Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===-- tsan_rtl_report.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "tsan_report.h"
#include "tsan_sync.h"
#include "tsan_mman.h"
#include "tsan_flags.h"
#include "tsan_fd.h"

namespace __tsan {

using namespace __sanitizer;

static ReportStack *SymbolizeStack(StackTrace trace);

void TsanCheckFailed(const char *file, int line, const char *cond,
                     u64 v1, u64 v2) {
  // There is high probability that interceptors will check-fail as well,
  // on the other hand there is no sense in processing interceptors
  // since we are going to die soon.
  ScopedIgnoreInterceptors ignore;
#if !SANITIZER_GO
  cur_thread()->ignore_sync++;
  cur_thread()->ignore_reads_and_writes++;
#endif
  Printf("FATAL: ThreadSanitizer CHECK failed: "
         "%s:%d \"%s\" (0x%zx, 0x%zx)\n",
         file, line, cond, (uptr)v1, (uptr)v2);
  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
  Die();
}

// Can be overriden by an application/test to intercept reports.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnReport(const ReportDesc *rep, bool suppressed);
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnReport(const ReportDesc *rep, bool suppressed) {
  (void)rep;
  return suppressed;
}
#endif

SANITIZER_WEAK_DEFAULT_IMPL
void __tsan_on_report(const ReportDesc *rep) {
  (void)rep;
}

static void StackStripMain(SymbolizedStack *frames) {
  SymbolizedStack *last_frame = nullptr;
  SymbolizedStack *last_frame2 = nullptr;
  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
    last_frame2 = last_frame;
    last_frame = cur;
  }

  if (last_frame2 == 0)
    return;
#if !SANITIZER_GO
  const char *last = last_frame->info.function;
  const char *last2 = last_frame2->info.function;
  // Strip frame above 'main'
  if (last2 && 0 == internal_strcmp(last2, "main")) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
  // Strip our internal thread start routine.
  } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
  // Strip global ctors init.
  } else if (last && 0 == internal_strcmp(last, "__do_global_ctors_aux")) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
  // If both are 0, then we probably just failed to symbolize.
  } else if (last || last2) {
    // Ensure that we recovered stack completely. Trimmed stack
    // can actually happen if we do not instrument some code,
    // so it's only a debug print. However we must try hard to not miss it
    // due to our fault.
    DPrintf("Bottom stack frame is missed\n");
  }
#else
  // The last frame always point into runtime (gosched0, goexit0, runtime.main).
  last_frame->ClearAll();
  last_frame2->next = nullptr;
#endif
}

ReportStack *SymbolizeStackId(u32 stack_id) {
  if (stack_id == 0)
    return 0;
  StackTrace stack = StackDepotGet(stack_id);
  if (stack.trace == nullptr)
    return nullptr;
  return SymbolizeStack(stack);
}

static ReportStack *SymbolizeStack(StackTrace trace) {
  if (trace.size == 0)
    return 0;
  SymbolizedStack *top = nullptr;
  for (uptr si = 0; si < trace.size; si++) {
    const uptr pc = trace.trace[si];
    uptr pc1 = pc;
    // We obtain the return address, but we're interested in the previous
    // instruction.
    if ((pc & kExternalPCBit) == 0)
      pc1 = StackTrace::GetPreviousInstructionPc(pc);
    SymbolizedStack *ent = SymbolizeCode(pc1);
    CHECK_NE(ent, 0);
    SymbolizedStack *last = ent;
    while (last->next) {
      last->info.address = pc;  // restore original pc for report
      last = last->next;
    }
    last->info.address = pc;  // restore original pc for report
    last->next = top;
    top = ent;
  }
  StackStripMain(top);

  ReportStack *stack = ReportStack::New();
  stack->frames = top;
  return stack;
}

ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) {
  ctx->thread_registry->CheckLocked();
  void *mem = internal_alloc(MBlockReport, sizeof(ReportDesc));
  rep_ = new(mem) ReportDesc;
  rep_->typ = typ;
  rep_->tag = tag;
  ctx->report_mtx.Lock();
}

ScopedReportBase::~ScopedReportBase() {
  ctx->report_mtx.Unlock();
  DestroyAndFree(rep_);
  rep_ = nullptr;
}

void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) {
  ReportStack **rs = rep_->stacks.PushBack();
  *rs = SymbolizeStack(stack);
  (*rs)->suppressable = suppressable;
}

void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s,
                                       StackTrace stack, const MutexSet *mset) {
  void *mem = internal_alloc(MBlockReportMop, sizeof(ReportMop));
  ReportMop *mop = new(mem) ReportMop;
  rep_->mops.PushBack(mop);
  mop->tid = s.tid();
  mop->addr = addr + s.addr0();
  mop->size = s.size();
  mop->write = s.IsWrite();
  mop->atomic = s.IsAtomic();
  mop->stack = SymbolizeStack(stack);
  mop->external_tag = external_tag;
  if (mop->stack)
    mop->stack->suppressable = true;
  for (uptr i = 0; i < mset->Size(); i++) {
    MutexSet::Desc d = mset->Get(i);
    u64 mid = this->AddMutex(d.id);
    ReportMopMutex mtx = {mid, d.write};
    mop->mset.PushBack(mtx);
  }
}

void ScopedReportBase::AddUniqueTid(int unique_tid) {
  rep_->unique_tids.PushBack(unique_tid);
}

void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) {
  for (uptr i = 0; i < rep_->threads.Size(); i++) {
    if ((u32)rep_->threads[i]->id == tctx->tid)
      return;
  }
  void *mem = internal_alloc(MBlockReportThread, sizeof(ReportThread));
  ReportThread *rt = new(mem) ReportThread;
  rep_->threads.PushBack(rt);
  rt->id = tctx->tid;
  rt->os_id = tctx->os_id;
  rt->running = (tctx->status == ThreadStatusRunning);
  rt->name = internal_strdup(tctx->name);
  rt->parent_tid = tctx->parent_tid;
  rt->thread_type = tctx->thread_type;
  rt->stack = 0;
  rt->stack = SymbolizeStackId(tctx->creation_stack_id);
  if (rt->stack)
    rt->stack->suppressable = suppressable;
}

#if !SANITIZER_GO
static bool FindThreadByUidLockedCallback(ThreadContextBase *tctx, void *arg) {
  int unique_id = *(int *)arg;
  return tctx->unique_id == (u32)unique_id;
}

static ThreadContext *FindThreadByUidLocked(int unique_id) {
  ctx->thread_registry->CheckLocked();
  return static_cast<ThreadContext *>(
      ctx->thread_registry->FindThreadContextLocked(
          FindThreadByUidLockedCallback, &unique_id));
}

static ThreadContext *FindThreadByTidLocked(int tid) {
  ctx->thread_registry->CheckLocked();
  return static_cast<ThreadContext*>(
      ctx->thread_registry->GetThreadLocked(tid));
}

static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) {
  uptr addr = (uptr)arg;
  ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
  if (tctx->status != ThreadStatusRunning)
    return false;
  ThreadState *thr = tctx->thr;
  CHECK(thr);
  return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) ||
          (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size));
}

ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) {
  ctx->thread_registry->CheckLocked();
  ThreadContext *tctx = static_cast<ThreadContext*>(
      ctx->thread_registry->FindThreadContextLocked(IsInStackOrTls,
                                                    (void*)addr));
  if (!tctx)
    return 0;
  ThreadState *thr = tctx->thr;
  CHECK(thr);
  *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size);
  return tctx;
}
#endif

void ScopedReportBase::AddThread(int unique_tid, bool suppressable) {
#if !SANITIZER_GO
  if (const ThreadContext *tctx = FindThreadByUidLocked(unique_tid))
    AddThread(tctx, suppressable);
#endif
}

void ScopedReportBase::AddMutex(const SyncVar *s) {
  for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
    if (rep_->mutexes[i]->id == s->uid)
      return;
  }
  void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
  ReportMutex *rm = new(mem) ReportMutex;
  rep_->mutexes.PushBack(rm);
  rm->id = s->uid;
  rm->addr = s->addr;
  rm->destroyed = false;
  rm->stack = SymbolizeStackId(s->creation_stack_id);
}

u64 ScopedReportBase::AddMutex(u64 id) {
  u64 uid = 0;
  u64 mid = id;
  uptr addr = SyncVar::SplitId(id, &uid);
  SyncVar *s = ctx->metamap.GetIfExistsAndLock(addr, true);
  // Check that the mutex is still alive.
  // Another mutex can be created at the same address,
  // so check uid as well.
  if (s && s->CheckId(uid)) {
    mid = s->uid;
    AddMutex(s);
  } else {
    AddDeadMutex(id);
  }
  if (s)
    s->mtx.Unlock();
  return mid;
}

void ScopedReportBase::AddDeadMutex(u64 id) {
  for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
    if (rep_->mutexes[i]->id == id)
      return;
  }
  void *mem = internal_alloc(MBlockReportMutex, sizeof(ReportMutex));
  ReportMutex *rm = new(mem) ReportMutex;
  rep_->mutexes.PushBack(rm);
  rm->id = id;
  rm->addr = 0;
  rm->destroyed = true;
  rm->stack = 0;
}

void ScopedReportBase::AddLocation(uptr addr, uptr size) {
  if (addr == 0)
    return;
#if !SANITIZER_GO
  int fd = -1;
  int creat_tid = kInvalidTid;
  u32 creat_stack = 0;
  if (FdLocation(addr, &fd, &creat_tid, &creat_stack)) {
    ReportLocation *loc = ReportLocation::New(ReportLocationFD);
    loc->fd = fd;
    loc->tid = creat_tid;
    loc->stack = SymbolizeStackId(creat_stack);
    rep_->locs.PushBack(loc);
    ThreadContext *tctx = FindThreadByUidLocked(creat_tid);
    if (tctx)
      AddThread(tctx);
    return;
  }
  MBlock *b = 0;
  Allocator *a = allocator();
  if (a->PointerIsMine((void*)addr)) {
    void *block_begin = a->GetBlockBegin((void*)addr);
    if (block_begin)
      b = ctx->metamap.GetBlock((uptr)block_begin);
  }
  if (b != 0) {
    ThreadContext *tctx = FindThreadByTidLocked(b->tid);
    ReportLocation *loc = ReportLocation::New(ReportLocationHeap);
    loc->heap_chunk_start = (uptr)allocator()->GetBlockBegin((void *)addr);
    loc->heap_chunk_size = b->siz;
    loc->external_tag = b->tag;
    loc->tid = tctx ? tctx->tid : b->tid;
    loc->stack = SymbolizeStackId(b->stk);
    rep_->locs.PushBack(loc);
    if (tctx)
      AddThread(tctx);
    return;
  }
  bool is_stack = false;
  if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) {
    ReportLocation *loc =
        ReportLocation::New(is_stack ? ReportLocationStack : ReportLocationTLS);
    loc->tid = tctx->tid;
    rep_->locs.PushBack(loc);
    AddThread(tctx);
  }
#endif
  if (ReportLocation *loc = SymbolizeData(addr)) {
    loc->suppressable = true;
    rep_->locs.PushBack(loc);
    return;
  }
}

#if !SANITIZER_GO
void ScopedReportBase::AddSleep(u32 stack_id) {
  rep_->sleep = SymbolizeStackId(stack_id);
}
#endif

void ScopedReportBase::SetCount(int count) { rep_->count = count; }

const ReportDesc *ScopedReportBase::GetReport() const { return rep_; }

ScopedReport::ScopedReport(ReportType typ, uptr tag)
    : ScopedReportBase(typ, tag) {}

ScopedReport::~ScopedReport() {}

void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
                  MutexSet *mset, uptr *tag) {
  // This function restores stack trace and mutex set for the thread/epoch.
  // It does so by getting stack trace and mutex set at the beginning of
  // trace part, and then replaying the trace till the given epoch.
  Trace* trace = ThreadTrace(tid);
  ReadLock l(&trace->mtx);
  const int partidx = (epoch / kTracePartSize) % TraceParts();
  TraceHeader* hdr = &trace->headers[partidx];
  if (epoch < hdr->epoch0 || epoch >= hdr->epoch0 + kTracePartSize)
    return;
  CHECK_EQ(RoundDown(epoch, kTracePartSize), hdr->epoch0);
  const u64 epoch0 = RoundDown(epoch, TraceSize());
  const u64 eend = epoch % TraceSize();
  const u64 ebegin = RoundDown(eend, kTracePartSize);
  DPrintf("#%d: RestoreStack epoch=%zu ebegin=%zu eend=%zu partidx=%d\n",
          tid, (uptr)epoch, (uptr)ebegin, (uptr)eend, partidx);
  Vector<uptr> stack;
  stack.Resize(hdr->stack0.size + 64);
  for (uptr i = 0; i < hdr->stack0.size; i++) {
    stack[i] = hdr->stack0.trace[i];
    DPrintf2("  #%02zu: pc=%zx\n", i, stack[i]);
  }
  if (mset)
    *mset = hdr->mset0;
  uptr pos = hdr->stack0.size;
  Event *events = (Event*)GetThreadTrace(tid);
  for (uptr i = ebegin; i <= eend; i++) {
    Event ev = events[i];
    EventType typ = (EventType)(ev >> kEventPCBits);
    uptr pc = (uptr)(ev & ((1ull << kEventPCBits) - 1));
    DPrintf2("  %zu typ=%d pc=%zx\n", i, typ, pc);
    if (typ == EventTypeMop) {
      stack[pos] = pc;
    } else if (typ == EventTypeFuncEnter) {
      if (stack.Size() < pos + 2)
        stack.Resize(pos + 2);
      stack[pos++] = pc;
    } else if (typ == EventTypeFuncExit) {
      if (pos > 0)
        pos--;
    }
    if (mset) {
      if (typ == EventTypeLock) {
        mset->Add(pc, true, epoch0 + i);
      } else if (typ == EventTypeUnlock) {
        mset->Del(pc, true);
      } else if (typ == EventTypeRLock) {
        mset->Add(pc, false, epoch0 + i);
      } else if (typ == EventTypeRUnlock) {
        mset->Del(pc, false);
      }
    }
    for (uptr j = 0; j <= pos; j++)
      DPrintf2("      #%zu: %zx\n", j, stack[j]);
  }
  if (pos == 0 && stack[0] == 0)
    return;
  pos++;
  stk->Init(&stack[0], pos);
  ExtractTagFromStack(stk, tag);
}

static bool FindRacyStacks(const RacyStacks &hash) {
  for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) {
    if (hash == ctx->racy_stacks[i]) {
      VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n");
      return true;
    }
  }
  return false;
}

static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) {
  if (!flags()->suppress_equal_stacks)
    return false;
  RacyStacks hash;
  hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
  hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
  {
    ReadLock lock(&ctx->racy_mtx);
    if (FindRacyStacks(hash))
      return true;
  }
  Lock lock(&ctx->racy_mtx);
  if (FindRacyStacks(hash))
    return true;
  ctx->racy_stacks.PushBack(hash);
  return false;
}

static bool FindRacyAddress(const RacyAddress &ra0) {
  for (uptr i = 0; i < ctx->racy_addresses.Size(); i++) {
    RacyAddress ra2 = ctx->racy_addresses[i];
    uptr maxbeg = max(ra0.addr_min, ra2.addr_min);
    uptr minend = min(ra0.addr_max, ra2.addr_max);
    if (maxbeg < minend) {
      VPrintf(2, "ThreadSanitizer: suppressing report as doubled (addr)\n");
      return true;
    }
  }
  return false;
}

static bool HandleRacyAddress(ThreadState *thr, uptr addr_min, uptr addr_max) {
  if (!flags()->suppress_equal_addresses)
    return false;
  RacyAddress ra0 = {addr_min, addr_max};
  {
    ReadLock lock(&ctx->racy_mtx);
    if (FindRacyAddress(ra0))
      return true;
  }
  Lock lock(&ctx->racy_mtx);
  if (FindRacyAddress(ra0))
    return true;
  ctx->racy_addresses.PushBack(ra0);
  return false;
}

bool OutputReport(ThreadState *thr, const ScopedReport &srep) {
  if (!flags()->report_bugs || thr->suppress_reports)
    return false;
  atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime());
  const ReportDesc *rep = srep.GetReport();
  CHECK_EQ(thr->current_report, nullptr);
  thr->current_report = rep;
  Suppression *supp = 0;
  uptr pc_or_addr = 0;
  for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp);
  if (pc_or_addr != 0) {
    Lock lock(&ctx->fired_suppressions_mtx);
    FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp};
    ctx->fired_suppressions.push_back(s);
  }
  {
    bool old_is_freeing = thr->is_freeing;
    thr->is_freeing = false;
    bool suppressed = OnReport(rep, pc_or_addr != 0);
    thr->is_freeing = old_is_freeing;
    if (suppressed) {
      thr->current_report = nullptr;
      return false;
    }
  }
  PrintReport(rep);
  __tsan_on_report(rep);
  ctx->nreported++;
  if (flags()->halt_on_error)
    Die();
  thr->current_report = nullptr;
  return true;
}

bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) {
  ReadLock lock(&ctx->fired_suppressions_mtx);
  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
    if (ctx->fired_suppressions[k].type != type)
      continue;
    for (uptr j = 0; j < trace.size; j++) {
      FiredSuppression *s = &ctx->fired_suppressions[k];
      if (trace.trace[j] == s->pc_or_addr) {
        if (s->supp)
          atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
        return true;
      }
    }
  }
  return false;
}

static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) {
  ReadLock lock(&ctx->fired_suppressions_mtx);
  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
    if (ctx->fired_suppressions[k].type != type)
      continue;
    FiredSuppression *s = &ctx->fired_suppressions[k];
    if (addr == s->pc_or_addr) {
      if (s->supp)
        atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
      return true;
    }
  }
  return false;
}

static bool RaceBetweenAtomicAndFree(ThreadState *thr) {
  Shadow s0(thr->racy_state[0]);
  Shadow s1(thr->racy_state[1]);
  CHECK(!(s0.IsAtomic() && s1.IsAtomic()));
  if (!s0.IsAtomic() && !s1.IsAtomic())
    return true;
  if (s0.IsAtomic() && s1.IsFreed())
    return true;
  if (s1.IsAtomic() && thr->is_freeing)
    return true;
  return false;
}

void ReportRace(ThreadState *thr) {
  CheckNoLocks(thr);

  // Symbolizer makes lots of intercepted calls. If we try to process them,
  // at best it will cause deadlocks on internal mutexes.
  ScopedIgnoreInterceptors ignore;

  if (!flags()->report_bugs)
    return;
  if (!flags()->report_atomic_races && !RaceBetweenAtomicAndFree(thr))
    return;

  bool freed = false;
  {
    Shadow s(thr->racy_state[1]);
    freed = s.GetFreedAndReset();
    thr->racy_state[1] = s.raw();
  }

  uptr addr = ShadowToMem((uptr)thr->racy_shadow_addr);
  uptr addr_min = 0;
  uptr addr_max = 0;
  {
    uptr a0 = addr + Shadow(thr->racy_state[0]).addr0();
    uptr a1 = addr + Shadow(thr->racy_state[1]).addr0();
    uptr e0 = a0 + Shadow(thr->racy_state[0]).size();
    uptr e1 = a1 + Shadow(thr->racy_state[1]).size();
    addr_min = min(a0, a1);
    addr_max = max(e0, e1);
    if (IsExpectedReport(addr_min, addr_max - addr_min))
      return;
  }
  if (HandleRacyAddress(thr, addr_min, addr_max))
    return;

  ReportType typ = ReportTypeRace;
  if (thr->is_vptr_access && freed)
    typ = ReportTypeVptrUseAfterFree;
  else if (thr->is_vptr_access)
    typ = ReportTypeVptrRace;
  else if (freed)
    typ = ReportTypeUseAfterFree;

  if (IsFiredSuppression(ctx, typ, addr))
    return;

  const uptr kMop = 2;
  VarSizeStackTrace traces[kMop];
  uptr tags[kMop] = {kExternalTagNone};
  uptr toppc = TraceTopPC(thr);
  if (toppc >> kEventPCBits) {
    // This is a work-around for a known issue.
    // The scenario where this happens is rather elaborate and requires
    // an instrumented __sanitizer_report_error_summary callback and
    // a __tsan_symbolize_external callback and a race during a range memory
    // access larger than 8 bytes. MemoryAccessRange adds the current PC to
    // the trace and starts processing memory accesses. A first memory access
    // triggers a race, we report it and call the instrumented
    // __sanitizer_report_error_summary, which adds more stuff to the trace
    // since it is intrumented. Then a second memory access in MemoryAccessRange
    // also triggers a race and we get here and call TraceTopPC to get the
    // current PC, however now it contains some unrelated events from the
    // callback. Most likely, TraceTopPC will now return a EventTypeFuncExit
    // event. Later we subtract -1 from it (in GetPreviousInstructionPc)
    // and the resulting PC has kExternalPCBit set, so we pass it to
    // __tsan_symbolize_external_ex. __tsan_symbolize_external_ex is within its
    // rights to crash since the PC is completely bogus.
    // test/tsan/double_race.cpp contains a test case for this.
    toppc = 0;
  }
  ObtainCurrentStack(thr, toppc, &traces[0], &tags[0]);
  if (IsFiredSuppression(ctx, typ, traces[0]))
    return;

  // MutexSet is too large to live on stack.
  Vector<u64> mset_buffer;
  mset_buffer.Resize(sizeof(MutexSet) / sizeof(u64) + 1);
  MutexSet *mset2 = new(&mset_buffer[0]) MutexSet();

  Shadow s2(thr->racy_state[1]);
  RestoreStack(s2.tid(), s2.epoch(), &traces[1], mset2, &tags[1]);
  if (IsFiredSuppression(ctx, typ, traces[1]))
    return;

  if (HandleRacyStacks(thr, traces))
    return;

  // If any of the accesses has a tag, treat this as an "external" race.
  uptr tag = kExternalTagNone;
  for (uptr i = 0; i < kMop; i++) {
    if (tags[i] != kExternalTagNone) {
      typ = ReportTypeExternalRace;
      tag = tags[i];
      break;
    }
  }

  ThreadRegistryLock l0(ctx->thread_registry);
  ScopedReport rep(typ, tag);
  for (uptr i = 0; i < kMop; i++) {
    Shadow s(thr->racy_state[i]);
    rep.AddMemoryAccess(addr, tags[i], s, traces[i],
                        i == 0 ? &thr->mset : mset2);
  }

  for (uptr i = 0; i < kMop; i++) {
    FastState s(thr->racy_state[i]);
    ThreadContext *tctx = static_cast<ThreadContext*>(
        ctx->thread_registry->GetThreadLocked(s.tid()));
    if (s.epoch() < tctx->epoch0 || s.epoch() > tctx->epoch1)
      continue;
    rep.AddThread(tctx);
  }

  rep.AddLocation(addr_min, addr_max - addr_min);

#if !SANITIZER_GO
  {
    Shadow s(thr->racy_state[1]);
    if (s.epoch() <= thr->last_sleep_clock.get(s.tid()))
      rep.AddSleep(thr->last_sleep_stack_id);
  }
#endif

  if (!OutputReport(thr, rep))
    return;

}

void PrintCurrentStack(ThreadState *thr, uptr pc) {
  VarSizeStackTrace trace;
  ObtainCurrentStack(thr, pc, &trace);
  PrintStack(SymbolizeStack(trace));
}

// Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes
// __sanitizer_print_stack_trace exists in the actual unwinded stack, but
// tail-call to PrintCurrentStackSlow breaks this assumption because
// __sanitizer_print_stack_trace disappears after tail-call.
// However, this solution is not reliable enough, please see dvyukov's comment
// http://reviews.llvm.org/D19148#406208
// Also see PR27280 comment 2 and 3 for breaking examples and analysis.
ALWAYS_INLINE
void PrintCurrentStackSlow(uptr pc) {
#if !SANITIZER_GO
  uptr bp = GET_CURRENT_FRAME();
  BufferedStackTrace *ptrace =
      new(internal_alloc(MBlockStackTrace, sizeof(BufferedStackTrace)))
          BufferedStackTrace();
  ptrace->Unwind(pc, bp, nullptr, false);

  for (uptr i = 0; i < ptrace->size / 2; i++) {
    uptr tmp = ptrace->trace_buffer[i];
    ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1];
    ptrace->trace_buffer[ptrace->size - i - 1] = tmp;
  }
  PrintStack(SymbolizeStack(*ptrace));
#endif
}

}  // namespace __tsan

using namespace __tsan;

extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_print_stack_trace() {
  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
}
}  // extern "C"