Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

/*
 * Make a random integer of the provided size. The size is encoded.
 * The header word is untouched.
 */
static void
mkrand(const br_prng_class **rng, uint16_t *x, uint32_t esize)
{
	size_t u, len;
	unsigned m;

	len = (esize + 15) >> 4;
	(*rng)->generate(rng, x + 1, len * sizeof(uint16_t));
	for (u = 1; u < len; u ++) {
		x[u] &= 0x7FFF;
	}
	m = esize & 15;
	if (m == 0) {
		x[len] &= 0x7FFF;
	} else {
		x[len] &= 0x7FFF >> (15 - m);
	}
}

/*
 * This is the big-endian unsigned representation of the product of
 * all small primes from 13 to 1481.
 */
static const unsigned char SMALL_PRIMES[] = {
	0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
	0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
	0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
	0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
	0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
	0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
	0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
	0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
	0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
	0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
	0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
	0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
	0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
	0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
	0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
	0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
	0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
	0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
	0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
	0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
	0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
	0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
	0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
	0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
	0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
	0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
};

/*
 * We need temporary values for at least 7 integers of the same size
 * as a factor (including header word); more space helps with performance
 * (in modular exponentiations), but we much prefer to remain under
 * 2 kilobytes in total, to save stack space. The macro TEMPS below
 * exceeds 1024 (which is a count in 16-bit words) when BR_MAX_RSA_SIZE
 * is greater than 4350 (default value is 4096, so the 2-kB limit is
 * maintained unless BR_MAX_RSA_SIZE was modified).
 */
#define MAX(x, y)   ((x) > (y) ? (x) : (y))
#define TEMPS       MAX(1024, 7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 29) / 15))

/*
 * Perform trial division on a candidate prime. This computes
 * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
 * br_i15_moddiv() function will report an error if y is not invertible
 * modulo x. Returned value is 1 on success (none of the small primes
 * divides x), 0 on error (a non-trivial GCD is obtained).
 *
 * This function assumes that x is odd.
 */
static uint32_t
trial_divisions(const uint16_t *x, uint16_t *t)
{
	uint16_t *y;
	uint16_t x0i;

	y = t;
	t += 1 + ((x[0] + 15) >> 4);
	x0i = br_i15_ninv15(x[1]);
	br_i15_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
	return br_i15_moddiv(y, y, x, x0i, t);
}

/*
 * Perform n rounds of Miller-Rabin on the candidate prime x. This
 * function assumes that x = 3 mod 4.
 *
 * Returned value is 1 on success (all rounds completed successfully),
 * 0 otherwise.
 */
static uint32_t
miller_rabin(const br_prng_class **rng, const uint16_t *x, int n,
	uint16_t *t, size_t tlen)
{
	/*
	 * Since x = 3 mod 4, the Miller-Rabin test is simple:
	 *  - get a random base a (such that 1 < a < x-1)
	 *  - compute z = a^((x-1)/2) mod x
	 *  - if z != 1 and z != x-1, the number x is composite
	 *
	 * We generate bases 'a' randomly with a size which is
	 * one bit less than x, which ensures that a < x-1. It
	 * is not useful to verify that a > 1 because the probability
	 * that we get a value a equal to 0 or 1 is much smaller
	 * than the probability of our Miller-Rabin tests not to
	 * detect a composite, which is already quite smaller than the
	 * probability of the hardware misbehaving and return a
	 * composite integer because of some glitch (e.g. bad RAM
	 * or ill-timed cosmic ray).
	 */
	unsigned char *xm1d2;
	size_t xlen, xm1d2_len, xm1d2_len_u16, u;
	uint32_t asize;
	unsigned cc;
	uint16_t x0i;

	/*
	 * Compute (x-1)/2 (encoded).
	 */
	xm1d2 = (unsigned char *)t;
	xm1d2_len = ((x[0] - (x[0] >> 4)) + 7) >> 3;
	br_i15_encode(xm1d2, xm1d2_len, x);
	cc = 0;
	for (u = 0; u < xm1d2_len; u ++) {
		unsigned w;

		w = xm1d2[u];
		xm1d2[u] = (unsigned char)((w >> 1) | cc);
		cc = w << 7;
	}

	/*
	 * We used some words of the provided buffer for (x-1)/2.
	 */
	xm1d2_len_u16 = (xm1d2_len + 1) >> 1;
	t += xm1d2_len_u16;
	tlen -= xm1d2_len_u16;

	xlen = (x[0] + 15) >> 4;
	asize = x[0] - 1 - EQ0(x[0] & 15);
	x0i = br_i15_ninv15(x[1]);
	while (n -- > 0) {
		uint16_t *a;
		uint32_t eq1, eqm1;

		/*
		 * Generate a random base. We don't need the base to be
		 * really uniform modulo x, so we just get a random
		 * number which is one bit shorter than x.
		 */
		a = t;
		a[0] = x[0];
		a[xlen] = 0;
		mkrand(rng, a, asize);

		/*
		 * Compute a^((x-1)/2) mod x. We assume here that the
		 * function will not fail (the temporary array is large
		 * enough).
		 */
		br_i15_modpow_opt(a, xm1d2, xm1d2_len,
			x, x0i, t + 1 + xlen, tlen - 1 - xlen);

		/*
		 * We must obtain either 1 or x-1. Note that x is odd,
		 * hence x-1 differs from x only in its low word (no
		 * carry).
		 */
		eq1 = a[1] ^ 1;
		eqm1 = a[1] ^ (x[1] - 1);
		for (u = 2; u <= xlen; u ++) {
			eq1 |= a[u];
			eqm1 |= a[u] ^ x[u];
		}

		if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
			return 0;
		}
	}
	return 1;
}

/*
 * Create a random prime of the provided size. 'size' is the _encoded_
 * bit length. The two top bits and the two bottom bits are set to 1.
 */
static void
mkprime(const br_prng_class **rng, uint16_t *x, uint32_t esize,
	uint32_t pubexp, uint16_t *t, size_t tlen)
{
	size_t len;

	x[0] = esize;
	len = (esize + 15) >> 4;
	for (;;) {
		size_t u;
		uint32_t m3, m5, m7, m11;
		int rounds;

		/*
		 * Generate random bits. We force the two top bits and the
		 * two bottom bits to 1.
		 */
		mkrand(rng, x, esize);
		if ((esize & 15) == 0) {
			x[len] |= 0x6000;
		} else if ((esize & 15) == 1) {
			x[len] |= 0x0001;
			x[len - 1] |= 0x4000;
		} else {
			x[len] |= 0x0003 << ((esize & 15) - 2);
		}
		x[1] |= 0x0003;

		/*
		 * Trial division with low primes (3, 5, 7 and 11). We
		 * use the following properties:
		 *
		 *   2^2 = 1 mod 3
		 *   2^4 = 1 mod 5
		 *   2^3 = 1 mod 7
		 *   2^10 = 1 mod 11
		 */
		m3 = 0;
		m5 = 0;
		m7 = 0;
		m11 = 0;
		for (u = 0; u < len; u ++) {
			uint32_t w;

			w = x[1 + u];
			m3 += w << (u & 1);
			m3 = (m3 & 0xFF) + (m3 >> 8);
			m5 += w << ((4 - u) & 3);
			m5 = (m5 & 0xFF) + (m5 >> 8);
			m7 += w;
			m7 = (m7 & 0x1FF) + (m7 >> 9);
			m11 += w << (5 & -(u & 1));
			m11 = (m11 & 0x3FF) + (m11 >> 10);
		}

		/*
		 * Maximum values of m* at this point:
		 *  m3:   511
		 *  m5:   2310
		 *  m7:   510
		 *  m11:  2047
		 * We use the same properties to make further reductions.
		 */

		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 46 */
		m3 = (m3 & 0x0F) + (m3 >> 4);      /* max: 16 */
		m3 = ((m3 * 43) >> 5) & 3;

		m5 = (m5 & 0xFF) + (m5 >> 8);      /* max: 263 */
		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 30 */
		m5 = (m5 & 0x0F) + (m5 >> 4);      /* max: 15 */
		m5 -= 10 & -GT(m5, 9);
		m5 -= 5 & -GT(m5, 4);

		m7 = (m7 & 0x3F) + (m7 >> 6);      /* max: 69 */
		m7 = (m7 & 7) + (m7 >> 3);         /* max: 14 */
		m7 = ((m7 * 147) >> 7) & 7;

		/*
		 * 2^5 = 32 = -1 mod 11.
		 */
		m11 = (m11 & 0x1F) + 66 - (m11 >> 5);   /* max: 97 */
		m11 -= 88 & -GT(m11, 87);
		m11 -= 44 & -GT(m11, 43);
		m11 -= 22 & -GT(m11, 21);
		m11 -= 11 & -GT(m11, 10);

		/*
		 * If any of these modulo is 0, then the candidate is
		 * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
		 * corresponding modulus is 1, then the candidate must
		 * be rejected, because we need e to be invertible
		 * modulo p-1. We can use simple comparisons here
		 * because they won't leak information on a candidate
		 * that we keep, only on one that we reject (and is thus
		 * not secret).
		 */
		if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
			continue;
		}
		if ((pubexp == 3 && m3 == 1)
			|| (pubexp == 5 && m5 == 5)
			|| (pubexp == 7 && m5 == 7)
			|| (pubexp == 11 && m5 == 11))
		{
			continue;
		}

		/*
		 * More trial divisions.
		 */
		if (!trial_divisions(x, t)) {
			continue;
		}

		/*
		 * Miller-Rabin algorithm. Since we selected a random
		 * integer, not a maliciously crafted integer, we can use
		 * relatively few rounds to lower the risk of a false
		 * positive (i.e. declaring prime a non-prime) under
		 * 2^(-80). It is not useful to lower the probability much
		 * below that, since that would be substantially below
		 * the probability of the hardware misbehaving. Sufficient
		 * numbers of rounds are extracted from the Handbook of
		 * Applied Cryptography, note 4.49 (page 149).
		 *
		 * Since we work on the encoded size (esize), we need to
		 * compare with encoded thresholds.
		 */
		if (esize < 320) {
			rounds = 12;
		} else if (esize < 480) {
			rounds = 9;
		} else if (esize < 693) {
			rounds = 6;
		} else if (esize < 906) {
			rounds = 4;
		} else if (esize < 1386) {
			rounds = 3;
		} else {
			rounds = 2;
		}

		if (miller_rabin(rng, x, rounds, t, tlen)) {
			return;
		}
	}
}

/*
 * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
 * as parameter (with announced bit length equal to that of p). This
 * function computes d = 1/e mod p-1 (for an odd integer e). Returned
 * value is 1 on success, 0 on error (an error is reported if e is not
 * invertible modulo p-1).
 *
 * The temporary buffer (t) must have room for at least 4 integers of
 * the size of p.
 */
static uint32_t
invert_pubexp(uint16_t *d, const uint16_t *m, uint32_t e, uint16_t *t)
{
	uint16_t *f;
	uint32_t r;

	f = t;
	t += 1 + ((m[0] + 15) >> 4);

	/*
	 * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
	 */
	br_i15_zero(d, m[0]);
	d[1] = 1;
	br_i15_zero(f, m[0]);
	f[1] = e & 0x7FFF;
	f[2] = (e >> 15) & 0x7FFF;
	f[3] = e >> 30;
	r = br_i15_moddiv(d, f, m, br_i15_ninv15(m[1]), t);

	/*
	 * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
	 * the result is either the d we got, or d + m.
	 *
	 * Let's write e*d = 1 + k*m, for some integer k. Integers e
	 * and m are odd. If d is odd, then e*d is odd, which implies
	 * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
	 * thus d is already fine. Conversely, if d is even, then k
	 * is odd, and we must add m to d in order to get the correct
	 * result.
	 */
	br_i15_add(d, m, (uint32_t)(1 - (d[1] & 1)));

	return r;
}

/*
 * Swap two buffers in RAM. They must be disjoint.
 */
static void
bufswap(void *b1, void *b2, size_t len)
{
	size_t u;
	unsigned char *buf1, *buf2;

	buf1 = b1;
	buf2 = b2;
	for (u = 0; u < len; u ++) {
		unsigned w;

		w = buf1[u];
		buf1[u] = buf2[u];
		buf2[u] = w;
	}
}

/* see bearssl_rsa.h */
uint32_t
br_rsa_i15_keygen(const br_prng_class **rng,
	br_rsa_private_key *sk, void *kbuf_priv,
	br_rsa_public_key *pk, void *kbuf_pub,
	unsigned size, uint32_t pubexp)
{
	uint32_t esize_p, esize_q;
	size_t plen, qlen, tlen;
	uint16_t *p, *q, *t;
	uint16_t tmp[TEMPS];
	uint32_t r;

	if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
		return 0;
	}
	if (pubexp == 0) {
		pubexp = 3;
	} else if (pubexp == 1 || (pubexp & 1) == 0) {
		return 0;
	}

	esize_p = (size + 1) >> 1;
	esize_q = size - esize_p;
	sk->n_bitlen = size;
	sk->p = kbuf_priv;
	sk->plen = (esize_p + 7) >> 3;
	sk->q = sk->p + sk->plen;
	sk->qlen = (esize_q + 7) >> 3;
	sk->dp = sk->q + sk->qlen;
	sk->dplen = sk->plen;
	sk->dq = sk->dp + sk->dplen;
	sk->dqlen = sk->qlen;
	sk->iq = sk->dq + sk->dqlen;
	sk->iqlen = sk->plen;

	if (pk != NULL) {
		pk->n = kbuf_pub;
		pk->nlen = (size + 7) >> 3;
		pk->e = pk->n + pk->nlen;
		pk->elen = 4;
		br_enc32be(pk->e, pubexp);
		while (*pk->e == 0) {
			pk->e ++;
			pk->elen --;
		}
	}

	/*
	 * We now switch to encoded sizes.
	 *
	 * floor((x * 17477) / (2^18)) is equal to floor(x/15) for all
	 * integers x from 0 to 23833.
	 */
	esize_p += MUL15(esize_p, 17477) >> 18;
	esize_q += MUL15(esize_q, 17477) >> 18;
	plen = (esize_p + 15) >> 4;
	qlen = (esize_q + 15) >> 4;
	p = tmp;
	q = p + 1 + plen;
	t = q + 1 + qlen;
	tlen = ((sizeof tmp) / sizeof(uint16_t)) - (2 + plen + qlen);

	/*
	 * When looking for primes p and q, we temporarily divide
	 * candidates by 2, in order to compute the inverse of the
	 * public exponent.
	 */

	for (;;) {
		mkprime(rng, p, esize_p, pubexp, t, tlen);
		br_i15_rshift(p, 1);
		if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
			br_i15_add(p, p, 1);
			p[1] |= 1;
			br_i15_encode(sk->p, sk->plen, p);
			br_i15_encode(sk->dp, sk->dplen, t);
			break;
		}
	}

	for (;;) {
		mkprime(rng, q, esize_q, pubexp, t, tlen);
		br_i15_rshift(q, 1);
		if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
			br_i15_add(q, q, 1);
			q[1] |= 1;
			br_i15_encode(sk->q, sk->qlen, q);
			br_i15_encode(sk->dq, sk->dqlen, t);
			break;
		}
	}

	/*
	 * If p and q have the same size, then it is possible that q > p
	 * (when the target modulus size is odd, we generate p with a
	 * greater bit length than q). If q > p, we want to swap p and q
	 * (and also dp and dq) for two reasons:
	 *  - The final step below (inversion of q modulo p) is easier if
	 *    p > q.
	 *  - While BearSSL's RSA code is perfectly happy with RSA keys such
	 *    that p < q, some other implementations have restrictions and
	 *    require p > q.
	 *
	 * Note that we can do a simple non-constant-time swap here,
	 * because the only information we leak here is that we insist on
	 * returning p and q such that p > q, which is not a secret.
	 */
	if (esize_p == esize_q && br_i15_sub(p, q, 0) == 1) {
		bufswap(p, q, (1 + plen) * sizeof *p);
		bufswap(sk->p, sk->q, sk->plen);
		bufswap(sk->dp, sk->dq, sk->dplen);
	}

	/*
	 * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
	 *
	 * We ensured that p >= q, so this is just a matter of updating the
	 * header word for q (and possibly adding an extra word).
	 *
	 * Theoretically, the call below may fail, in case we were
	 * extraordinarily unlucky, and p = q. Another failure case is if
	 * Miller-Rabin failed us _twice_, and p and q are non-prime and
	 * have a factor is common. We report the error mostly because it
	 * is cheap and we can, but in practice this never happens (or, at
	 * least, it happens way less often than hardware glitches).
	 */
	q[0] = p[0];
	if (plen > qlen) {
		q[plen] = 0;
		t ++;
		tlen --;
	}
	br_i15_zero(t, p[0]);
	t[1] = 1;
	r = br_i15_moddiv(t, q, p, br_i15_ninv15(p[1]), t + 1 + plen);
	br_i15_encode(sk->iq, sk->iqlen, t);

	/*
	 * Compute the public modulus too, if required.
	 */
	if (pk != NULL) {
		br_i15_zero(t, p[0]);
		br_i15_mulacc(t, p, q);
		br_i15_encode(pk->n, pk->nlen, t);
	}

	return r;
}