non\-portable extension\f[].
.IP " 7." 4
\f[B]scale(E)\f[]: The \f[I]scale\f[] of \f[B]E\f[].
.IP " 8." 4
\f[B]abs(E)\f[]: The absolute value of \f[B]E\f[].
This is a \f[B]non\-portable extension\f[].
.IP " 9." 4
\f[B]I()\f[], \f[B]I(E)\f[], \f[B]I(E, E)\f[], and so on, where
\f[B]I\f[] is an identifier for a non\-\f[B]void\f[] function (see the
\f[I]Void Functions\f[] subsection of the \f[B]FUNCTIONS\f[] section).
The \f[B]E\f[] argument(s) may also be arrays of the form \f[B]I[]\f[],
which will automatically be turned into array references (see the
\f[I]Array References\f[] subsection of the \f[B]FUNCTIONS\f[] section)
if the corresponding parameter in the function definition is an array
reference.
.IP "10." 4
\f[B]read()\f[]: Reads a line from \f[B]stdin\f[] and uses that as an
expression.
The result of that expression is the result of the \f[B]read()\f[]
operand.
This is a \f[B]non\-portable extension\f[].
.IP "11." 4
\f[B]maxibase()\f[]: The max allowable \f[B]ibase\f[].
This is a \f[B]non\-portable extension\f[].
.IP "12." 4
\f[B]maxobase()\f[]: The max allowable \f[B]obase\f[].
This is a \f[B]non\-portable extension\f[].
.IP "13." 4
\f[B]maxscale()\f[]: The max allowable \f[B]scale\f[].
This is a \f[B]non\-portable extension\f[].
.SS Numbers
.PP
Numbers are strings made up of digits, uppercase letters, and at most
\f[B]1\f[] period for a radix.
Numbers can have up to \f[B]BC_NUM_MAX\f[] digits.
Uppercase letters are equal to \f[B]9\f[] + their position in the
alphabet (i.e., \f[B]A\f[] equals \f[B]10\f[], or \f[B]9+1\f[]).
If a digit or letter makes no sense with the current value of
\f[B]ibase\f[], they are set to the value of the highest valid digit in
\f[B]ibase\f[].
.PP
Single\-character numbers (i.e., \f[B]A\f[] alone) take the value that
they would have if they were valid digits, regardless of the value of
\f[B]ibase\f[].
This means that \f[B]A\f[] alone always equals decimal \f[B]10\f[] and
\f[B]Z\f[] alone always equals decimal \f[B]35\f[].
.SS Operators
.PP
The following arithmetic and logical operators can be used.
They are listed in order of decreasing precedence.
Operators in the same group have the same precedence.
.TP
.B \f[B]++\f[] \f[B]\-\-\f[]
Type: Prefix and Postfix
.RS
.PP
Associativity: None
.PP
Description: \f[B]increment\f[], \f[B]decrement\f[]
.RE
.TP
.B \f[B]\-\f[] \f[B]!\f[]
Type: Prefix
.RS
.PP
Associativity: None
.PP
Description: \f[B]negation\f[], \f[B]boolean not\f[]
.RE
.TP
.B \f[B]^\f[]
Type: Binary
.RS
.PP
Associativity: Right
.PP
Description: \f[B]power\f[]
.RE
.TP
.B \f[B]*\f[] \f[B]/\f[] \f[B]%\f[]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]multiply\f[], \f[B]divide\f[], \f[B]modulus\f[]
.RE
.TP
.B \f[B]+\f[] \f[B]\-\f[]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]add\f[], \f[B]subtract\f[]
.RE
.TP
.B \f[B]=\f[] \f[B]+=\f[] \f[B]\-=\f[] \f[B]*=\f[] \f[B]/=\f[] \f[B]%=\f[] \f[B]^=\f[]
Type: Binary
.RS
.PP
Associativity: Right
.PP
Description: \f[B]assignment\f[]
.RE
.TP
.B \f[B]==\f[] \f[B]<=\f[] \f[B]>=\f[] \f[B]!=\f[] \f[B]<\f[] \f[B]>\f[]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]relational\f[]
.RE
.TP
.B \f[B]&&\f[]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]boolean and\f[]
.RE
.TP
.B \f[B]||\f[]
Type: Binary
.RS
.PP
Associativity: Left
.PP
Description: \f[B]boolean or\f[]
.RE
.PP
The operators will be described in more detail below.
.TP
.B \f[B]++\f[] \f[B]\-\-\f[]
The prefix and postfix \f[B]increment\f[] and \f[B]decrement\f[]
operators behave exactly like they would in C.
They require a named expression (see the \f[I]Named Expressions\f[]
subsection) as an operand.
.RS
.PP
The prefix versions of these operators are more efficient; use them
where possible.
.RE
.TP
.B \f[B]\-\f[]
The \f[B]negation\f[] operator returns \f[B]0\f[] if a user attempts to
negate any expression with the value \f[B]0\f[].
Otherwise, a copy of the expression with its sign flipped is returned.
.RS
.RE
.TP
.B \f[B]!\f[]
The \f[B]boolean not\f[] operator returns \f[B]1\f[] if the expression
is \f[B]0\f[], or \f[B]0\f[] otherwise.
.RS
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]^\f[]
The \f[B]power\f[] operator (not the \f[B]exclusive or\f[] operator, as
it would be in C) takes two expressions and raises the first to the
power of the value of the second.
.RS
.PP
The second expression must be an integer (no \f[I]scale\f[]), and if it
is negative, the first value must be non\-zero.
.RE
.TP
.B \f[B]*\f[]
The \f[B]multiply\f[] operator takes two expressions, multiplies them,
and returns the product.
If \f[B]a\f[] is the \f[I]scale\f[] of the first expression and
\f[B]b\f[] is the \f[I]scale\f[] of the second expression, the
\f[I]scale\f[] of the result is equal to
\f[B]min(a+b,max(scale,a,b))\f[] where \f[B]min()\f[] and \f[B]max()\f[]
return the obvious values.
.RS
.RE
.TP
.B \f[B]/\f[]
The \f[B]divide\f[] operator takes two expressions, divides them, and
returns the quotient.
The \f[I]scale\f[] of the result shall be the value of \f[B]scale\f[].
.RS
.PP
The second expression must be non\-zero.
.RE
.TP
.B \f[B]%\f[]
The \f[B]modulus\f[] operator takes two expressions, \f[B]a\f[] and
\f[B]b\f[], and evaluates them by 1) Computing \f[B]a/b\f[] to current
\f[B]scale\f[] and 2) Using the result of step 1 to calculate
\f[B]a\-(a/b)*b\f[] to \f[I]scale\f[]
\f[B]max(scale+scale(b),scale(a))\f[].
.RS
.PP
The second expression must be non\-zero.
.RE
.TP
.B \f[B]+\f[]
The \f[B]add\f[] operator takes two expressions, \f[B]a\f[] and
\f[B]b\f[], and returns the sum, with a \f[I]scale\f[] equal to the max
of the \f[I]scale\f[]s of \f[B]a\f[] and \f[B]b\f[].
.RS
.RE
.TP
.B \f[B]\-\f[]
The \f[B]subtract\f[] operator takes two expressions, \f[B]a\f[] and
\f[B]b\f[], and returns the difference, with a \f[I]scale\f[] equal to
the max of the \f[I]scale\f[]s of \f[B]a\f[] and \f[B]b\f[].
.RS
.RE
.TP
.B \f[B]=\f[] \f[B]+=\f[] \f[B]\-=\f[] \f[B]*=\f[] \f[B]/=\f[] \f[B]%=\f[] \f[B]^=\f[]
The \f[B]assignment\f[] operators take two expressions, \f[B]a\f[] and
\f[B]b\f[] where \f[B]a\f[] is a named expression (see the \f[I]Named
Expressions\f[] subsection).
.RS
.PP
For \f[B]=\f[], \f[B]b\f[] is copied and the result is assigned to
\f[B]a\f[].
For all others, \f[B]a\f[] and \f[B]b\f[] are applied as operands to the
corresponding arithmetic operator and the result is assigned to
\f[B]a\f[].
.RE
.TP
.B \f[B]==\f[] \f[B]<=\f[] \f[B]>=\f[] \f[B]!=\f[] \f[B]<\f[] \f[B]>\f[]
The \f[B]relational\f[] operators compare two expressions, \f[B]a\f[]
and \f[B]b\f[], and if the relation holds, according to C language
semantics, the result is \f[B]1\f[].
Otherwise, it is \f[B]0\f[].
.RS
.PP
Note that unlike in C, these operators have a lower precedence than the
\f[B]assignment\f[] operators, which means that \f[B]a=b>c\f[] is
interpreted as \f[B](a=b)>c\f[].
.PP
Also, unlike the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
requires, these operators can appear anywhere any other expressions can
be used.
This allowance is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]&&\f[]
The \f[B]boolean and\f[] operator takes two expressions and returns
\f[B]1\f[] if both expressions are non\-zero, \f[B]0\f[] otherwise.
.RS
.PP
This is \f[I]not\f[] a short\-circuit operator.
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.TP
.B \f[B]||\f[]
The \f[B]boolean or\f[] operator takes two expressions and returns
\f[B]1\f[] if one of the expressions is non\-zero, \f[B]0\f[] otherwise.
.RS
.PP
This is \f[I]not\f[] a short\-circuit operator.
.PP
This is a \f[B]non\-portable extension\f[].
.RE
.SS Statements
.PP
The following items are statements:
.IP " 1." 4
\f[B]E\f[]
.IP " 2." 4
\f[B]{\f[] \f[B]S\f[] \f[B];\f[] ...
\f[B];\f[] \f[B]S\f[] \f[B]}\f[]
.IP " 3." 4
\f[B]if\f[] \f[B](\f[] \f[B]E\f[] \f[B])\f[] \f[B]S\f[]
.IP " 4." 4
\f[B]if\f[] \f[B](\f[] \f[B]E\f[] \f[B])\f[] \f[B]S\f[] \f[B]else\f[]
\f[B]S\f[]
.IP " 5." 4
\f[B]while\f[] \f[B](\f[] \f[B]E\f[] \f[B])\f[] \f[B]S\f[]
.IP " 6." 4
\f[B]for\f[] \f[B](\f[] \f[B]E\f[] \f[B];\f[] \f[B]E\f[] \f[B];\f[]
\f[B]E\f[] \f[B])\f[] \f[B]S\f[]
.IP " 7." 4
An empty statement
.IP " 8." 4
\f[B]break\f[]
.IP " 9." 4
\f[B]continue\f[]
.IP "10." 4
\f[B]quit\f[]
.IP "11." 4
\f[B]halt\f[]
.IP "12." 4
\f[B]limits\f[]
.IP "13." 4
A string of characters, enclosed in double quotes
.IP "14." 4
\f[B]print\f[] \f[B]E\f[] \f[B],\f[] ...
\f[B],\f[] \f[B]E\f[]
.IP "15." 4
\f[B]I()\f[], \f[B]I(E)\f[], \f[B]I(E, E)\f[], and so on, where
\f[B]I\f[] is an identifier for a \f[B]void\f[] function (see the
\f[I]Void Functions\f[] subsection of the \f[B]FUNCTIONS\f[] section).
The \f[B]E\f[] argument(s) may also be arrays of the form \f[B]I[]\f[],
which will automatically be turned into array references (see the
\f[I]Array References\f[] subsection of the \f[B]FUNCTIONS\f[] section)
if the corresponding parameter in the function definition is an array
reference.
.PP
Numbers 4, 9, 11, 12, 14, and 15 are \f[B]non\-portable extensions\f[].
.PP
Also, as a \f[B]non\-portable extension\f[], any or all of the
expressions in the header of a for loop may be omitted.
If the condition (second expression) is omitted, it is assumed to be a
constant \f[B]1\f[].
.PP
The \f[B]break\f[] statement causes a loop to stop iterating and resume
execution immediately following a loop.
This is only allowed in loops.
.PP
The \f[B]continue\f[] statement causes a loop iteration to stop early
and returns to the start of the loop, including testing the loop
condition.
This is only allowed in loops.
.PP
The \f[B]if\f[] \f[B]else\f[] statement does the same thing as in C.
.PP
The \f[B]quit\f[] statement causes bc(1) to quit, even if it is on a
branch that will not be executed (it is a compile\-time command).
.PP
The \f[B]halt\f[] statement causes bc(1) to quit, if it is executed.
(Unlike \f[B]quit\f[] if it is on a branch of an \f[B]if\f[] statement
that is not executed, bc(1) does not quit.)
.PP
The \f[B]limits\f[] statement prints the limits that this bc(1) is
subject to.
This is like the \f[B]quit\f[] statement in that it is a compile\-time
command.
.PP
An expression by itself is evaluated and printed, followed by a newline.
.SS Print Statement
.PP
The "expressions" in a \f[B]print\f[] statement may also be strings.
If they are, there are backslash escape sequences that are interpreted
specially.
What those sequences are, and what they cause to be printed, are shown
below:
.PP
.TS
tab(@);
l l.
T{
\f[B]\\a\f[]
T}@T{
\f[B]\\a\f[]
T}
T{
\f[B]\\b\f[]
T}@T{
\f[B]\\b\f[]
T}
T{
\f[B]\\\\\f[]
T}@T{
\f[B]\\\f[]
T}
T{
\f[B]\\e\f[]
T}@T{
\f[B]\\\f[]
T}
T{
\f[B]\\f\f[]
T}@T{
\f[B]\\f\f[]
T}
T{
\f[B]\\n\f[]
T}@T{
\f[B]\\n\f[]
T}
T{
\f[B]\\q\f[]
T}@T{
\f[B]"\f[]
T}
T{
\f[B]\\r\f[]
T}@T{
\f[B]\\r\f[]
T}
T{
\f[B]\\t\f[]
T}@T{
\f[B]\\t\f[]
T}
.TE
.PP
Any other character following a backslash causes the backslash and
character to be printed as\-is.
.PP
Any non\-string expression in a print statement shall be assigned to
\f[B]last\f[], like any other expression that is printed.
.SS Order of Evaluation
.PP
All expressions in a statment are evaluated left to right, except as
necessary to maintain order of operations.
This means, for example, assuming that \f[B]i\f[] is equal to
\f[B]0\f[], in the expression
.IP
.nf
\f[C]
a[i++]\ =\ i++
\f[]
.fi
.PP
the first (or 0th) element of \f[B]a\f[] is set to \f[B]1\f[], and
\f[B]i\f[] is equal to \f[B]2\f[] at the end of the expression.
.PP
This includes function arguments.
Thus, assuming \f[B]i\f[] is equal to \f[B]0\f[], this means that in the
expression
.IP
.nf
\f[C]
x(i++,\ i++)
\f[]
.fi
.PP
the first argument passed to \f[B]x()\f[] is \f[B]0\f[], and the second
argument is \f[B]1\f[], while \f[B]i\f[] is equal to \f[B]2\f[] before
the function starts executing.
.SH FUNCTIONS
.PP
Function definitions are as follows:
.IP
.nf
\f[C]
define\ I(I,...,I){
\ \ \ \ auto\ I,...,I
\ \ \ \ S;...;S
\ \ \ \ return(E)
}
\f[]
.fi
.PP
Any \f[B]I\f[] in the parameter list or \f[B]auto\f[] list may be
replaced with \f[B]I[]\f[] to make a parameter or \f[B]auto\f[] var an
array, and any \f[B]I\f[] in the parameter list may be replaced with
\f[B]*I[]\f[] to make a parameter an array reference.
Callers of functions that take array references should not put an
asterisk in the call; they must be called with just \f[B]I[]\f[] like
normal array parameters and will be automatically converted into
references.
.PP
As a \f[B]non\-portable extension\f[], the opening brace of a
\f[B]define\f[] statement may appear on the next line.
.PP
As a \f[B]non\-portable extension\f[], the return statement may also be
in one of the following forms:
.IP "1." 3
\f[B]return\f[]
.IP "2." 3
\f[B]return\f[] \f[B](\f[] \f[B])\f[]
.IP "3." 3
\f[B]return\f[] \f[B]E\f[]
.PP
The first two, or not specifying a \f[B]return\f[] statement, is
equivalent to \f[B]return (0)\f[], unless the function is a
\f[B]void\f[] function (see the \f[I]Void Functions\f[] subsection
below).
.SS Void Functions
.PP
Functions can also be \f[B]void\f[] functions, defined as follows:
.IP
.nf
\f[C]
define\ void\ I(I,...,I){
\ \ \ \ auto\ I,...,I
\ \ \ \ S;...;S
\ \ \ \ return
}
\f[]
.fi
.PP
They can only be used as standalone expressions, where such an
expression would be printed alone, except in a print statement.
.PP
Void functions can only use the first two \f[B]return\f[] statements
listed above.
They can also omit the return statement entirely.
.PP
The word "void" is not treated as a keyword; it is still possible to
have variables, arrays, and functions named \f[B]void\f[].
The word "void" is only treated specially right after the
\f[B]define\f[] keyword.
.PP
This is a \f[B]non\-portable extension\f[].
.SS Array References
.PP
For any array in the parameter list, if the array is declared in the
form
.IP
.nf
\f[C]
*I[]
\f[]
.fi
.PP
it is a \f[B]reference\f[].
Any changes to the array in the function are reflected, when the
function returns, to the array that was passed in.
.PP
Other than this, all function arguments are passed by value.
.PP
This is a \f[B]non\-portable extension\f[].
.SH LIBRARY
.PP
All of the functions below are available when the \f[B]\-l\f[] or
\f[B]\-\-mathlib\f[] command\-line flags are given.
.SS Standard Library
.PP
The
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
defines the following functions for the math library:
.TP
.B \f[B]s(x)\f[]
Returns the sine of \f[B]x\f[], which is assumed to be in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.TP
.B \f[B]c(x)\f[]
Returns the cosine of \f[B]x\f[], which is assumed to be in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.TP
.B \f[B]a(x)\f[]
Returns the arctangent of \f[B]x\f[], in radians.
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.TP
.B \f[B]l(x)\f[]
Returns the natural logarithm of \f[B]x\f[].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.TP
.B \f[B]e(x)\f[]
Returns the mathematical constant \f[B]e\f[] raised to the power of
\f[B]x\f[].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.TP
.B \f[B]j(x, n)\f[]
Returns the bessel integer order \f[B]n\f[] (truncated) of \f[B]x\f[].
.RS
.PP
This is a transcendental function (see the \f[I]Transcendental
Functions\f[] subsection below).
.RE
.SS Transcendental Functions
.PP
All transcendental functions can return slightly inaccurate results (up
to 1 ULP (https://en.wikipedia.org/wiki/Unit_in_the_last_place)).
This is unavoidable, and this
article (https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT) explains
why it is impossible and unnecessary to calculate exact results for the
transcendental functions.
.PP
Because of the possible inaccuracy, I recommend that users call those
functions with the precision (\f[B]scale\f[]) set to at least 1 higher
than is necessary.
If exact results are \f[I]absolutely\f[] required, users can double the
precision (\f[B]scale\f[]) and then truncate.
.PP
The transcendental functions in the standard math library are:
.IP \[bu] 2
\f[B]s(x)\f[]
.IP \[bu] 2
\f[B]c(x)\f[]
.IP \[bu] 2
\f[B]a(x)\f[]
.IP \[bu] 2
\f[B]l(x)\f[]
.IP \[bu] 2
\f[B]e(x)\f[]
.IP \[bu] 2
\f[B]j(x, n)\f[]
.SH RESET
.PP
When bc(1) encounters an error or a signal that it has a non\-default
handler for, it resets.
This means that several things happen.
.PP
First, any functions that are executing are stopped and popped off the
stack.
The behavior is not unlike that of exceptions in programming languages.
Then the execution point is set so that any code waiting to execute
(after all functions returned) is skipped.
.PP
Thus, when bc(1) resets, it skips any remaining code waiting to be
executed.
Then, if it is interactive mode, and the error was not a fatal error
(see the \f[B]EXIT STATUS\f[] section), it asks for more input;
otherwise, it exits with the appropriate return code.
.PP
Note that this reset behavior is different from the GNU bc(1), which
attempts to start executing the statement right after the one that
caused an error.
.SH PERFORMANCE
.PP
Most bc(1) implementations use \f[B]char\f[] types to calculate the
value of \f[B]1\f[] decimal digit at a time, but that can be slow.
This bc(1) does something different.
.PP
It uses large integers to calculate more than \f[B]1\f[] decimal digit
at a time.
If built in a environment where \f[B]BC_LONG_BIT\f[] (see the
\f[B]LIMITS\f[] section) is \f[B]64\f[], then each integer has
\f[B]9\f[] decimal digits.
If built in an environment where \f[B]BC_LONG_BIT\f[] is \f[B]32\f[]
then each integer has \f[B]4\f[] decimal digits.
This value (the number of decimal digits per large integer) is called
\f[B]BC_BASE_DIGS\f[].
.PP
The actual values of \f[B]BC_LONG_BIT\f[] and \f[B]BC_BASE_DIGS\f[] can
be queried with the \f[B]limits\f[] statement.
.PP
In addition, this bc(1) uses an even larger integer for overflow
checking.
This integer type depends on the value of \f[B]BC_LONG_BIT\f[], but is
always at least twice as large as the integer type used to store digits.
.SH LIMITS
.PP
The following are the limits on bc(1):
.TP
.B \f[B]BC_LONG_BIT\f[]
The number of bits in the \f[B]long\f[] type in the environment where
bc(1) was built.
This determines how many decimal digits can be stored in a single large
integer (see the \f[B]PERFORMANCE\f[] section).
.RS
.RE
.TP
.B \f[B]BC_BASE_DIGS\f[]
The number of decimal digits per large integer (see the
\f[B]PERFORMANCE\f[] section).
Depends on \f[B]BC_LONG_BIT\f[].
.RS
.RE
.TP
.B \f[B]BC_BASE_POW\f[]
The max decimal number that each large integer can store (see
\f[B]BC_BASE_DIGS\f[]) plus \f[B]1\f[].
Depends on \f[B]BC_BASE_DIGS\f[].
.RS
.RE
.TP
.B \f[B]BC_OVERFLOW_MAX\f[]
The max number that the overflow type (see the \f[B]PERFORMANCE\f[]
section) can hold.
Depends on \f[B]BC_LONG_BIT\f[].
.RS
.RE
.TP
.B \f[B]BC_BASE_MAX\f[]
The maximum output base.
Set at \f[B]BC_BASE_POW\f[].
.RS
.RE
.TP
.B \f[B]BC_DIM_MAX\f[]
The maximum size of arrays.
Set at \f[B]SIZE_MAX\-1\f[].
.RS
.RE
.TP
.B \f[B]BC_SCALE_MAX\f[]
The maximum \f[B]scale\f[].
Set at \f[B]BC_OVERFLOW_MAX\-1\f[].
.RS
.RE
.TP
.B \f[B]BC_STRING_MAX\f[]
The maximum length of strings.
Set at \f[B]BC_OVERFLOW_MAX\-1\f[].
.RS
.RE
.TP
.B \f[B]BC_NAME_MAX\f[]
The maximum length of identifiers.
Set at \f[B]BC_OVERFLOW_MAX\-1\f[].
.RS
.RE
.TP
.B \f[B]BC_NUM_MAX\f[]
The maximum length of a number (in decimal digits), which includes
digits after the decimal point.
Set at \f[B]BC_OVERFLOW_MAX\-1\f[].
.RS
.RE
.TP
.B Exponent
The maximum allowable exponent (positive or negative).
Set at \f[B]BC_OVERFLOW_MAX\f[].
.RS
.RE
.TP
.B Number of vars
The maximum number of vars/arrays.
Set at \f[B]SIZE_MAX\-1\f[].
.RS
.RE
.PP
The actual values can be queried with the \f[B]limits\f[] statement.
.PP
These limits are meant to be effectively non\-existent; the limits are
so large (at least on 64\-bit machines) that there should not be any
point at which they become a problem.
In fact, memory should be exhausted before these limits should be hit.
.SH ENVIRONMENT VARIABLES
.PP
bc(1) recognizes the following environment variables:
.TP
.B \f[B]POSIXLY_CORRECT\f[]
If this variable exists (no matter the contents), bc(1) behaves as if
the \f[B]\-s\f[] option was given.
.RS
.RE
.TP
.B \f[B]BC_ENV_ARGS\f[]
This is another way to give command\-line arguments to bc(1).
They should be in the same format as all other command\-line arguments.
These are always processed first, so any files given in
\f[B]BC_ENV_ARGS\f[] will be processed before arguments and files given
on the command\-line.
This gives the user the ability to set up "standard" options and files
to be used at every invocation.
The most useful thing for such files to contain would be useful
functions that the user might want every time bc(1) runs.
.RS
.PP
The code that parses \f[B]BC_ENV_ARGS\f[] will correctly handle quoted
arguments, but it does not understand escape sequences.
For example, the string \f[B]"/home/gavin/some bc file.bc"\f[] will be
correctly parsed, but the string \f[B]"/home/gavin/some "bc"
file.bc"\f[] will include the backslashes.
.PP
The quote parsing will handle either kind of quotes, \f[B]\[aq]\f[] or
\f[B]"\f[].
Thus, if you have a file with any number of single quotes in the name,
you can use double quotes as the outside quotes, as in \f[B]"some
\[aq]bc\[aq] file.bc"\f[], and vice versa if you have a file with double
quotes.
However, handling a file with both kinds of quotes in
\f[B]BC_ENV_ARGS\f[] is not supported due to the complexity of the
parsing, though such files are still supported on the command\-line
where the parsing is done by the shell.
.RE
.TP
.B \f[B]BC_LINE_LENGTH\f[]
If this environment variable exists and contains an integer that is
greater than \f[B]1\f[] and is less than \f[B]UINT16_MAX\f[]
(\f[B]2^16\-1\f[]), bc(1) will output lines to that length, including
the backslash (\f[B]\\\f[]).
The default line length is \f[B]70\f[].
.RS
.RE
.SH EXIT STATUS
.PP
bc(1) returns the following exit statuses:
.TP
.B \f[B]0\f[]
No error.
.RS
.RE
.TP
.B \f[B]1\f[]
A math error occurred.
This follows standard practice of using \f[B]1\f[] for expected errors,
since math errors will happen in the process of normal execution.
.RS
.PP
Math errors include divide by \f[B]0\f[], taking the square root of a
negative number, attempting to convert a negative number to a hardware
integer, overflow when converting a number to a hardware integer, and
attempting to use a non\-integer where an integer is required.
.PP
Converting to a hardware integer happens for the second operand of the
power (\f[B]^\f[]) operator and the corresponding assignment operator.
.RE
.TP
.B \f[B]2\f[]
A parse error occurred.
.RS
.PP
Parse errors include unexpected \f[B]EOF\f[], using an invalid
character, failing to find the end of a string or comment, using a token
where it is invalid, giving an invalid expression, giving an invalid
print statement, giving an invalid function definition, attempting to
assign to an expression that is not a named expression (see the
\f[I]Named Expressions\f[] subsection of the \f[B]SYNTAX\f[] section),
giving an invalid \f[B]auto\f[] list, having a duplicate
\f[B]auto\f[]/function parameter, failing to find the end of a code
block, attempting to return a value from a \f[B]void\f[] function,
attempting to use a variable as a reference, and using any extensions
when the option \f[B]\-s\f[] or any equivalents were given.
.RE
.TP
.B \f[B]3\f[]
A runtime error occurred.
.RS
.PP
Runtime errors include assigning an invalid number to \f[B]ibase\f[],
\f[B]obase\f[], or \f[B]scale\f[]; give a bad expression to a
\f[B]read()\f[] call, calling \f[B]read()\f[] inside of a
\f[B]read()\f[] call, type errors, passing the wrong number of arguments
to functions, attempting to call an undefined function, and attempting
to use a \f[B]void\f[] function call as a value in an expression.
.RE
.TP
.B \f[B]4\f[]
A fatal error occurred.
.RS
.PP
Fatal errors include memory allocation errors, I/O errors, failing to
open files, attempting to use files that do not have only ASCII
characters (bc(1) only accepts ASCII characters), attempting to open a
directory as a file, and giving invalid command\-line options.
.RE
.PP
The exit status \f[B]4\f[] is special; when a fatal error occurs, bc(1)
always exits and returns \f[B]4\f[], no matter what mode bc(1) is in.
.PP
The other statuses will only be returned when bc(1) is not in
interactive mode (see the \f[B]INTERACTIVE MODE\f[] section), since
bc(1) resets its state (see the \f[B]RESET\f[] section) and accepts more
input when one of those errors occurs in interactive mode.
This is also the case when interactive mode is forced by the
\f[B]\-i\f[] flag or \f[B]\-\-interactive\f[] option.
.PP
These exit statuses allow bc(1) to be used in shell scripting with error
checking, and its normal behavior can be forced by using the
\f[B]\-i\f[] flag or \f[B]\-\-interactive\f[] option.
.SH INTERACTIVE MODE
.PP
Per the
standard (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
bc(1) has an interactive mode and a non\-interactive mode.
Interactive mode is turned on automatically when both \f[B]stdin\f[] and
\f[B]stdout\f[] are hooked to a terminal, but the \f[B]\-i\f[] flag and
\f[B]\-\-interactive\f[] option can turn it on in other cases.
.PP
In interactive mode, bc(1) attempts to recover from errors (see the
\f[B]RESET\f[] section), and in normal execution, flushes
\f[B]stdout\f[] as soon as execution is done for the current input.
.SH TTY MODE
.PP
If \f[B]stdin\f[], \f[B]stdout\f[], and \f[B]stderr\f[] are all
connected to a TTY, bc(1) turns on "TTY mode."
.PP
TTY mode is different from interactive mode because interactive mode is
required in the bc(1)
specification (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html),
and interactive mode requires only \f[B]stdin\f[] and \f[B]stdout\f[] to
be connected to a terminal.
.SH SIGNAL HANDLING
.PP
Sending a \f[B]SIGINT\f[] will cause bc(1) to stop execution of the
current input.
If bc(1) is in TTY mode (see the \f[B]TTY MODE\f[] section), it will
reset (see the \f[B]RESET\f[] section).
Otherwise, it will clean up and exit.
.PP
Note that "current input" can mean one of two things.
If bc(1) is processing input from \f[B]stdin\f[] in TTY mode, it will
ask for more input.
If bc(1) is processing input from a file in TTY mode, it will stop
processing the file and start processing the next file, if one exists,
or ask for input from \f[B]stdin\f[] if no other file exists.
.PP
This means that if a \f[B]SIGINT\f[] is sent to bc(1) as it is executing
a file, it can seem as though bc(1) did not respond to the signal since
it will immediately start executing the next file.
This is by design; most files that users execute when interacting with
bc(1) have function definitions, which are quick to parse.
If a file takes a long time to execute, there may be a bug in that file.
The rest of the files could still be executed without problem, allowing
the user to continue.
.PP
\f[B]SIGTERM\f[] and \f[B]SIGQUIT\f[] cause bc(1) to clean up and exit,
and it uses the default handler for all other signals.
.SH SEE ALSO
.PP
dc(1)
.SH STANDARDS
.PP
bc(1) is compliant with the IEEE Std 1003.1\-2017
(“POSIX.1\-2017”) (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/bc.html)
specification.
The flags \f[B]\-efghiqsvVw\f[], all long options, and the extensions
noted above are extensions to that specification.
.PP
Note that the specification explicitly says that bc(1) only accepts
numbers that use a period (\f[B].\f[]) as a radix point, regardless of
the value of \f[B]LC_NUMERIC\f[].
.SH BUGS
.PP
None are known.
Report bugs at https://git.yzena.com/gavin/bc.
.SH AUTHORS
.PP
Gavin D.
Howard <yzena.tech@gmail.com> and contributors.