Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>

#define DEBUG_TYPE "aarch64-call-lowering"

using namespace llvm;

AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
  : CallLowering(&TLI) {}

namespace {
struct IncomingArgHandler : public CallLowering::ValueHandler {
  IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);
    switch (VA.getLocInfo()) {
    default:
      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    }
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();

    // The reported memory location may be wider than the value.
    const LLT RegTy = MRI.getType(ValVReg);
    MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);

    auto MMO = MF.getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
        inferAlignFromPtrInfo(MF, MPO));
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

  bool isIncomingArgumentHandler() const override { return true; }

  uint64_t StackUsed;
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMRI()->addLiveIn(PhysReg);
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public IncomingArgHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB, CCAssignFn *AssignFn)
    : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

struct OutgoingArgHandler : public CallLowering::ValueHandler {
  OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     MachineInstrBuilder MIB, CCAssignFn *AssignFn,
                     CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
                     int FPDiff = 0)
      : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
        AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
        StackSize(0), SPReg(0) {}

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    MachineFunction &MF = MIRBuilder.getMF();
    LLT p0 = LLT::pointer(0, 64);
    LLT s64 = LLT::scalar(64);

    if (IsTailCall) {
      Offset += FPDiff;
      int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
      auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
      MPO = MachinePointerInfo::getFixedStack(MF, FI);
      return FIReg.getReg(0);
    }

    if (!SPReg)
      SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);

    auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);

    auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MF, Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);
    Register ExtReg = extendRegister(ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();
    auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size,
                                       inferAlignFromPtrInfo(MF, MPO));
    MIRBuilder.buildStore(ValVReg, Addr, *MMO);
  }

  void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
                            uint64_t Size, MachinePointerInfo &MPO,
                            CCValAssign &VA) override {
    unsigned MaxSize = Size * 8;
    // For varargs, we always want to extend them to 8 bytes, in which case
    // we disable setting a max.
    if (!Arg.IsFixed)
      MaxSize = 0;

    Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
                           ? extendRegister(Arg.Regs[0], VA, MaxSize)
                           : Arg.Regs[0];

    // If we extended we might need to adjust the MMO's Size.
    const LLT RegTy = MRI.getType(ValVReg);
    if (RegTy.getSizeInBytes() > Size)
      Size = RegTy.getSizeInBytes();

    assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info,
                 ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    bool Res;
    if (Info.IsFixed)
      Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
    else
      Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);

    StackSize = State.getNextStackOffset();
    return Res;
  }

  MachineInstrBuilder MIB;
  CCAssignFn *AssignFnVarArg;
  bool IsTailCall;

  /// For tail calls, the byte offset of the call's argument area from the
  /// callee's. Unused elsewhere.
  int FPDiff;
  uint64_t StackSize;

  // Cache the SP register vreg if we need it more than once in this call site.
  Register SPReg;
};
} // namespace

static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
  return CallConv == CallingConv::Fast && TailCallOpt;
}

void AArch64CallLowering::splitToValueTypes(
    const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
    const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  SmallVector<EVT, 4> SplitVTs;
  SmallVector<uint64_t, 4> Offsets;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);

  if (SplitVTs.size() == 0)
    return;

  if (SplitVTs.size() == 1) {
    // No splitting to do, but we want to replace the original type (e.g. [1 x
    // double] -> double).
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           OrigArg.Flags[0], OrigArg.IsFixed);
    return;
  }

  // Create one ArgInfo for each virtual register in the original ArgInfo.
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");

  bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
      OrigArg.Ty, CallConv, false);
  for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
    Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
    SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
                           OrigArg.IsFixed);
    if (NeedsRegBlock)
      SplitArgs.back().Flags[0].setInConsecutiveRegs();
  }

  SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
}

bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                      const Value *Val,
                                      ArrayRef<Register> VRegs,
                                      Register SwiftErrorVReg) const {
  auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
  assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
         "Return value without a vreg");

  bool Success = true;
  if (!VRegs.empty()) {
    MachineFunction &MF = MIRBuilder.getMF();
    const Function &F = MF.getFunction();

    MachineRegisterInfo &MRI = MF.getRegInfo();
    const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
    CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
    auto &DL = F.getParent()->getDataLayout();
    LLVMContext &Ctx = Val->getType()->getContext();

    SmallVector<EVT, 4> SplitEVTs;
    ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
    assert(VRegs.size() == SplitEVTs.size() &&
           "For each split Type there should be exactly one VReg.");

    SmallVector<ArgInfo, 8> SplitArgs;
    CallingConv::ID CC = F.getCallingConv();

    for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
      if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
        LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
        return false;
      }

      Register CurVReg = VRegs[i];
      ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
      setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);

      // i1 is a special case because SDAG i1 true is naturally zero extended
      // when widened using ANYEXT. We need to do it explicitly here.
      if (MRI.getType(CurVReg).getSizeInBits() == 1) {
        CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
      } else {
        // Some types will need extending as specified by the CC.
        MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
        if (EVT(NewVT) != SplitEVTs[i]) {
          unsigned ExtendOp = TargetOpcode::G_ANYEXT;
          if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                             Attribute::SExt))
            ExtendOp = TargetOpcode::G_SEXT;
          else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
                                                  Attribute::ZExt))
            ExtendOp = TargetOpcode::G_ZEXT;

          LLT NewLLT(NewVT);
          LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
          CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
          // Instead of an extend, we might have a vector type which needs
          // padding with more elements, e.g. <2 x half> -> <4 x half>.
          if (NewVT.isVector()) {
            if (OldLLT.isVector()) {
              if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
                // We don't handle VA types which are not exactly twice the
                // size, but can easily be done in future.
                if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
                  LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
                  return false;
                }
                auto Undef = MIRBuilder.buildUndef({OldLLT});
                CurVReg =
                    MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
              } else {
                // Just do a vector extend.
                CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
                              .getReg(0);
              }
            } else if (NewLLT.getNumElements() == 2) {
              // We need to pad a <1 x S> type to <2 x S>. Since we don't have
              // <1 x S> vector types in GISel we use a build_vector instead
              // of a vector merge/concat.
              auto Undef = MIRBuilder.buildUndef({OldLLT});
              CurVReg =
                  MIRBuilder
                      .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
                      .getReg(0);
            } else {
              LLVM_DEBUG(dbgs() << "Could not handle ret ty");
              return false;
            }
          } else {
            // A scalar extend.
            CurVReg =
                MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
          }
        }
      }
      if (CurVReg != CurArgInfo.Regs[0]) {
        CurArgInfo.Regs[0] = CurVReg;
        // Reset the arg flags after modifying CurVReg.
        setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
      }
     splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
    }

    OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
    Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
  }

  if (SwiftErrorVReg) {
    MIB.addUse(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
  }

  MIRBuilder.insertInstr(MIB);
  return Success;
}

/// Helper function to compute forwarded registers for musttail calls. Computes
/// the forwarded registers, sets MBB liveness, and emits COPY instructions that
/// can be used to save + restore registers later.
static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
                                             CCAssignFn *AssignFn) {
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineFunction &MF = MIRBuilder.getMF();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (!MFI.hasMustTailInVarArgFunc())
    return;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  const Function &F = MF.getFunction();
  assert(F.isVarArg() && "Expected F to be vararg?");

  // Compute the set of forwarded registers. The rest are scratch.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
                 F.getContext());
  SmallVector<MVT, 2> RegParmTypes;
  RegParmTypes.push_back(MVT::i64);
  RegParmTypes.push_back(MVT::f128);

  // Later on, we can use this vector to restore the registers if necessary.
  SmallVectorImpl<ForwardedRegister> &Forwards =
      FuncInfo->getForwardedMustTailRegParms();
  CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);

  // Conservatively forward X8, since it might be used for an aggregate
  // return.
  if (!CCInfo.isAllocated(AArch64::X8)) {
    unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
    Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
  }

  // Add the forwards to the MachineBasicBlock and MachineFunction.
  for (const auto &F : Forwards) {
    MBB.addLiveIn(F.PReg);
    MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
  }
}

bool AArch64CallLowering::fallBackToDAGISel(const Function &F) const {
  if (isa<ScalableVectorType>(F.getReturnType()))
    return true;
  return llvm::any_of(F.args(), [](const Argument &A) {
    return isa<ScalableVectorType>(A.getType());
  });
}

bool AArch64CallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  unsigned i = 0;
  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()).isZero())
      continue;

    ArgInfo OrigArg{VRegs[i], Arg.getType()};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);

    splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
    ++i;
  }

  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *AssignFn =
      TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);

  FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
  if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
    return false;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  uint64_t StackOffset = Handler.StackUsed;
  if (F.isVarArg()) {
    auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
    if (!Subtarget.isTargetDarwin()) {
        // FIXME: we need to reimplement saveVarArgsRegisters from
      // AArch64ISelLowering.
      return false;
    }

    // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
    StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);

    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
  }

  if (doesCalleeRestoreStack(F.getCallingConv(),
                             MF.getTarget().Options.GuaranteedTailCallOpt)) {
    // We have a non-standard ABI, so why not make full use of the stack that
    // we're going to pop? It must be aligned to 16 B in any case.
    StackOffset = alignTo(StackOffset, 16);

    // If we're expected to restore the stack (e.g. fastcc), then we'll be
    // adding a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackOffset);

    // Our own callers will guarantee that the space is free by giving an
    // aligned value to CALLSEQ_START.
  }

  // When we tail call, we need to check if the callee's arguments
  // will fit on the caller's stack. So, whenever we lower formal arguments,
  // we should keep track of this information, since we might lower a tail call
  // in this function later.
  FuncInfo->setBytesInStackArgArea(StackOffset);

  auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  if (Subtarget.hasCustomCallingConv())
    Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  handleMustTailForwardedRegisters(MIRBuilder, AssignFn);

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);

  return true;
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
  return CC == CallingConv::Fast;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::PreserveMost:
  case CallingConv::Swift:
    return true;
  default:
    return canGuaranteeTCO(CC);
  }
}

/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
  return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}

bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &InArgs) const {
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  // If the calling conventions match, then everything must be the same.
  if (CalleeCC == CallerCC)
    return true;

  // Check if the caller and callee will handle arguments in the same way.
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *CalleeAssignFnFixed;
  CCAssignFn *CalleeAssignFnVarArg;
  std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
      getAssignFnsForCC(CalleeCC, TLI);

  CCAssignFn *CallerAssignFnFixed;
  CCAssignFn *CallerAssignFnVarArg;
  std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
      getAssignFnsForCC(CallerCC, TLI);

  if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
                         *CalleeAssignFnVarArg, *CallerAssignFnFixed,
                         *CallerAssignFnVarArg))
    return false;

  // Make sure that the caller and callee preserve all of the same registers.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
    TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
    TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
  }

  return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
}

bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  // If there are no outgoing arguments, then we are done.
  if (OutArgs.empty())
    return true;

  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();

  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  // We have outgoing arguments. Make sure that we can tail call with them.
  SmallVector<CCValAssign, 16> OutLocs;
  CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());

  if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
    LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
    return false;
  }

  // Make sure that they can fit on the caller's stack.
  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
    LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
    return false;
  }

  // Verify that the parameters in callee-saved registers match.
  // TODO: Port this over to CallLowering as general code once swiftself is
  // supported.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
  MachineRegisterInfo &MRI = MF.getRegInfo();

  for (unsigned i = 0; i < OutLocs.size(); ++i) {
    auto &ArgLoc = OutLocs[i];
    // If it's not a register, it's fine.
    if (!ArgLoc.isRegLoc()) {
      if (Info.IsVarArg) {
        // Be conservative and disallow variadic memory operands to match SDAG's
        // behaviour.
        // FIXME: If the caller's calling convention is C, then we can
        // potentially use its argument area. However, for cases like fastcc,
        // we can't do anything.
        LLVM_DEBUG(
            dbgs()
            << "... Cannot tail call vararg function with stack arguments\n");
        return false;
      }
      continue;
    }

    Register Reg = ArgLoc.getLocReg();

    // Only look at callee-saved registers.
    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
      continue;

    LLVM_DEBUG(
        dbgs()
        << "... Call has an argument passed in a callee-saved register.\n");

    // Check if it was copied from.
    ArgInfo &OutInfo = OutArgs[i];

    if (OutInfo.Regs.size() > 1) {
      LLVM_DEBUG(
          dbgs() << "... Cannot handle arguments in multiple registers.\n");
      return false;
    }

    // Check if we copy the register, walking through copies from virtual
    // registers. Note that getDefIgnoringCopies does not ignore copies from
    // physical registers.
    MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
    if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
      LLVM_DEBUG(
          dbgs()
          << "... Parameter was not copied into a VReg, cannot tail call.\n");
      return false;
    }

    // Got a copy. Verify that it's the same as the register we want.
    Register CopyRHS = RegDef->getOperand(1).getReg();
    if (CopyRHS != Reg) {
      LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
                           "VReg, cannot tail call.\n");
      return false;
    }
  }

  return true;
}

bool AArch64CallLowering::isEligibleForTailCallOptimization(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &InArgs,
    SmallVectorImpl<ArgInfo> &OutArgs) const {

  // Must pass all target-independent checks in order to tail call optimize.
  if (!Info.IsTailCall)
    return false;

  CallingConv::ID CalleeCC = Info.CallConv;
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &CallerF = MF.getFunction();

  LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");

  if (Info.SwiftErrorVReg) {
    // TODO: We should handle this.
    // Note that this is also handled by the check for no outgoing arguments.
    // Proactively disabling this though, because the swifterror handling in
    // lowerCall inserts a COPY *after* the location of the call.
    LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
    return false;
  }

  if (!mayTailCallThisCC(CalleeCC)) {
    LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
    return false;
  }

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86).
  //
  // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
  // it?
  //
  // On Windows, "inreg" attributes signify non-aggregate indirect returns.
  // In this case, it is necessary to save/restore X0 in the callee. Tail
  // call opt interferes with this. So we disable tail call opt when the
  // caller has an argument with "inreg" attribute.
  //
  // FIXME: Check whether the callee also has an "inreg" argument.
  //
  // When the caller has a swifterror argument, we don't want to tail call
  // because would have to move into the swifterror register before the
  // tail call.
  if (any_of(CallerF.args(), [](const Argument &A) {
        return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
      })) {
    LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
                         "inreg, or swifterror arguments\n");
    return false;
  }

  // Externally-defined functions with weak linkage should not be
  // tail-called on AArch64 when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (Info.Callee.isGlobal()) {
    const GlobalValue *GV = Info.Callee.getGlobal();
    const Triple &TT = MF.getTarget().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
         TT.isOSBinFormatMachO())) {
      LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
                           "with weak linkage for this OS.\n");
      return false;
    }
  }

  // If we have -tailcallopt, then we're done.
  if (MF.getTarget().Options.GuaranteedTailCallOpt)
    return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();

  // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
  // Try to find cases where we can do that.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
         "Unexpected variadic calling convention");

  // Verify that the incoming and outgoing arguments from the callee are
  // safe to tail call.
  if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
    LLVM_DEBUG(
        dbgs()
        << "... Caller and callee have incompatible calling conventions.\n");
    return false;
  }

  if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
    return false;

  LLVM_DEBUG(
      dbgs() << "... Call is eligible for tail call optimization.\n");
  return true;
}

static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
                              bool IsTailCall) {
  if (!IsTailCall)
    return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;

  if (!IsIndirect)
    return AArch64::TCRETURNdi;

  // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
  // x16 or x17.
  if (CallerF.getFunction().hasFnAttribute("branch-target-enforcement"))
    return AArch64::TCRETURNriBTI;

  return AArch64::TCRETURNri;
}

bool AArch64CallLowering::lowerTailCall(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  // True when we're tail calling, but without -tailcallopt.
  bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;

  // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
  // register class. Until we can do that, we should fall back here.
  if (F.hasFnAttribute("branch-target-enforcement")) {
    LLVM_DEBUG(
        dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
    return false;
  }

  // Find out which ABI gets to decide where things go.
  CallingConv::ID CalleeCC = Info.CallConv;
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  MachineInstrBuilder CallSeqStart;
  if (!IsSibCall)
    CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Byte offset for the tail call. When we are sibcalling, this will always
  // be 0.
  MIB.addImm(0);

  // Tell the call which registers are clobbered.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0.
  int FPDiff = 0;

  // This will be 0 for sibcalls, potentially nonzero for tail calls produced
  // by -tailcallopt. For sibcalls, the memory operands for the call are
  // already available in the caller's incoming argument space.
  unsigned NumBytes = 0;
  if (!IsSibCall) {
    // We aren't sibcalling, so we need to compute FPDiff. We need to do this
    // before handling assignments, because FPDiff must be known for memory
    // arguments.
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
    SmallVector<CCValAssign, 16> OutLocs;
    CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
    analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);

    // The callee will pop the argument stack as a tail call. Thus, we must
    // keep it 16-byte aligned.
    NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();

  // Do the actual argument marshalling.
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
                             AssignFnVarArg, true, FPDiff);
  if (!handleAssignments(MIRBuilder, OutArgs, Handler))
    return false;

  if (Info.IsVarArg && Info.IsMustTailCall) {
    // Now we know what's being passed to the function. Add uses to the call for
    // the forwarded registers that we *aren't* passing as parameters. This will
    // preserve the copies we build earlier.
    for (const auto &F : Forwards) {
      Register ForwardedReg = F.PReg;
      // If the register is already passed, or aliases a register which is
      // already being passed, then skip it.
      if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
            if (!Use.isReg())
              return false;
            return TRI->regsOverlap(Use.getReg(), ForwardedReg);
          }))
        continue;

      // We aren't passing it already, so we should add it to the call.
      MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
      MIB.addReg(ForwardedReg, RegState::Implicit);
    }
  }

  // If we have -tailcallopt, we need to adjust the stack. We'll do the call
  // sequence start and end here.
  if (!IsSibCall) {
    MIB->getOperand(1).setImm(FPDiff);
    CallSeqStart.addImm(NumBytes).addImm(0);
    // End the call sequence *before* emitting the call. Normally, we would
    // tidy the frame up after the call. However, here, we've laid out the
    // parameters so that when SP is reset, they will be in the correct
    // location.
    MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
  }

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific instruction,
  // it must have a register class matching the constraint of that instruction.
  if (Info.Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
        0));

  MF.getFrameInfo().setHasTailCall();
  Info.LoweredTailCall = true;
  return true;
}

bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                    CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();

  SmallVector<ArgInfo, 8> OutArgs;
  for (auto &OrigArg : Info.OrigArgs) {
    splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
    // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
    if (OrigArg.Ty->isIntegerTy(1))
      OutArgs.back().Flags[0].setZExt();
  }

  SmallVector<ArgInfo, 8> InArgs;
  if (!Info.OrigRet.Ty->isVoidTy())
    splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());

  // If we can lower as a tail call, do that instead.
  bool CanTailCallOpt =
      isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);

  // We must emit a tail call if we have musttail.
  if (Info.IsMustTailCall && !CanTailCallOpt) {
    // There are types of incoming/outgoing arguments we can't handle yet, so
    // it doesn't make sense to actually die here like in ISelLowering. Instead,
    // fall back to SelectionDAG and let it try to handle this.
    LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
    return false;
  }

  if (CanTailCallOpt)
    return lowerTailCall(MIRBuilder, Info, OutArgs);

  // Find out which ABI gets to decide where things go.
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) =
      getAssignFnsForCC(Info.CallConv, TLI);

  MachineInstrBuilder CallSeqStart;
  CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);

  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Tell the call which registers are clobbered.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // Do the actual argument marshalling.
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
                             AssignFnVarArg, false);
  if (!handleAssignments(MIRBuilder, OutArgs, Handler))
    return false;

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.
  if (Info.Callee.isReg())
    MIB->getOperand(0).setReg(constrainOperandRegClass(
        MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
        *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
        0));

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arguments, the physical register must be an
  // implicit-define of the call instruction.
  if (!Info.OrigRet.Ty->isVoidTy()) {
    CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
    CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
    if (!handleAssignments(MIRBuilder, InArgs, Handler))
      return false;
  }

  if (Info.SwiftErrorVReg) {
    MIB.addDef(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
  }

  uint64_t CalleePopBytes =
      doesCalleeRestoreStack(Info.CallConv,
                             MF.getTarget().Options.GuaranteedTailCallOpt)
          ? alignTo(Handler.StackSize, 16)
          : 0;

  CallSeqStart.addImm(Handler.StackSize).addImm(0);
  MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
      .addImm(Handler.StackSize)
      .addImm(CalleePopBytes);

  return true;
}