Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
//===- LinkerScript.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the parser/evaluator of the linker script.
//
//===----------------------------------------------------------------------===//

#include "LinkerScript.h"
#include "Config.h"
#include "InputSection.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Writer.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <string>
#include <vector>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;

LinkerScript *elf::script;

static uint64_t getOutputSectionVA(SectionBase *sec) {
  OutputSection *os = sec->getOutputSection();
  assert(os && "input section has no output section assigned");
  return os ? os->addr : 0;
}

uint64_t ExprValue::getValue() const {
  if (sec)
    return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
                   alignment);
  return alignTo(val, alignment);
}

uint64_t ExprValue::getSecAddr() const {
  if (sec)
    return sec->getOffset(0) + getOutputSectionVA(sec);
  return 0;
}

uint64_t ExprValue::getSectionOffset() const {
  // If the alignment is trivial, we don't have to compute the full
  // value to know the offset. This allows this function to succeed in
  // cases where the output section is not yet known.
  if (alignment == 1 && !sec)
    return val;
  return getValue() - getSecAddr();
}

OutputSection *LinkerScript::createOutputSection(StringRef name,
                                                 StringRef location) {
  OutputSection *&secRef = nameToOutputSection[name];
  OutputSection *sec;
  if (secRef && secRef->location.empty()) {
    // There was a forward reference.
    sec = secRef;
  } else {
    sec = make<OutputSection>(name, SHT_PROGBITS, 0);
    if (!secRef)
      secRef = sec;
  }
  sec->location = std::string(location);
  return sec;
}

OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
  OutputSection *&cmdRef = nameToOutputSection[name];
  if (!cmdRef)
    cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
  return cmdRef;
}

// Expands the memory region by the specified size.
static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
                               StringRef regionName, StringRef secName) {
  memRegion->curPos += size;
  uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue();
  uint64_t length = (memRegion->length)().getValue();
  if (newSize > length)
    error("section '" + secName + "' will not fit in region '" + regionName +
          "': overflowed by " + Twine(newSize - length) + " bytes");
}

void LinkerScript::expandMemoryRegions(uint64_t size) {
  if (ctx->memRegion)
    expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
                       ctx->outSec->name);
  // Only expand the LMARegion if it is different from memRegion.
  if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
    expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
                       ctx->outSec->name);
}

void LinkerScript::expandOutputSection(uint64_t size) {
  ctx->outSec->size += size;
  expandMemoryRegions(size);
}

void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
  uint64_t val = e().getValue();
  if (val < dot && inSec)
    error(loc + ": unable to move location counter backward for: " +
          ctx->outSec->name);

  // Update to location counter means update to section size.
  if (inSec)
    expandOutputSection(val - dot);

  dot = val;
}

// Used for handling linker symbol assignments, for both finalizing
// their values and doing early declarations. Returns true if symbol
// should be defined from linker script.
static bool shouldDefineSym(SymbolAssignment *cmd) {
  if (cmd->name == ".")
    return false;

  if (!cmd->provide)
    return true;

  // If a symbol was in PROVIDE(), we need to define it only
  // when it is a referenced undefined symbol.
  Symbol *b = symtab->find(cmd->name);
  if (b && !b->isDefined())
    return true;
  return false;
}

// Called by processSymbolAssignments() to assign definitions to
// linker-script-defined symbols.
void LinkerScript::addSymbol(SymbolAssignment *cmd) {
  if (!shouldDefineSym(cmd))
    return;

  // Define a symbol.
  ExprValue value = cmd->expression();
  SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;

  // When this function is called, section addresses have not been
  // fixed yet. So, we may or may not know the value of the RHS
  // expression.
  //
  // For example, if an expression is `x = 42`, we know x is always 42.
  // However, if an expression is `x = .`, there's no way to know its
  // value at the moment.
  //
  // We want to set symbol values early if we can. This allows us to
  // use symbols as variables in linker scripts. Doing so allows us to
  // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
  uint64_t symValue = value.sec ? 0 : value.getValue();

  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type,
                 symValue, 0, sec);

  Symbol *sym = symtab->insert(cmd->name);
  sym->mergeProperties(newSym);
  sym->replace(newSym);
  cmd->sym = cast<Defined>(sym);
}

// This function is called from LinkerScript::declareSymbols.
// It creates a placeholder symbol if needed.
static void declareSymbol(SymbolAssignment *cmd) {
  if (!shouldDefineSym(cmd))
    return;

  uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
  Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
                 nullptr);

  // We can't calculate final value right now.
  Symbol *sym = symtab->insert(cmd->name);
  sym->mergeProperties(newSym);
  sym->replace(newSym);

  cmd->sym = cast<Defined>(sym);
  cmd->provide = false;
  sym->scriptDefined = true;
}

using SymbolAssignmentMap =
    DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;

// Collect section/value pairs of linker-script-defined symbols. This is used to
// check whether symbol values converge.
static SymbolAssignmentMap
getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
  SymbolAssignmentMap ret;
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      if (cmd->sym) // sym is nullptr for dot.
        ret.try_emplace(cmd->sym,
                        std::make_pair(cmd->sym->section, cmd->sym->value));
      continue;
    }
    for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
      if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
        if (cmd->sym)
          ret.try_emplace(cmd->sym,
                          std::make_pair(cmd->sym->section, cmd->sym->value));
  }
  return ret;
}

// Returns the lexicographical smallest (for determinism) Defined whose
// section/value has changed.
static const Defined *
getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
  const Defined *changed = nullptr;
  for (auto &it : oldValues) {
    const Defined *sym = it.first;
    if (std::make_pair(sym->section, sym->value) != it.second &&
        (!changed || sym->getName() < changed->getName()))
      changed = sym;
  }
  return changed;
}

// Process INSERT [AFTER|BEFORE] commands. For each command, we move the
// specified output section to the designated place.
void LinkerScript::processInsertCommands() {
  for (const InsertCommand &cmd : insertCommands) {
    // If cmd.os is empty, it may have been discarded by
    // adjustSectionsBeforeSorting(). We do not handle such output sections.
    auto from = llvm::find(sectionCommands, cmd.os);
    if (from == sectionCommands.end())
      continue;
    sectionCommands.erase(from);

    auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
      auto *to = dyn_cast<OutputSection>(base);
      return to != nullptr && to->name == cmd.where;
    });
    if (insertPos == sectionCommands.end()) {
      error("unable to insert " + cmd.os->name +
            (cmd.isAfter ? " after " : " before ") + cmd.where);
    } else {
      if (cmd.isAfter)
        ++insertPos;
      sectionCommands.insert(insertPos, cmd.os);
    }
  }
}

// Symbols defined in script should not be inlined by LTO. At the same time
// we don't know their final values until late stages of link. Here we scan
// over symbol assignment commands and create placeholder symbols if needed.
void LinkerScript::declareSymbols() {
  assert(!ctx);
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      declareSymbol(cmd);
      continue;
    }

    // If the output section directive has constraints,
    // we can't say for sure if it is going to be included or not.
    // Skip such sections for now. Improve the checks if we ever
    // need symbols from that sections to be declared early.
    auto *sec = cast<OutputSection>(base);
    if (sec->constraint != ConstraintKind::NoConstraint)
      continue;
    for (BaseCommand *base2 : sec->sectionCommands)
      if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
        declareSymbol(cmd);
  }
}

// This function is called from assignAddresses, while we are
// fixing the output section addresses. This function is supposed
// to set the final value for a given symbol assignment.
void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
  if (cmd->name == ".") {
    setDot(cmd->expression, cmd->location, inSec);
    return;
  }

  if (!cmd->sym)
    return;

  ExprValue v = cmd->expression();
  if (v.isAbsolute()) {
    cmd->sym->section = nullptr;
    cmd->sym->value = v.getValue();
  } else {
    cmd->sym->section = v.sec;
    cmd->sym->value = v.getSectionOffset();
  }
  cmd->sym->type = v.type;
}

static std::string getFilename(InputFile *file) {
  if (!file)
    return "";
  if (file->archiveName.empty())
    return std::string(file->getName());
  return (file->archiveName + ':' + file->getName()).str();
}

bool LinkerScript::shouldKeep(InputSectionBase *s) {
  if (keptSections.empty())
    return false;
  std::string filename = getFilename(s->file);
  for (InputSectionDescription *id : keptSections)
    if (id->filePat.match(filename))
      for (SectionPattern &p : id->sectionPatterns)
        if (p.sectionPat.match(s->name) &&
            (s->flags & id->withFlags) == id->withFlags &&
            (s->flags & id->withoutFlags) == 0)
          return true;
  return false;
}

// A helper function for the SORT() command.
static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
                             ConstraintKind kind) {
  if (kind == ConstraintKind::NoConstraint)
    return true;

  bool isRW = llvm::any_of(
      sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });

  return (isRW && kind == ConstraintKind::ReadWrite) ||
         (!isRW && kind == ConstraintKind::ReadOnly);
}

static void sortSections(MutableArrayRef<InputSectionBase *> vec,
                         SortSectionPolicy k) {
  auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
    // ">" is not a mistake. Sections with larger alignments are placed
    // before sections with smaller alignments in order to reduce the
    // amount of padding necessary. This is compatible with GNU.
    return a->alignment > b->alignment;
  };
  auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
    return a->name < b->name;
  };
  auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
    return getPriority(a->name) < getPriority(b->name);
  };

  switch (k) {
  case SortSectionPolicy::Default:
  case SortSectionPolicy::None:
    return;
  case SortSectionPolicy::Alignment:
    return llvm::stable_sort(vec, alignmentComparator);
  case SortSectionPolicy::Name:
    return llvm::stable_sort(vec, nameComparator);
  case SortSectionPolicy::Priority:
    return llvm::stable_sort(vec, priorityComparator);
  }
}

// Sort sections as instructed by SORT-family commands and --sort-section
// option. Because SORT-family commands can be nested at most two depth
// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
// line option is respected even if a SORT command is given, the exact
// behavior we have here is a bit complicated. Here are the rules.
//
// 1. If two SORT commands are given, --sort-section is ignored.
// 2. If one SORT command is given, and if it is not SORT_NONE,
//    --sort-section is handled as an inner SORT command.
// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
// 4. If no SORT command is given, sort according to --sort-section.
static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
                              const SectionPattern &pat) {
  if (pat.sortOuter == SortSectionPolicy::None)
    return;

  if (pat.sortInner == SortSectionPolicy::Default)
    sortSections(vec, config->sortSection);
  else
    sortSections(vec, pat.sortInner);
  sortSections(vec, pat.sortOuter);
}

// Compute and remember which sections the InputSectionDescription matches.
std::vector<InputSectionBase *>
LinkerScript::computeInputSections(const InputSectionDescription *cmd,
                                   ArrayRef<InputSectionBase *> sections) {
  std::vector<InputSectionBase *> ret;

  // Collects all sections that satisfy constraints of Cmd.
  for (const SectionPattern &pat : cmd->sectionPatterns) {
    size_t sizeBefore = ret.size();

    for (InputSectionBase *sec : sections) {
      if (!sec->isLive() || sec->parent)
        continue;

      // For -emit-relocs we have to ignore entries like
      //   .rela.dyn : { *(.rela.data) }
      // which are common because they are in the default bfd script.
      // We do not ignore SHT_REL[A] linker-synthesized sections here because
      // want to support scripts that do custom layout for them.
      if (isa<InputSection>(sec) &&
          cast<InputSection>(sec)->getRelocatedSection())
        continue;

      // Check the name early to improve performance in the common case.
      if (!pat.sectionPat.match(sec->name))
        continue;

      std::string filename = getFilename(sec->file);
      if (!cmd->filePat.match(filename) ||
          pat.excludedFilePat.match(filename) ||
          (sec->flags & cmd->withFlags) != cmd->withFlags ||
          (sec->flags & cmd->withoutFlags) != 0)
        continue;

      ret.push_back(sec);
    }

    sortInputSections(
        MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
  }
  return ret;
}

void LinkerScript::discard(InputSectionBase *s) {
  if (s == in.shStrTab || s == mainPart->relrDyn)
    error("discarding " + s->name + " section is not allowed");

  // You can discard .hash and .gnu.hash sections by linker scripts. Since
  // they are synthesized sections, we need to handle them differently than
  // other regular sections.
  if (s == mainPart->gnuHashTab)
    mainPart->gnuHashTab = nullptr;
  if (s == mainPart->hashTab)
    mainPart->hashTab = nullptr;

  s->markDead();
  s->parent = nullptr;
  for (InputSection *ds : s->dependentSections)
    discard(ds);
}

void LinkerScript::discardSynthetic(OutputSection &outCmd) {
  for (Partition &part : partitions) {
    if (!part.armExidx || !part.armExidx->isLive())
      continue;
    std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(),
                                         part.armExidx->exidxSections.end());
    for (BaseCommand *base : outCmd.sectionCommands)
      if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
        std::vector<InputSectionBase *> matches =
            computeInputSections(cmd, secs);
        for (InputSectionBase *s : matches)
          discard(s);
      }
  }
}

std::vector<InputSectionBase *>
LinkerScript::createInputSectionList(OutputSection &outCmd) {
  std::vector<InputSectionBase *> ret;

  for (BaseCommand *base : outCmd.sectionCommands) {
    if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
      cmd->sectionBases = computeInputSections(cmd, inputSections);
      for (InputSectionBase *s : cmd->sectionBases)
        s->parent = &outCmd;
      ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
    }
  }
  return ret;
}

// Create output sections described by SECTIONS commands.
void LinkerScript::processSectionCommands() {
  size_t i = 0;
  for (BaseCommand *base : sectionCommands) {
    if (auto *sec = dyn_cast<OutputSection>(base)) {
      std::vector<InputSectionBase *> v = createInputSectionList(*sec);

      // The output section name `/DISCARD/' is special.
      // Any input section assigned to it is discarded.
      if (sec->name == "/DISCARD/") {
        for (InputSectionBase *s : v)
          discard(s);
        discardSynthetic(*sec);
        sec->sectionCommands.clear();
        continue;
      }

      // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
      // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
      // sections satisfy a given constraint. If not, a directive is handled
      // as if it wasn't present from the beginning.
      //
      // Because we'll iterate over SectionCommands many more times, the easy
      // way to "make it as if it wasn't present" is to make it empty.
      if (!matchConstraints(v, sec->constraint)) {
        for (InputSectionBase *s : v)
          s->parent = nullptr;
        sec->sectionCommands.clear();
        continue;
      }

      // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
      // is given, input sections are aligned to that value, whether the
      // given value is larger or smaller than the original section alignment.
      if (sec->subalignExpr) {
        uint32_t subalign = sec->subalignExpr().getValue();
        for (InputSectionBase *s : v)
          s->alignment = subalign;
      }

      // Set the partition field the same way OutputSection::recordSection()
      // does. Partitions cannot be used with the SECTIONS command, so this is
      // always 1.
      sec->partition = 1;

      sec->sectionIndex = i++;
    }
  }
}

void LinkerScript::processSymbolAssignments() {
  // Dot outside an output section still represents a relative address, whose
  // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
  // that fills the void outside a section. It has an index of one, which is
  // indistinguishable from any other regular section index.
  aether = make<OutputSection>("", 0, SHF_ALLOC);
  aether->sectionIndex = 1;

  // ctx captures the local AddressState and makes it accessible deliberately.
  // This is needed as there are some cases where we cannot just thread the
  // current state through to a lambda function created by the script parser.
  AddressState state;
  ctx = &state;
  ctx->outSec = aether;

  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base))
      addSymbol(cmd);
    else
      for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
        if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
          addSymbol(cmd);
  }

  ctx = nullptr;
}

static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
                                 StringRef name) {
  for (BaseCommand *base : vec)
    if (auto *sec = dyn_cast<OutputSection>(base))
      if (sec->name == name)
        return sec;
  return nullptr;
}

static OutputSection *createSection(InputSectionBase *isec,
                                    StringRef outsecName) {
  OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
  sec->recordSection(isec);
  return sec;
}

static OutputSection *
addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
            InputSectionBase *isec, StringRef outsecName) {
  // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
  // option is given. A section with SHT_GROUP defines a "section group", and
  // its members have SHF_GROUP attribute. Usually these flags have already been
  // stripped by InputFiles.cpp as section groups are processed and uniquified.
  // However, for the -r option, we want to pass through all section groups
  // as-is because adding/removing members or merging them with other groups
  // change their semantics.
  if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
    return createSection(isec, outsecName);

  // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
  // relocation sections .rela.foo and .rela.bar for example. Most tools do
  // not allow multiple REL[A] sections for output section. Hence we
  // should combine these relocation sections into single output.
  // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
  // other REL[A] sections created by linker itself.
  if (!isa<SyntheticSection>(isec) &&
      (isec->type == SHT_REL || isec->type == SHT_RELA)) {
    auto *sec = cast<InputSection>(isec);
    OutputSection *out = sec->getRelocatedSection()->getOutputSection();

    if (out->relocationSection) {
      out->relocationSection->recordSection(sec);
      return nullptr;
    }

    out->relocationSection = createSection(isec, outsecName);
    return out->relocationSection;
  }

  //  The ELF spec just says
  // ----------------------------------------------------------------
  // In the first phase, input sections that match in name, type and
  // attribute flags should be concatenated into single sections.
  // ----------------------------------------------------------------
  //
  // However, it is clear that at least some flags have to be ignored for
  // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
  // ignored. We should not have two output .text sections just because one was
  // in a group and another was not for example.
  //
  // It also seems that wording was a late addition and didn't get the
  // necessary scrutiny.
  //
  // Merging sections with different flags is expected by some users. One
  // reason is that if one file has
  //
  // int *const bar __attribute__((section(".foo"))) = (int *)0;
  //
  // gcc with -fPIC will produce a read only .foo section. But if another
  // file has
  //
  // int zed;
  // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
  //
  // gcc with -fPIC will produce a read write section.
  //
  // Last but not least, when using linker script the merge rules are forced by
  // the script. Unfortunately, linker scripts are name based. This means that
  // expressions like *(.foo*) can refer to multiple input sections with
  // different flags. We cannot put them in different output sections or we
  // would produce wrong results for
  //
  // start = .; *(.foo.*) end = .; *(.bar)
  //
  // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
  // another. The problem is that there is no way to layout those output
  // sections such that the .foo sections are the only thing between the start
  // and end symbols.
  //
  // Given the above issues, we instead merge sections by name and error on
  // incompatible types and flags.
  TinyPtrVector<OutputSection *> &v = map[outsecName];
  for (OutputSection *sec : v) {
    if (sec->partition != isec->partition)
      continue;

    if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
      // Merging two SHF_LINK_ORDER sections with different sh_link fields will
      // change their semantics, so we only merge them in -r links if they will
      // end up being linked to the same output section. The casts are fine
      // because everything in the map was created by the orphan placement code.
      auto *firstIsec = cast<InputSectionBase>(
          cast<InputSectionDescription>(sec->sectionCommands[0])
              ->sectionBases[0]);
      if (firstIsec->getLinkOrderDep()->getOutputSection() !=
          isec->getLinkOrderDep()->getOutputSection())
        continue;
    }

    sec->recordSection(isec);
    return nullptr;
  }

  OutputSection *sec = createSection(isec, outsecName);
  v.push_back(sec);
  return sec;
}

// Add sections that didn't match any sections command.
void LinkerScript::addOrphanSections() {
  StringMap<TinyPtrVector<OutputSection *>> map;
  std::vector<OutputSection *> v;

  std::function<void(InputSectionBase *)> add;
  add = [&](InputSectionBase *s) {
    if (s->isLive() && !s->parent) {
      orphanSections.push_back(s);

      StringRef name = getOutputSectionName(s);
      if (config->unique) {
        v.push_back(createSection(s, name));
      } else if (OutputSection *sec = findByName(sectionCommands, name)) {
        sec->recordSection(s);
      } else {
        if (OutputSection *os = addInputSec(map, s, name))
          v.push_back(os);
        assert(isa<MergeInputSection>(s) ||
               s->getOutputSection()->sectionIndex == UINT32_MAX);
      }
    }

    if (config->relocatable)
      for (InputSectionBase *depSec : s->dependentSections)
        if (depSec->flags & SHF_LINK_ORDER)
          add(depSec);
  };

  // For futher --emit-reloc handling code we need target output section
  // to be created before we create relocation output section, so we want
  // to create target sections first. We do not want priority handling
  // for synthetic sections because them are special.
  for (InputSectionBase *isec : inputSections) {
    // In -r links, SHF_LINK_ORDER sections are added while adding their parent
    // sections because we need to know the parent's output section before we
    // can select an output section for the SHF_LINK_ORDER section.
    if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
      continue;

    if (auto *sec = dyn_cast<InputSection>(isec))
      if (InputSectionBase *rel = sec->getRelocatedSection())
        if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
          add(relIS);
    add(isec);
  }

  // If no SECTIONS command was given, we should insert sections commands
  // before others, so that we can handle scripts which refers them,
  // for example: "foo = ABSOLUTE(ADDR(.text)));".
  // When SECTIONS command is present we just add all orphans to the end.
  if (hasSectionsCommand)
    sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
  else
    sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
}

void LinkerScript::diagnoseOrphanHandling() const {
  for (const InputSectionBase *sec : orphanSections) {
    // Input SHT_REL[A] retained by --emit-relocs are ignored by
    // computeInputSections(). Don't warn/error.
    if (isa<InputSection>(sec) &&
        cast<InputSection>(sec)->getRelocatedSection())
      continue;

    StringRef name = getOutputSectionName(sec);
    if (config->orphanHandling == OrphanHandlingPolicy::Error)
      error(toString(sec) + " is being placed in '" + name + "'");
    else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
      warn(toString(sec) + " is being placed in '" + name + "'");
  }
}

uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
  bool isTbss =
      (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
  uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
  start = alignTo(start, alignment);
  uint64_t end = start + size;

  if (isTbss)
    ctx->threadBssOffset = end - dot;
  else
    dot = end;
  return end;
}

void LinkerScript::output(InputSection *s) {
  assert(ctx->outSec == s->getParent());
  uint64_t before = advance(0, 1);
  uint64_t pos = advance(s->getSize(), s->alignment);
  s->outSecOff = pos - s->getSize() - ctx->outSec->addr;

  // Update output section size after adding each section. This is so that
  // SIZEOF works correctly in the case below:
  // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
  expandOutputSection(pos - before);
}

void LinkerScript::switchTo(OutputSection *sec) {
  ctx->outSec = sec;

  uint64_t pos = advance(0, 1);
  if (sec->addrExpr && script->hasSectionsCommand) {
    // The alignment is ignored.
    ctx->outSec->addr = pos;
  } else {
    // ctx->outSec->alignment is the max of ALIGN and the maximum of input
    // section alignments.
    ctx->outSec->addr = advance(0, ctx->outSec->alignment);
    expandMemoryRegions(ctx->outSec->addr - pos);
  }
}

// This function searches for a memory region to place the given output
// section in. If found, a pointer to the appropriate memory region is
// returned. Otherwise, a nullptr is returned.
MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
  // If a memory region name was specified in the output section command,
  // then try to find that region first.
  if (!sec->memoryRegionName.empty()) {
    if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
      return m;
    error("memory region '" + sec->memoryRegionName + "' not declared");
    return nullptr;
  }

  // If at least one memory region is defined, all sections must
  // belong to some memory region. Otherwise, we don't need to do
  // anything for memory regions.
  if (memoryRegions.empty())
    return nullptr;

  // See if a region can be found by matching section flags.
  for (auto &pair : memoryRegions) {
    MemoryRegion *m = pair.second;
    if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
      return m;
  }

  // Otherwise, no suitable region was found.
  if (sec->flags & SHF_ALLOC)
    error("no memory region specified for section '" + sec->name + "'");
  return nullptr;
}

static OutputSection *findFirstSection(PhdrEntry *load) {
  for (OutputSection *sec : outputSections)
    if (sec->ptLoad == load)
      return sec;
  return nullptr;
}

// This function assigns offsets to input sections and an output section
// for a single sections command (e.g. ".text { *(.text); }").
void LinkerScript::assignOffsets(OutputSection *sec) {
  if (!(sec->flags & SHF_ALLOC))
    dot = 0;

  const bool sameMemRegion = ctx->memRegion == sec->memRegion;
  const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr;
  ctx->memRegion = sec->memRegion;
  ctx->lmaRegion = sec->lmaRegion;
  if (ctx->memRegion)
    dot = ctx->memRegion->curPos;

  if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
    setDot(sec->addrExpr, sec->location, false);

  // If the address of the section has been moved forward by an explicit
  // expression so that it now starts past the current curPos of the enclosing
  // region, we need to expand the current region to account for the space
  // between the previous section, if any, and the start of this section.
  if (ctx->memRegion && ctx->memRegion->curPos < dot)
    expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
                       ctx->memRegion->name, sec->name);

  switchTo(sec);

  // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or
  // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA
  // region is the default, and the two sections are in the same memory region,
  // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
  // heuristics described in
  // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
  if (sec->lmaExpr)
    ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
  else if (MemoryRegion *mr = sec->lmaRegion)
    ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
  else if (!sameMemRegion || !prevLMARegionIsDefault)
    ctx->lmaOffset = 0;

  // Propagate ctx->lmaOffset to the first "non-header" section.
  if (PhdrEntry *l = ctx->outSec->ptLoad)
    if (sec == findFirstSection(l))
      l->lmaOffset = ctx->lmaOffset;

  // We can call this method multiple times during the creation of
  // thunks and want to start over calculation each time.
  sec->size = 0;

  // We visited SectionsCommands from processSectionCommands to
  // layout sections. Now, we visit SectionsCommands again to fix
  // section offsets.
  for (BaseCommand *base : sec->sectionCommands) {
    // This handles the assignments to symbol or to the dot.
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      cmd->addr = dot;
      assignSymbol(cmd, true);
      cmd->size = dot - cmd->addr;
      continue;
    }

    // Handle BYTE(), SHORT(), LONG(), or QUAD().
    if (auto *cmd = dyn_cast<ByteCommand>(base)) {
      cmd->offset = dot - ctx->outSec->addr;
      dot += cmd->size;
      expandOutputSection(cmd->size);
      continue;
    }

    // Handle a single input section description command.
    // It calculates and assigns the offsets for each section and also
    // updates the output section size.
    for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
      output(sec);
  }
}

static bool isDiscardable(OutputSection &sec) {
  if (sec.name == "/DISCARD/")
    return true;

  // We do not remove empty sections that are explicitly
  // assigned to any segment.
  if (!sec.phdrs.empty())
    return false;

  // We do not want to remove OutputSections with expressions that reference
  // symbols even if the OutputSection is empty. We want to ensure that the
  // expressions can be evaluated and report an error if they cannot.
  if (sec.expressionsUseSymbols)
    return false;

  // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
  // as an empty Section can has a valid VMA and LMA we keep the OutputSection
  // to maintain the integrity of the other Expression.
  if (sec.usedInExpression)
    return false;

  for (BaseCommand *base : sec.sectionCommands) {
    if (auto cmd = dyn_cast<SymbolAssignment>(base))
      // Don't create empty output sections just for unreferenced PROVIDE
      // symbols.
      if (cmd->name != "." && !cmd->sym)
        continue;

    if (!isa<InputSectionDescription>(*base))
      return false;
  }
  return true;
}

void LinkerScript::adjustSectionsBeforeSorting() {
  // If the output section contains only symbol assignments, create a
  // corresponding output section. The issue is what to do with linker script
  // like ".foo : { symbol = 42; }". One option would be to convert it to
  // "symbol = 42;". That is, move the symbol out of the empty section
  // description. That seems to be what bfd does for this simple case. The
  // problem is that this is not completely general. bfd will give up and
  // create a dummy section too if there is a ". = . + 1" inside the section
  // for example.
  // Given that we want to create the section, we have to worry what impact
  // it will have on the link. For example, if we just create a section with
  // 0 for flags, it would change which PT_LOADs are created.
  // We could remember that particular section is dummy and ignore it in
  // other parts of the linker, but unfortunately there are quite a few places
  // that would need to change:
  //   * The program header creation.
  //   * The orphan section placement.
  //   * The address assignment.
  // The other option is to pick flags that minimize the impact the section
  // will have on the rest of the linker. That is why we copy the flags from
  // the previous sections. Only a few flags are needed to keep the impact low.
  uint64_t flags = SHF_ALLOC;

  for (BaseCommand *&cmd : sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(cmd);
    if (!sec)
      continue;

    // Handle align (e.g. ".foo : ALIGN(16) { ... }").
    if (sec->alignExpr)
      sec->alignment =
          std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());

    // The input section might have been removed (if it was an empty synthetic
    // section), but we at least know the flags.
    if (sec->hasInputSections)
      flags = sec->flags;

    // We do not want to keep any special flags for output section
    // in case it is empty.
    bool isEmpty = (getFirstInputSection(sec) == nullptr);
    if (isEmpty)
      sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
                            SHF_WRITE | SHF_EXECINSTR);

    if (isEmpty && isDiscardable(*sec)) {
      sec->markDead();
      cmd = nullptr;
    }
  }

  // It is common practice to use very generic linker scripts. So for any
  // given run some of the output sections in the script will be empty.
  // We could create corresponding empty output sections, but that would
  // clutter the output.
  // We instead remove trivially empty sections. The bfd linker seems even
  // more aggressive at removing them.
  llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
}

void LinkerScript::adjustSectionsAfterSorting() {
  // Try and find an appropriate memory region to assign offsets in.
  for (BaseCommand *base : sectionCommands) {
    if (auto *sec = dyn_cast<OutputSection>(base)) {
      if (!sec->lmaRegionName.empty()) {
        if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
          sec->lmaRegion = m;
        else
          error("memory region '" + sec->lmaRegionName + "' not declared");
      }
      sec->memRegion = findMemoryRegion(sec);
    }
  }

  // If output section command doesn't specify any segments,
  // and we haven't previously assigned any section to segment,
  // then we simply assign section to the very first load segment.
  // Below is an example of such linker script:
  // PHDRS { seg PT_LOAD; }
  // SECTIONS { .aaa : { *(.aaa) } }
  std::vector<StringRef> defPhdrs;
  auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
    return cmd.type == PT_LOAD;
  });
  if (firstPtLoad != phdrsCommands.end())
    defPhdrs.push_back(firstPtLoad->name);

  // Walk the commands and propagate the program headers to commands that don't
  // explicitly specify them.
  for (BaseCommand *base : sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(base);
    if (!sec)
      continue;

    if (sec->phdrs.empty()) {
      // To match the bfd linker script behaviour, only propagate program
      // headers to sections that are allocated.
      if (sec->flags & SHF_ALLOC)
        sec->phdrs = defPhdrs;
    } else {
      defPhdrs = sec->phdrs;
    }
  }
}

static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
  // If there is no SECTIONS or if the linkerscript is explicit about program
  // headers, do our best to allocate them.
  if (!script->hasSectionsCommand || allocateHeaders)
    return 0;
  // Otherwise only allocate program headers if that would not add a page.
  return alignDown(min, config->maxPageSize);
}

// When the SECTIONS command is used, try to find an address for the file and
// program headers output sections, which can be added to the first PT_LOAD
// segment when program headers are created.
//
// We check if the headers fit below the first allocated section. If there isn't
// enough space for these sections, we'll remove them from the PT_LOAD segment,
// and we'll also remove the PT_PHDR segment.
void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
  uint64_t min = std::numeric_limits<uint64_t>::max();
  for (OutputSection *sec : outputSections)
    if (sec->flags & SHF_ALLOC)
      min = std::min<uint64_t>(min, sec->addr);

  auto it = llvm::find_if(
      phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
  if (it == phdrs.end())
    return;
  PhdrEntry *firstPTLoad = *it;

  bool hasExplicitHeaders =
      llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
        return cmd.hasPhdrs || cmd.hasFilehdr;
      });
  bool paged = !config->omagic && !config->nmagic;
  uint64_t headerSize = getHeaderSize();
  if ((paged || hasExplicitHeaders) &&
      headerSize <= min - computeBase(min, hasExplicitHeaders)) {
    min = alignDown(min - headerSize, config->maxPageSize);
    Out::elfHeader->addr = min;
    Out::programHeaders->addr = min + Out::elfHeader->size;
    return;
  }

  // Error if we were explicitly asked to allocate headers.
  if (hasExplicitHeaders)
    error("could not allocate headers");

  Out::elfHeader->ptLoad = nullptr;
  Out::programHeaders->ptLoad = nullptr;
  firstPTLoad->firstSec = findFirstSection(firstPTLoad);

  llvm::erase_if(phdrs,
                 [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
}

LinkerScript::AddressState::AddressState() {
  for (auto &mri : script->memoryRegions) {
    MemoryRegion *mr = mri.second;
    mr->curPos = (mr->origin)().getValue();
  }
}

// Here we assign addresses as instructed by linker script SECTIONS
// sub-commands. Doing that allows us to use final VA values, so here
// we also handle rest commands like symbol assignments and ASSERTs.
// Returns a symbol that has changed its section or value, or nullptr if no
// symbol has changed.
const Defined *LinkerScript::assignAddresses() {
  if (script->hasSectionsCommand) {
    // With a linker script, assignment of addresses to headers is covered by
    // allocateHeaders().
    dot = config->imageBase.getValueOr(0);
  } else {
    // Assign addresses to headers right now.
    dot = target->getImageBase();
    Out::elfHeader->addr = dot;
    Out::programHeaders->addr = dot + Out::elfHeader->size;
    dot += getHeaderSize();
  }

  auto deleter = std::make_unique<AddressState>();
  ctx = deleter.get();
  errorOnMissingSection = true;
  switchTo(aether);

  SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
  for (BaseCommand *base : sectionCommands) {
    if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
      cmd->addr = dot;
      assignSymbol(cmd, false);
      cmd->size = dot - cmd->addr;
      continue;
    }
    assignOffsets(cast<OutputSection>(base));
  }

  ctx = nullptr;
  return getChangedSymbolAssignment(oldValues);
}

// Creates program headers as instructed by PHDRS linker script command.
std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
  std::vector<PhdrEntry *> ret;

  // Process PHDRS and FILEHDR keywords because they are not
  // real output sections and cannot be added in the following loop.
  for (const PhdrsCommand &cmd : phdrsCommands) {
    PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);

    if (cmd.hasFilehdr)
      phdr->add(Out::elfHeader);
    if (cmd.hasPhdrs)
      phdr->add(Out::programHeaders);

    if (cmd.lmaExpr) {
      phdr->p_paddr = cmd.lmaExpr().getValue();
      phdr->hasLMA = true;
    }
    ret.push_back(phdr);
  }

  // Add output sections to program headers.
  for (OutputSection *sec : outputSections) {
    // Assign headers specified by linker script
    for (size_t id : getPhdrIndices(sec)) {
      ret[id]->add(sec);
      if (!phdrsCommands[id].flags.hasValue())
        ret[id]->p_flags |= sec->getPhdrFlags();
    }
  }
  return ret;
}

// Returns true if we should emit an .interp section.
//
// We usually do. But if PHDRS commands are given, and
// no PT_INTERP is there, there's no place to emit an
// .interp, so we don't do that in that case.
bool LinkerScript::needsInterpSection() {
  if (phdrsCommands.empty())
    return true;
  for (PhdrsCommand &cmd : phdrsCommands)
    if (cmd.type == PT_INTERP)
      return true;
  return false;
}

ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
  if (name == ".") {
    if (ctx)
      return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
    error(loc + ": unable to get location counter value");
    return 0;
  }

  if (Symbol *sym = symtab->find(name)) {
    if (auto *ds = dyn_cast<Defined>(sym)) {
      ExprValue v{ds->section, false, ds->value, loc};
      // Retain the original st_type, so that the alias will get the same
      // behavior in relocation processing. Any operation will reset st_type to
      // STT_NOTYPE.
      v.type = ds->type;
      return v;
    }
    if (isa<SharedSymbol>(sym))
      if (!errorOnMissingSection)
        return {nullptr, false, 0, loc};
  }

  error(loc + ": symbol not found: " + name);
  return 0;
}

// Returns the index of the segment named Name.
static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
                                     StringRef name) {
  for (size_t i = 0; i < vec.size(); ++i)
    if (vec[i].name == name)
      return i;
  return None;
}

// Returns indices of ELF headers containing specific section. Each index is a
// zero based number of ELF header listed within PHDRS {} script block.
std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
  std::vector<size_t> ret;

  for (StringRef s : cmd->phdrs) {
    if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
      ret.push_back(*idx);
    else if (s != "NONE")
      error(cmd->location + ": program header '" + s +
            "' is not listed in PHDRS");
  }
  return ret;
}