Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/*
 * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

/*
 * Implementation Notes
 * ====================
 *
 * The combined CTR + CBC-MAC functions can only handle full blocks,
 * so some buffering is necessary. Moreover, EAX has a special padding
 * rule for CBC-MAC, which implies that we cannot compute the MAC over
 * the last received full block until we know whether we are at the
 * end of the data or not.
 *
 *  - 'ptr' contains a value from 1 to 16, which is the number of bytes
 *    accumulated in buf[] that still needs to be processed with the
 *    current OMAC computation. Beware that this can go to 16: a
 *    complete block cannot be processed until it is known whether it
 *    is the last block or not. However, it can never be 0, because
 *    OMAC^t works on an input that is at least one-block long.
 *
 *  - When processing the message itself, CTR encryption/decryption is
 *    also done at the same time. The first 'ptr' bytes of buf[] then
 *    contains the encrypted bytes, while the last '16 - ptr' bytes of
 *    buf[] are the remnants of the stream block, to be used against
 *    the next input bytes, when available.
 *
 *  - The current counter and running CBC-MAC values are kept in 'ctr'
 *    and 'cbcmac', respectively.
 *
 *  - The derived keys for padding are kept in L2 and L4 (double and
 *    quadruple of Enc_K(0^n), in GF(2^128), respectively).
 */

/*
 * Start an OMAC computation; the first block is the big-endian
 * representation of the provided value ('val' must fit on one byte).
 * We make it a delayed block because it may also be the last one,
 */
static void
omac_start(br_eax_context *ctx, unsigned val)
{
	memset(ctx->cbcmac, 0, sizeof ctx->cbcmac);
	memset(ctx->buf, 0, sizeof ctx->buf);
	ctx->buf[15] = val;
	ctx->ptr = 16;
}

/*
 * Double a value in finite field GF(2^128), defined with modulus
 * X^128+X^7+X^2+X+1.
 */
static void
double_gf128(unsigned char *dst, const unsigned char *src)
{
	unsigned cc;
	int i;

	cc = 0x87 & -((unsigned)src[0] >> 7);
	for (i = 15; i >= 0; i --) {
		unsigned z;

		z = (src[i] << 1) ^ cc;
		cc = z >> 8;
		dst[i] = (unsigned char)z;
	}
}

/*
 * Apply padding to the last block, currently in ctx->buf (with
 * ctx->ptr bytes), and finalize OMAC computation.
 */
static void
do_pad(br_eax_context *ctx)
{
	unsigned char *pad;
	size_t ptr, u;

	ptr = ctx->ptr;
	if (ptr == 16) {
		pad = ctx->L2;
	} else {
		ctx->buf[ptr ++] = 0x80;
		memset(ctx->buf + ptr, 0x00, 16 - ptr);
		pad = ctx->L4;
	}
	for (u = 0; u < sizeof ctx->buf; u ++) {
		ctx->buf[u] ^= pad[u];
	}
	(*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, ctx->buf, sizeof ctx->buf);
}

/*
 * Apply CBC-MAC on the provided data, with buffering management.
 *
 * Upon entry, two situations are acceptable:
 *
 *   ctx->ptr == 0: there is no data to process in ctx->buf
 *   ctx->ptr == 16: there is a full block of unprocessed data in ctx->buf
 *
 * Upon exit, ctx->ptr may be zero only if it was already zero on entry,
 * and len == 0. In all other situations, ctx->ptr will be non-zero on
 * exit (and may have value 16).
 */
static void
do_cbcmac_chunk(br_eax_context *ctx, const void *data, size_t len)
{
	size_t ptr;

	if (len == 0) {
		return;
	}
	ptr = len & (size_t)15;
	if (ptr == 0) {
		len -= 16;
		ptr = 16;
	} else {
		len -= ptr;
	}
	if (ctx->ptr == 16) {
		(*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac,
			ctx->buf, sizeof ctx->buf);
	}
	(*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac, data, len);
	memcpy(ctx->buf, (const unsigned char *)data + len, ptr);
	ctx->ptr = ptr;
}

/* see bearssl_aead.h */
void
br_eax_init(br_eax_context *ctx, const br_block_ctrcbc_class **bctx)
{
	unsigned char tmp[16], iv[16];

	ctx->vtable = &br_eax_vtable;
	ctx->bctx = bctx;

	/*
	 * Encrypt a whole-zero block to compute L2 and L4.
	 */
	memset(tmp, 0, sizeof tmp);
	memset(iv, 0, sizeof iv);
	(*bctx)->ctr(bctx, iv, tmp, sizeof tmp);
	double_gf128(ctx->L2, tmp);
	double_gf128(ctx->L4, ctx->L2);
}

/* see bearssl_aead.h */
void
br_eax_capture(const br_eax_context *ctx, br_eax_state *st)
{
	/*
	 * We capture the three OMAC* states _after_ processing the
	 * initial block (assuming that nonce, message and AAD are
	 * all non-empty).
	 */
	int i;

	memset(st->st, 0, sizeof st->st);
	for (i = 0; i < 3; i ++) {
		unsigned char tmp[16];

		memset(tmp, 0, sizeof tmp);
		tmp[15] = (unsigned char)i;
		(*ctx->bctx)->mac(ctx->bctx, st->st[i], tmp, sizeof tmp);
	}
}

/* see bearssl_aead.h */
void
br_eax_reset(br_eax_context *ctx, const void *nonce, size_t len)
{
	/*
	 * Process nonce with OMAC^0.
	 */
	omac_start(ctx, 0);
	do_cbcmac_chunk(ctx, nonce, len);
	do_pad(ctx);
	memcpy(ctx->nonce, ctx->cbcmac, sizeof ctx->cbcmac);

	/*
	 * Start OMAC^1 for the AAD ("header" in the EAX specification).
	 */
	omac_start(ctx, 1);

	/*
	 * We use ctx->head[0] as temporary flag to mark that we are
	 * using a "normal" reset().
	 */
	ctx->head[0] = 0;
}

/* see bearssl_aead.h */
void
br_eax_reset_pre_aad(br_eax_context *ctx, const br_eax_state *st,
	const void *nonce, size_t len)
{
	if (len == 0) {
		omac_start(ctx, 0);
	} else {
		memcpy(ctx->cbcmac, st->st[0], sizeof ctx->cbcmac);
		ctx->ptr = 0;
		do_cbcmac_chunk(ctx, nonce, len);
	}
	do_pad(ctx);
	memcpy(ctx->nonce, ctx->cbcmac, sizeof ctx->cbcmac);

	memcpy(ctx->cbcmac, st->st[1], sizeof ctx->cbcmac);
	ctx->ptr = 0;

	memcpy(ctx->ctr, st->st[2], sizeof ctx->ctr);

	/*
	 * We use ctx->head[0] as a flag to indicate that we use a
	 * a recorded state, with ctx->ctr containing the preprocessed
	 * first block for OMAC^2.
	 */
	ctx->head[0] = 1;
}

/* see bearssl_aead.h */
void
br_eax_reset_post_aad(br_eax_context *ctx, const br_eax_state *st,
	const void *nonce, size_t len)
{
	if (len == 0) {
		omac_start(ctx, 0);
	} else {
		memcpy(ctx->cbcmac, st->st[0], sizeof ctx->cbcmac);
		ctx->ptr = 0;
		do_cbcmac_chunk(ctx, nonce, len);
	}
	do_pad(ctx);
	memcpy(ctx->nonce, ctx->cbcmac, sizeof ctx->cbcmac);
	memcpy(ctx->ctr, ctx->nonce, sizeof ctx->nonce);

	memcpy(ctx->head, st->st[1], sizeof ctx->head);

	memcpy(ctx->cbcmac, st->st[2], sizeof ctx->cbcmac);
	ctx->ptr = 0;
}

/* see bearssl_aead.h */
void
br_eax_aad_inject(br_eax_context *ctx, const void *data, size_t len)
{
	size_t ptr;

	ptr = ctx->ptr;

	/*
	 * If there is a partial block, first complete it.
	 */
	if (ptr < 16) {
		size_t clen;

		clen = 16 - ptr;
		if (len <= clen) {
			memcpy(ctx->buf + ptr, data, len);
			ctx->ptr = ptr + len;
			return;
		}
		memcpy(ctx->buf + ptr, data, clen);
		data = (const unsigned char *)data + clen;
		len -= clen;
	}

	/*
	 * We now have a full block in buf[], and this is not the last
	 * block.
	 */
	do_cbcmac_chunk(ctx, data, len);
}

/* see bearssl_aead.h */
void
br_eax_flip(br_eax_context *ctx)
{
	int from_capture;

	/*
	 * ctx->head[0] may be non-zero if the context was reset with
	 * a pre-AAD captured state. In that case, ctx->ctr[] contains
	 * the state for OMAC^2 _after_ processing the first block.
	 */
	from_capture = ctx->head[0];

	/*
	 * Complete the OMAC computation on the AAD.
	 */
	do_pad(ctx);
	memcpy(ctx->head, ctx->cbcmac, sizeof ctx->cbcmac);

	/*
	 * Start OMAC^2 for the encrypted data.
	 * If the context was initialized from a captured state, then
	 * the OMAC^2 value is in the ctr[] array.
	 */
	if (from_capture) {
		memcpy(ctx->cbcmac, ctx->ctr, sizeof ctx->cbcmac);
		ctx->ptr = 0;
	} else {
		omac_start(ctx, 2);
	}

	/*
	 * Initial counter value for CTR is the processed nonce.
	 */
	memcpy(ctx->ctr, ctx->nonce, sizeof ctx->nonce);
}

/* see bearssl_aead.h */
void
br_eax_run(br_eax_context *ctx, int encrypt, void *data, size_t len)
{
	unsigned char *dbuf;
	size_t ptr;

	/*
	 * Ensure that there is actual data to process.
	 */
	if (len == 0) {
		return;
	}

	dbuf = data;
	ptr = ctx->ptr;

	/*
	 * We may have ptr == 0 here if we initialized from a captured
	 * state. In that case, there is no partially consumed block
	 * or unprocessed data.
	 */
	if (ptr != 0 && ptr != 16) {
		/*
		 * We have a partially consumed block.
		 */
		size_t u, clen;

		clen = 16 - ptr;
		if (len <= clen) {
			clen = len;
		}
		if (encrypt) {
			for (u = 0; u < clen; u ++) {
				ctx->buf[ptr + u] ^= dbuf[u];
			}
			memcpy(dbuf, ctx->buf + ptr, clen);
		} else {
			for (u = 0; u < clen; u ++) {
				unsigned dx, sx;

				sx = ctx->buf[ptr + u];
				dx = dbuf[u];
				ctx->buf[ptr + u] = dx;
				dbuf[u] = sx ^ dx;
			}
		}

		if (len <= clen) {
			ctx->ptr = ptr + clen;
			return;
		}
		dbuf += clen;
		len -= clen;
	}

	/*
	 * We now have a complete encrypted block in buf[] that must still
	 * be processed with OMAC, and this is not the final buf.
	 * Exception: when ptr == 0, no block has been produced yet.
	 */
	if (ptr != 0) {
		(*ctx->bctx)->mac(ctx->bctx, ctx->cbcmac,
			ctx->buf, sizeof ctx->buf);
	}

	/*
	 * Do CTR encryption or decryption and CBC-MAC for all full blocks
	 * except the last.
	 */
	ptr = len & (size_t)15;
	if (ptr == 0) {
		len -= 16;
		ptr = 16;
	} else {
		len -= ptr;
	}
	if (encrypt) {
		(*ctx->bctx)->encrypt(ctx->bctx, ctx->ctr, ctx->cbcmac,
			dbuf, len);
	} else {
		(*ctx->bctx)->decrypt(ctx->bctx, ctx->ctr, ctx->cbcmac,
			dbuf, len);
	}
	dbuf += len;

	/*
	 * Compute next block of CTR stream, and use it to finish
	 * encrypting or decrypting the data.
	 */
	memset(ctx->buf, 0, sizeof ctx->buf);
	(*ctx->bctx)->ctr(ctx->bctx, ctx->ctr, ctx->buf, sizeof ctx->buf);
	if (encrypt) {
		size_t u;

		for (u = 0; u < ptr; u ++) {
			ctx->buf[u] ^= dbuf[u];
		}
		memcpy(dbuf, ctx->buf, ptr);
	} else {
		size_t u;

		for (u = 0; u < ptr; u ++) {
			unsigned dx, sx;

			sx = ctx->buf[u];
			dx = dbuf[u];
			ctx->buf[u] = dx;
			dbuf[u] = sx ^ dx;
		}
	}
	ctx->ptr = ptr;
}

/*
 * Complete tag computation. The final tag is written in ctx->cbcmac.
 */
static void
do_final(br_eax_context *ctx)
{
	size_t u;

	do_pad(ctx);

	/*
	 * Authentication tag is the XOR of the three OMAC outputs for
	 * the nonce, AAD and encrypted data.
	 */
	for (u = 0; u < 16; u ++) {
		ctx->cbcmac[u] ^= ctx->nonce[u] ^ ctx->head[u];
	}
}

/* see bearssl_aead.h */
void
br_eax_get_tag(br_eax_context *ctx, void *tag)
{
	do_final(ctx);
	memcpy(tag, ctx->cbcmac, sizeof ctx->cbcmac);
}

/* see bearssl_aead.h */
void
br_eax_get_tag_trunc(br_eax_context *ctx, void *tag, size_t len)
{
	do_final(ctx);
	memcpy(tag, ctx->cbcmac, len);
}

/* see bearssl_aead.h */
uint32_t
br_eax_check_tag_trunc(br_eax_context *ctx, const void *tag, size_t len)
{
	unsigned char tmp[16];
	size_t u;
	int x;

	br_eax_get_tag(ctx, tmp);
	x = 0;
	for (u = 0; u < len; u ++) {
		x |= tmp[u] ^ ((const unsigned char *)tag)[u];
	}
	return EQ0(x);
}

/* see bearssl_aead.h */
uint32_t
br_eax_check_tag(br_eax_context *ctx, const void *tag)
{
	return br_eax_check_tag_trunc(ctx, tag, 16);
}

/* see bearssl_aead.h */
const br_aead_class br_eax_vtable = {
	16,
	(void (*)(const br_aead_class **, const void *, size_t))
		&br_eax_reset,
	(void (*)(const br_aead_class **, const void *, size_t))
		&br_eax_aad_inject,
	(void (*)(const br_aead_class **))
		&br_eax_flip,
	(void (*)(const br_aead_class **, int, void *, size_t))
		&br_eax_run,
	(void (*)(const br_aead_class **, void *))
		&br_eax_get_tag,
	(uint32_t (*)(const br_aead_class **, const void *))
		&br_eax_check_tag,
	(void (*)(const br_aead_class **, void *, size_t))
		&br_eax_get_tag_trunc,
	(uint32_t (*)(const br_aead_class **, const void *, size_t))
		&br_eax_check_tag_trunc
};