Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
//===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Early if-conversion is for out-of-order CPUs that don't have a lot of
// predicable instructions. The goal is to eliminate conditional branches that
// may mispredict.
//
// Instructions from both sides of the branch are executed specutatively, and a
// cmov instruction selects the result.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "early-ifcvt"

// Absolute maximum number of instructions allowed per speculated block.
// This bypasses all other heuristics, so it should be set fairly high.
static cl::opt<unsigned>
BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
  cl::desc("Maximum number of instructions per speculated block."));

// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
  cl::desc("Turn all knobs to 11"));

STATISTIC(NumDiamondsSeen,  "Number of diamonds");
STATISTIC(NumDiamondsConv,  "Number of diamonds converted");
STATISTIC(NumTrianglesSeen, "Number of triangles");
STATISTIC(NumTrianglesConv, "Number of triangles converted");

//===----------------------------------------------------------------------===//
//                                 SSAIfConv
//===----------------------------------------------------------------------===//
//
// The SSAIfConv class performs if-conversion on SSA form machine code after
// determining if it is possible. The class contains no heuristics; external
// code should be used to determine when if-conversion is a good idea.
//
// SSAIfConv can convert both triangles and diamonds:
//
//   Triangle: Head              Diamond: Head
//              | \                       /  \_
//              |  \                     /    |
//              |  [TF]BB              FBB    TBB
//              |  /                     \    /
//              | /                       \  /
//             Tail                       Tail
//
// Instructions in the conditional blocks TBB and/or FBB are spliced into the
// Head block, and phis in the Tail block are converted to select instructions.
//
namespace {
class SSAIfConv {
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MachineRegisterInfo *MRI;

public:
  /// The block containing the conditional branch.
  MachineBasicBlock *Head;

  /// The block containing phis after the if-then-else.
  MachineBasicBlock *Tail;

  /// The 'true' conditional block as determined by analyzeBranch.
  MachineBasicBlock *TBB;

  /// The 'false' conditional block as determined by analyzeBranch.
  MachineBasicBlock *FBB;

  /// isTriangle - When there is no 'else' block, either TBB or FBB will be
  /// equal to Tail.
  bool isTriangle() const { return TBB == Tail || FBB == Tail; }

  /// Returns the Tail predecessor for the True side.
  MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }

  /// Returns the Tail predecessor for the  False side.
  MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }

  /// Information about each phi in the Tail block.
  struct PHIInfo {
    MachineInstr *PHI;
    unsigned TReg, FReg;
    // Latencies from Cond+Branch, TReg, and FReg to DstReg.
    int CondCycles, TCycles, FCycles;

    PHIInfo(MachineInstr *phi)
      : PHI(phi), TReg(0), FReg(0), CondCycles(0), TCycles(0), FCycles(0) {}
  };

  SmallVector<PHIInfo, 8> PHIs;

private:
  /// The branch condition determined by analyzeBranch.
  SmallVector<MachineOperand, 4> Cond;

  /// Instructions in Head that define values used by the conditional blocks.
  /// The hoisted instructions must be inserted after these instructions.
  SmallPtrSet<MachineInstr*, 8> InsertAfter;

  /// Register units clobbered by the conditional blocks.
  BitVector ClobberedRegUnits;

  // Scratch pad for findInsertionPoint.
  SparseSet<unsigned> LiveRegUnits;

  /// Insertion point in Head for speculatively executed instructions form TBB
  /// and FBB.
  MachineBasicBlock::iterator InsertionPoint;

  /// Return true if all non-terminator instructions in MBB can be safely
  /// speculated.
  bool canSpeculateInstrs(MachineBasicBlock *MBB);

  /// Return true if all non-terminator instructions in MBB can be safely
  /// predicated.
  bool canPredicateInstrs(MachineBasicBlock *MBB);

  /// Scan through instruction dependencies and update InsertAfter array.
  /// Return false if any dependency is incompatible with if conversion.
  bool InstrDependenciesAllowIfConv(MachineInstr *I);

  /// Predicate all instructions of the basic block with current condition
  /// except for terminators. Reverse the condition if ReversePredicate is set.
  void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);

  /// Find a valid insertion point in Head.
  bool findInsertionPoint();

  /// Replace PHI instructions in Tail with selects.
  void replacePHIInstrs();

  /// Insert selects and rewrite PHI operands to use them.
  void rewritePHIOperands();

public:
  /// runOnMachineFunction - Initialize per-function data structures.
  void runOnMachineFunction(MachineFunction &MF) {
    TII = MF.getSubtarget().getInstrInfo();
    TRI = MF.getSubtarget().getRegisterInfo();
    MRI = &MF.getRegInfo();
    LiveRegUnits.clear();
    LiveRegUnits.setUniverse(TRI->getNumRegUnits());
    ClobberedRegUnits.clear();
    ClobberedRegUnits.resize(TRI->getNumRegUnits());
  }

  /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
  /// initialize the internal state, and return true.
  /// If predicate is set try to predicate the block otherwise try to
  /// speculatively execute it.
  bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);

  /// convertIf - If-convert the last block passed to canConvertIf(), assuming
  /// it is possible. Add any erased blocks to RemovedBlocks.
  void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
                 bool Predicate = false);
};
} // end anonymous namespace


/// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
/// be speculated. The terminators are not considered.
///
/// If instructions use any values that are defined in the head basic block,
/// the defining instructions are added to InsertAfter.
///
/// Any clobbered regunits are added to ClobberedRegUnits.
///
bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
  // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
  // get right.
  if (!MBB->livein_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
    return false;
  }

  unsigned InstrCount = 0;

  // Check all instructions, except the terminators. It is assumed that
  // terminators never have side effects or define any used register values.
  for (MachineBasicBlock::iterator I = MBB->begin(),
       E = MBB->getFirstTerminator(); I != E; ++I) {
    if (I->isDebugInstr())
      continue;

    if (++InstrCount > BlockInstrLimit && !Stress) {
      LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
                        << BlockInstrLimit << " instructions.\n");
      return false;
    }

    // There shouldn't normally be any phis in a single-predecessor block.
    if (I->isPHI()) {
      LLVM_DEBUG(dbgs() << "Can't hoist: " << *I);
      return false;
    }

    // Don't speculate loads. Note that it may be possible and desirable to
    // speculate GOT or constant pool loads that are guaranteed not to trap,
    // but we don't support that for now.
    if (I->mayLoad()) {
      LLVM_DEBUG(dbgs() << "Won't speculate load: " << *I);
      return false;
    }

    // We never speculate stores, so an AA pointer isn't necessary.
    bool DontMoveAcrossStore = true;
    if (!I->isSafeToMove(nullptr, DontMoveAcrossStore)) {
      LLVM_DEBUG(dbgs() << "Can't speculate: " << *I);
      return false;
    }

    // Check for any dependencies on Head instructions.
    if (!InstrDependenciesAllowIfConv(&(*I)))
      return false;
  }
  return true;
}

/// Check that there is no dependencies preventing if conversion.
///
/// If instruction uses any values that are defined in the head basic block,
/// the defining instructions are added to InsertAfter.
bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
  for (const MachineOperand &MO : I->operands()) {
    if (MO.isRegMask()) {
      LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
      return false;
    }
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();

    // Remember clobbered regunits.
    if (MO.isDef() && Register::isPhysicalRegister(Reg))
      for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
        ClobberedRegUnits.set(*Units);

    if (!MO.readsReg() || !Register::isVirtualRegister(Reg))
      continue;
    MachineInstr *DefMI = MRI->getVRegDef(Reg);
    if (!DefMI || DefMI->getParent() != Head)
      continue;
    if (InsertAfter.insert(DefMI).second)
      LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
                        << *DefMI);
    if (DefMI->isTerminator()) {
      LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
      return false;
    }
  }
  return true;
}

/// canPredicateInstrs - Returns true if all the instructions in MBB can safely
/// be predicates. The terminators are not considered.
///
/// If instructions use any values that are defined in the head basic block,
/// the defining instructions are added to InsertAfter.
///
/// Any clobbered regunits are added to ClobberedRegUnits.
///
bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
  // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
  // get right.
  if (!MBB->livein_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
    return false;
  }

  unsigned InstrCount = 0;

  // Check all instructions, except the terminators. It is assumed that
  // terminators never have side effects or define any used register values.
  for (MachineBasicBlock::iterator I = MBB->begin(),
                                   E = MBB->getFirstTerminator();
       I != E; ++I) {
    if (I->isDebugInstr())
      continue;

    if (++InstrCount > BlockInstrLimit && !Stress) {
      LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
                        << BlockInstrLimit << " instructions.\n");
      return false;
    }

    // There shouldn't normally be any phis in a single-predecessor block.
    if (I->isPHI()) {
      LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
      return false;
    }

    // Check that instruction is predicable and that it is not already
    // predicated.
    if (!TII->isPredicable(*I) || TII->isPredicated(*I)) {
      return false;
    }

    // Check for any dependencies on Head instructions.
    if (!InstrDependenciesAllowIfConv(&(*I)))
      return false;
  }
  return true;
}

// Apply predicate to all instructions in the machine block.
void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
  auto Condition = Cond;
  if (ReversePredicate)
    TII->reverseBranchCondition(Condition);
  // Terminators don't need to be predicated as they will be removed.
  for (MachineBasicBlock::iterator I = MBB->begin(),
                                   E = MBB->getFirstTerminator();
       I != E; ++I) {
    if (I->isDebugInstr())
      continue;
    TII->PredicateInstruction(*I, Condition);
  }
}

/// Find an insertion point in Head for the speculated instructions. The
/// insertion point must be:
///
/// 1. Before any terminators.
/// 2. After any instructions in InsertAfter.
/// 3. Not have any clobbered regunits live.
///
/// This function sets InsertionPoint and returns true when successful, it
/// returns false if no valid insertion point could be found.
///
bool SSAIfConv::findInsertionPoint() {
  // Keep track of live regunits before the current position.
  // Only track RegUnits that are also in ClobberedRegUnits.
  LiveRegUnits.clear();
  SmallVector<unsigned, 8> Reads;
  MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
  MachineBasicBlock::iterator I = Head->end();
  MachineBasicBlock::iterator B = Head->begin();
  while (I != B) {
    --I;
    // Some of the conditional code depends in I.
    if (InsertAfter.count(&*I)) {
      LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
      return false;
    }

    // Update live regunits.
    for (const MachineOperand &MO : I->operands()) {
      // We're ignoring regmask operands. That is conservatively correct.
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (!Register::isPhysicalRegister(Reg))
        continue;
      // I clobbers Reg, so it isn't live before I.
      if (MO.isDef())
        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
          LiveRegUnits.erase(*Units);
      // Unless I reads Reg.
      if (MO.readsReg())
        Reads.push_back(Reg);
    }
    // Anything read by I is live before I.
    while (!Reads.empty())
      for (MCRegUnitIterator Units(Reads.pop_back_val(), TRI); Units.isValid();
           ++Units)
        if (ClobberedRegUnits.test(*Units))
          LiveRegUnits.insert(*Units);

    // We can't insert before a terminator.
    if (I != FirstTerm && I->isTerminator())
      continue;

    // Some of the clobbered registers are live before I, not a valid insertion
    // point.
    if (!LiveRegUnits.empty()) {
      LLVM_DEBUG({
        dbgs() << "Would clobber";
        for (SparseSet<unsigned>::const_iterator
             i = LiveRegUnits.begin(), e = LiveRegUnits.end(); i != e; ++i)
          dbgs() << ' ' << printRegUnit(*i, TRI);
        dbgs() << " live before " << *I;
      });
      continue;
    }

    // This is a valid insertion point.
    InsertionPoint = I;
    LLVM_DEBUG(dbgs() << "Can insert before " << *I);
    return true;
  }
  LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
  return false;
}



/// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
/// a potential candidate for if-conversion. Fill out the internal state.
///
bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
  Head = MBB;
  TBB = FBB = Tail = nullptr;

  if (Head->succ_size() != 2)
    return false;
  MachineBasicBlock *Succ0 = Head->succ_begin()[0];
  MachineBasicBlock *Succ1 = Head->succ_begin()[1];

  // Canonicalize so Succ0 has MBB as its single predecessor.
  if (Succ0->pred_size() != 1)
    std::swap(Succ0, Succ1);

  if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
    return false;

  Tail = Succ0->succ_begin()[0];

  // This is not a triangle.
  if (Tail != Succ1) {
    // Check for a diamond. We won't deal with any critical edges.
    if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
        Succ1->succ_begin()[0] != Tail)
      return false;
    LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
                      << printMBBReference(*Succ0) << "/"
                      << printMBBReference(*Succ1) << " -> "
                      << printMBBReference(*Tail) << '\n');

    // Live-in physregs are tricky to get right when speculating code.
    if (!Tail->livein_empty()) {
      LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
      return false;
    }
  } else {
    LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
                      << printMBBReference(*Succ0) << " -> "
                      << printMBBReference(*Tail) << '\n');
  }

  // This is a triangle or a diamond.
  // Skip if we cannot predicate and there are no phis skip as there must be
  // side effects that can only be handled with predication.
  if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
    LLVM_DEBUG(dbgs() << "No phis in tail.\n");
    return false;
  }

  // The branch we're looking to eliminate must be analyzable.
  Cond.clear();
  if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
    LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
    return false;
  }

  // This is weird, probably some sort of degenerate CFG.
  if (!TBB) {
    LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
    return false;
  }

  // Make sure the analyzed branch is conditional; one of the successors
  // could be a landing pad. (Empty landing pads can be generated on Windows.)
  if (Cond.empty()) {
    LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
    return false;
  }

  // analyzeBranch doesn't set FBB on a fall-through branch.
  // Make sure it is always set.
  FBB = TBB == Succ0 ? Succ1 : Succ0;

  // Any phis in the tail block must be convertible to selects.
  PHIs.clear();
  MachineBasicBlock *TPred = getTPred();
  MachineBasicBlock *FPred = getFPred();
  for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
       I != E && I->isPHI(); ++I) {
    PHIs.push_back(&*I);
    PHIInfo &PI = PHIs.back();
    // Find PHI operands corresponding to TPred and FPred.
    for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
      if (PI.PHI->getOperand(i+1).getMBB() == TPred)
        PI.TReg = PI.PHI->getOperand(i).getReg();
      if (PI.PHI->getOperand(i+1).getMBB() == FPred)
        PI.FReg = PI.PHI->getOperand(i).getReg();
    }
    assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
    assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");

    // Get target information.
    if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
                              PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
                              PI.FCycles)) {
      LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
      return false;
    }
  }

  // Check that the conditional instructions can be speculated.
  InsertAfter.clear();
  ClobberedRegUnits.reset();
  if (Predicate) {
    if (TBB != Tail && !canPredicateInstrs(TBB))
      return false;
    if (FBB != Tail && !canPredicateInstrs(FBB))
      return false;
  } else {
    if (TBB != Tail && !canSpeculateInstrs(TBB))
      return false;
    if (FBB != Tail && !canSpeculateInstrs(FBB))
      return false;
  }

  // Try to find a valid insertion point for the speculated instructions in the
  // head basic block.
  if (!findInsertionPoint())
    return false;

  if (isTriangle())
    ++NumTrianglesSeen;
  else
    ++NumDiamondsSeen;
  return true;
}

/// replacePHIInstrs - Completely replace PHI instructions with selects.
/// This is possible when the only Tail predecessors are the if-converted
/// blocks.
void SSAIfConv::replacePHIInstrs() {
  assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
  MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
  assert(FirstTerm != Head->end() && "No terminators");
  DebugLoc HeadDL = FirstTerm->getDebugLoc();

  // Convert all PHIs to select instructions inserted before FirstTerm.
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
    PHIInfo &PI = PHIs[i];
    LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
    Register DstReg = PI.PHI->getOperand(0).getReg();
    TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg, PI.FReg);
    LLVM_DEBUG(dbgs() << "          --> " << *std::prev(FirstTerm));
    PI.PHI->eraseFromParent();
    PI.PHI = nullptr;
  }
}

/// rewritePHIOperands - When there are additional Tail predecessors, insert
/// select instructions in Head and rewrite PHI operands to use the selects.
/// Keep the PHI instructions in Tail to handle the other predecessors.
void SSAIfConv::rewritePHIOperands() {
  MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
  assert(FirstTerm != Head->end() && "No terminators");
  DebugLoc HeadDL = FirstTerm->getDebugLoc();

  // Convert all PHIs to select instructions inserted before FirstTerm.
  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
    PHIInfo &PI = PHIs[i];
    unsigned DstReg = 0;

    LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
    if (PI.TReg == PI.FReg) {
      // We do not need the select instruction if both incoming values are
      // equal.
      DstReg = PI.TReg;
    } else {
      Register PHIDst = PI.PHI->getOperand(0).getReg();
      DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
      TII->insertSelect(*Head, FirstTerm, HeadDL,
                         DstReg, Cond, PI.TReg, PI.FReg);
      LLVM_DEBUG(dbgs() << "          --> " << *std::prev(FirstTerm));
    }

    // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
    for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
      MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
      if (MBB == getTPred()) {
        PI.PHI->getOperand(i-1).setMBB(Head);
        PI.PHI->getOperand(i-2).setReg(DstReg);
      } else if (MBB == getFPred()) {
        PI.PHI->RemoveOperand(i-1);
        PI.PHI->RemoveOperand(i-2);
      }
    }
    LLVM_DEBUG(dbgs() << "          --> " << *PI.PHI);
  }
}

/// convertIf - Execute the if conversion after canConvertIf has determined the
/// feasibility.
///
/// Any basic blocks erased will be added to RemovedBlocks.
///
void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
                          bool Predicate) {
  assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");

  // Update statistics.
  if (isTriangle())
    ++NumTrianglesConv;
  else
    ++NumDiamondsConv;

  // Move all instructions into Head, except for the terminators.
  if (TBB != Tail) {
    if (Predicate)
      PredicateBlock(TBB, /*ReversePredicate=*/false);
    Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
  }
  if (FBB != Tail) {
    if (Predicate)
      PredicateBlock(FBB, /*ReversePredicate=*/true);
    Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
  }
  // Are there extra Tail predecessors?
  bool ExtraPreds = Tail->pred_size() != 2;
  if (ExtraPreds)
    rewritePHIOperands();
  else
    replacePHIInstrs();

  // Fix up the CFG, temporarily leave Head without any successors.
  Head->removeSuccessor(TBB);
  Head->removeSuccessor(FBB, true);
  if (TBB != Tail)
    TBB->removeSuccessor(Tail, true);
  if (FBB != Tail)
    FBB->removeSuccessor(Tail, true);

  // Fix up Head's terminators.
  // It should become a single branch or a fallthrough.
  DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
  TII->removeBranch(*Head);

  // Erase the now empty conditional blocks. It is likely that Head can fall
  // through to Tail, and we can join the two blocks.
  if (TBB != Tail) {
    RemovedBlocks.push_back(TBB);
    TBB->eraseFromParent();
  }
  if (FBB != Tail) {
    RemovedBlocks.push_back(FBB);
    FBB->eraseFromParent();
  }

  assert(Head->succ_empty() && "Additional head successors?");
  if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
    // Splice Tail onto the end of Head.
    LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
                      << " into head " << printMBBReference(*Head) << '\n');
    Head->splice(Head->end(), Tail,
                     Tail->begin(), Tail->end());
    Head->transferSuccessorsAndUpdatePHIs(Tail);
    RemovedBlocks.push_back(Tail);
    Tail->eraseFromParent();
  } else {
    // We need a branch to Tail, let code placement work it out later.
    LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
    SmallVector<MachineOperand, 0> EmptyCond;
    TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
    Head->addSuccessor(Tail);
  }
  LLVM_DEBUG(dbgs() << *Head);
}

//===----------------------------------------------------------------------===//
//                           EarlyIfConverter Pass
//===----------------------------------------------------------------------===//

namespace {
class EarlyIfConverter : public MachineFunctionPass {
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  MCSchedModel SchedModel;
  MachineRegisterInfo *MRI;
  MachineDominatorTree *DomTree;
  MachineLoopInfo *Loops;
  MachineTraceMetrics *Traces;
  MachineTraceMetrics::Ensemble *MinInstr;
  SSAIfConv IfConv;

public:
  static char ID;
  EarlyIfConverter() : MachineFunctionPass(ID) {}
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;
  StringRef getPassName() const override { return "Early If-Conversion"; }

private:
  bool tryConvertIf(MachineBasicBlock*);
  void invalidateTraces();
  bool shouldConvertIf();
};
} // end anonymous namespace

char EarlyIfConverter::ID = 0;
char &llvm::EarlyIfConverterID = EarlyIfConverter::ID;

INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE,
                      "Early If Converter", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE,
                    "Early If Converter", false, false)

void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineBranchProbabilityInfo>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  AU.addRequired<MachineTraceMetrics>();
  AU.addPreserved<MachineTraceMetrics>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

namespace {
/// Update the dominator tree after if-conversion erased some blocks.
void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
                   ArrayRef<MachineBasicBlock *> Removed) {
  // convertIf can remove TBB, FBB, and Tail can be merged into Head.
  // TBB and FBB should not dominate any blocks.
  // Tail children should be transferred to Head.
  MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
  for (auto B : Removed) {
    MachineDomTreeNode *Node = DomTree->getNode(B);
    assert(Node != HeadNode && "Cannot erase the head node");
    while (Node->getNumChildren()) {
      assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
      DomTree->changeImmediateDominator(Node->back(), HeadNode);
    }
    DomTree->eraseNode(B);
  }
}

/// Update LoopInfo after if-conversion.
void updateLoops(MachineLoopInfo *Loops,
                 ArrayRef<MachineBasicBlock *> Removed) {
  if (!Loops)
    return;
  // If-conversion doesn't change loop structure, and it doesn't mess with back
  // edges, so updating LoopInfo is simply removing the dead blocks.
  for (auto B : Removed)
    Loops->removeBlock(B);
}
} // namespace

/// Invalidate MachineTraceMetrics before if-conversion.
void EarlyIfConverter::invalidateTraces() {
  Traces->verifyAnalysis();
  Traces->invalidate(IfConv.Head);
  Traces->invalidate(IfConv.Tail);
  Traces->invalidate(IfConv.TBB);
  Traces->invalidate(IfConv.FBB);
  Traces->verifyAnalysis();
}

// Adjust cycles with downward saturation.
static unsigned adjCycles(unsigned Cyc, int Delta) {
  if (Delta < 0 && Cyc + Delta > Cyc)
    return 0;
  return Cyc + Delta;
}

/// Apply cost model and heuristics to the if-conversion in IfConv.
/// Return true if the conversion is a good idea.
///
bool EarlyIfConverter::shouldConvertIf() {
  // Stress testing mode disables all cost considerations.
  if (Stress)
    return true;

  if (!MinInstr)
    MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);

  MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
  MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
  LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
  unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
                              FBBTrace.getCriticalPath());

  // Set a somewhat arbitrary limit on the critical path extension we accept.
  unsigned CritLimit = SchedModel.MispredictPenalty/2;

  // If-conversion only makes sense when there is unexploited ILP. Compute the
  // maximum-ILP resource length of the trace after if-conversion. Compare it
  // to the shortest critical path.
  SmallVector<const MachineBasicBlock*, 1> ExtraBlocks;
  if (IfConv.TBB != IfConv.Tail)
    ExtraBlocks.push_back(IfConv.TBB);
  unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
  LLVM_DEBUG(dbgs() << "Resource length " << ResLength
                    << ", minimal critical path " << MinCrit << '\n');
  if (ResLength > MinCrit + CritLimit) {
    LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
    return false;
  }

  // Assume that the depth of the first head terminator will also be the depth
  // of the select instruction inserted, as determined by the flag dependency.
  // TBB / FBB data dependencies may delay the select even more.
  MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
  unsigned BranchDepth =
      HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
  LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');

  // Look at all the tail phis, and compute the critical path extension caused
  // by inserting select instructions.
  MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
  for (unsigned i = 0, e = IfConv.PHIs.size(); i != e; ++i) {
    SSAIfConv::PHIInfo &PI = IfConv.PHIs[i];
    unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
    unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
    LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);

    // The condition is pulled into the critical path.
    unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
    if (CondDepth > MaxDepth) {
      unsigned Extra = CondDepth - MaxDepth;
      LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
      if (Extra > CritLimit) {
        LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
        return false;
      }
    }

    // The TBB value is pulled into the critical path.
    unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
    if (TDepth > MaxDepth) {
      unsigned Extra = TDepth - MaxDepth;
      LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
      if (Extra > CritLimit) {
        LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
        return false;
      }
    }

    // The FBB value is pulled into the critical path.
    unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
    if (FDepth > MaxDepth) {
      unsigned Extra = FDepth - MaxDepth;
      LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
      if (Extra > CritLimit) {
        LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
        return false;
      }
    }
  }
  return true;
}

/// Attempt repeated if-conversion on MBB, return true if successful.
///
bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
  bool Changed = false;
  while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
    // If-convert MBB and update analyses.
    invalidateTraces();
    SmallVector<MachineBasicBlock*, 4> RemovedBlocks;
    IfConv.convertIf(RemovedBlocks);
    Changed = true;
    updateDomTree(DomTree, IfConv, RemovedBlocks);
    updateLoops(Loops, RemovedBlocks);
  }
  return Changed;
}

bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  if (skipFunction(MF.getFunction()))
    return false;

  // Only run if conversion if the target wants it.
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  if (!STI.enableEarlyIfConversion())
    return false;

  TII = STI.getInstrInfo();
  TRI = STI.getRegisterInfo();
  SchedModel = STI.getSchedModel();
  MRI = &MF.getRegInfo();
  DomTree = &getAnalysis<MachineDominatorTree>();
  Loops = getAnalysisIfAvailable<MachineLoopInfo>();
  Traces = &getAnalysis<MachineTraceMetrics>();
  MinInstr = nullptr;

  bool Changed = false;
  IfConv.runOnMachineFunction(MF);

  // Visit blocks in dominator tree post-order. The post-order enables nested
  // if-conversion in a single pass. The tryConvertIf() function may erase
  // blocks, but only blocks dominated by the head block. This makes it safe to
  // update the dominator tree while the post-order iterator is still active.
  for (auto DomNode : post_order(DomTree))
    if (tryConvertIf(DomNode->getBlock()))
      Changed = true;

  return Changed;
}

//===----------------------------------------------------------------------===//
//                           EarlyIfPredicator Pass
//===----------------------------------------------------------------------===//

namespace {
class EarlyIfPredicator : public MachineFunctionPass {
  const TargetInstrInfo *TII;
  const TargetRegisterInfo *TRI;
  TargetSchedModel SchedModel;
  MachineRegisterInfo *MRI;
  MachineDominatorTree *DomTree;
  MachineBranchProbabilityInfo *MBPI;
  MachineLoopInfo *Loops;
  SSAIfConv IfConv;

public:
  static char ID;
  EarlyIfPredicator() : MachineFunctionPass(ID) {}
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  bool runOnMachineFunction(MachineFunction &MF) override;
  StringRef getPassName() const override { return "Early If-predicator"; }

protected:
  bool tryConvertIf(MachineBasicBlock *);
  bool shouldConvertIf();
};
} // end anonymous namespace

#undef DEBUG_TYPE
#define DEBUG_TYPE "early-if-predicator"

char EarlyIfPredicator::ID = 0;
char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;

INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
                    false)

void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineBranchProbabilityInfo>();
  AU.addRequired<MachineDominatorTree>();
  AU.addPreserved<MachineDominatorTree>();
  AU.addRequired<MachineLoopInfo>();
  AU.addPreserved<MachineLoopInfo>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

/// Apply the target heuristic to decide if the transformation is profitable.
bool EarlyIfPredicator::shouldConvertIf() {
  auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
  if (IfConv.isTriangle()) {
    MachineBasicBlock &IfBlock =
        (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;

    unsigned ExtraPredCost = 0;
    unsigned Cycles = 0;
    for (MachineInstr &I : IfBlock) {
      unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
      if (NumCycles > 1)
        Cycles += NumCycles - 1;
      ExtraPredCost += TII->getPredicationCost(I);
    }

    return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
                                    TrueProbability);
  }
  unsigned TExtra = 0;
  unsigned FExtra = 0;
  unsigned TCycle = 0;
  unsigned FCycle = 0;
  for (MachineInstr &I : *IfConv.TBB) {
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
    if (NumCycles > 1)
      TCycle += NumCycles - 1;
    TExtra += TII->getPredicationCost(I);
  }
  for (MachineInstr &I : *IfConv.FBB) {
    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
    if (NumCycles > 1)
      FCycle += NumCycles - 1;
    FExtra += TII->getPredicationCost(I);
  }
  return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
                                  FCycle, FExtra, TrueProbability);
}

/// Attempt repeated if-conversion on MBB, return true if successful.
///
bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
  bool Changed = false;
  while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
    // If-convert MBB and update analyses.
    SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
    IfConv.convertIf(RemovedBlocks, /*Predicate*/ true);
    Changed = true;
    updateDomTree(DomTree, IfConv, RemovedBlocks);
    updateLoops(Loops, RemovedBlocks);
  }
  return Changed;
}

bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
                    << "********** Function: " << MF.getName() << '\n');
  if (skipFunction(MF.getFunction()))
    return false;

  const TargetSubtargetInfo &STI = MF.getSubtarget();
  TII = STI.getInstrInfo();
  TRI = STI.getRegisterInfo();
  MRI = &MF.getRegInfo();
  SchedModel.init(&STI);
  DomTree = &getAnalysis<MachineDominatorTree>();
  Loops = getAnalysisIfAvailable<MachineLoopInfo>();
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();

  bool Changed = false;
  IfConv.runOnMachineFunction(MF);

  // Visit blocks in dominator tree post-order. The post-order enables nested
  // if-conversion in a single pass. The tryConvertIf() function may erase
  // blocks, but only blocks dominated by the head block. This makes it safe to
  // update the dominator tree while the post-order iterator is still active.
  for (auto DomNode : post_order(DomTree))
    if (tryConvertIf(DomNode->getBlock()))
      Changed = true;

  return Changed;
}