Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
//=== MicroMipsSizeReduction.cpp - MicroMips size reduction pass --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///\file
/// This pass is used to reduce the size of instructions where applicable.
///
/// TODO: Implement microMIPS64 support.
//===----------------------------------------------------------------------===//
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "micromips-reduce-size"
#define MICROMIPS_SIZE_REDUCE_NAME "MicroMips instruction size reduce pass"

STATISTIC(NumReduced, "Number of instructions reduced (32-bit to 16-bit ones, "
                      "or two instructions into one");

namespace {

/// Order of operands to transfer
// TODO: Will be extended when additional optimizations are added
enum OperandTransfer {
  OT_NA,            ///< Not applicable
  OT_OperandsAll,   ///< Transfer all operands
  OT_Operands02,    ///< Transfer operands 0 and 2
  OT_Operand2,      ///< Transfer just operand 2
  OT_OperandsXOR,   ///< Transfer operands for XOR16
  OT_OperandsLwp,   ///< Transfer operands for LWP
  OT_OperandsSwp,   ///< Transfer operands for SWP
  OT_OperandsMovep, ///< Transfer operands for MOVEP
};

/// Reduction type
// TODO: Will be extended when additional optimizations are added
enum ReduceType {
  RT_TwoInstr, ///< Reduce two instructions into one instruction
  RT_OneInstr  ///< Reduce one instruction into a smaller instruction
};

// Information about immediate field restrictions
struct ImmField {
  ImmField() : ImmFieldOperand(-1), Shift(0), LBound(0), HBound(0) {}
  ImmField(uint8_t Shift, int16_t LBound, int16_t HBound,
           int8_t ImmFieldOperand)
      : ImmFieldOperand(ImmFieldOperand), Shift(Shift), LBound(LBound),
        HBound(HBound) {}
  int8_t ImmFieldOperand; // Immediate operand, -1 if it does not exist
  uint8_t Shift;          // Shift value
  int16_t LBound;         // Low bound of the immediate operand
  int16_t HBound;         // High bound of the immediate operand
};

/// Information about operands
// TODO: Will be extended when additional optimizations are added
struct OpInfo {
  OpInfo(enum OperandTransfer TransferOperands)
      : TransferOperands(TransferOperands) {}
  OpInfo() : TransferOperands(OT_NA) {}

  enum OperandTransfer
      TransferOperands; ///< Operands to transfer to the new instruction
};

// Information about opcodes
struct OpCodes {
  OpCodes(unsigned WideOpc, unsigned NarrowOpc)
      : WideOpc(WideOpc), NarrowOpc(NarrowOpc) {}

  unsigned WideOpc;   ///< Wide opcode
  unsigned NarrowOpc; ///< Narrow opcode
};

typedef struct ReduceEntryFunArgs ReduceEntryFunArgs;

/// ReduceTable - A static table with information on mapping from wide
/// opcodes to narrow
struct ReduceEntry {

  enum ReduceType eRType; ///< Reduction type
  bool (*ReduceFunction)(
      ReduceEntryFunArgs *Arguments); ///< Pointer to reduce function
  struct OpCodes Ops;                 ///< All relevant OpCodes
  struct OpInfo OpInf;                ///< Characteristics of operands
  struct ImmField Imm;                ///< Characteristics of immediate field

  ReduceEntry(enum ReduceType RType, struct OpCodes Op,
              bool (*F)(ReduceEntryFunArgs *Arguments), struct OpInfo OpInf,
              struct ImmField Imm)
      : eRType(RType), ReduceFunction(F), Ops(Op), OpInf(OpInf), Imm(Imm) {}

  unsigned NarrowOpc() const { return Ops.NarrowOpc; }
  unsigned WideOpc() const { return Ops.WideOpc; }
  int16_t LBound() const { return Imm.LBound; }
  int16_t HBound() const { return Imm.HBound; }
  uint8_t Shift() const { return Imm.Shift; }
  int8_t ImmField() const { return Imm.ImmFieldOperand; }
  enum OperandTransfer TransferOperands() const {
    return OpInf.TransferOperands;
  }
  enum ReduceType RType() const { return eRType; }

  // operator used by std::equal_range
  bool operator<(const unsigned int r) const { return (WideOpc() < r); }

  // operator used by std::equal_range
  friend bool operator<(const unsigned int r, const struct ReduceEntry &re) {
    return (r < re.WideOpc());
  }
};

// Function arguments for ReduceFunction
struct ReduceEntryFunArgs {
  MachineInstr *MI;         // Instruction
  const ReduceEntry &Entry; // Entry field
  MachineBasicBlock::instr_iterator
      &NextMII; // Iterator to next instruction in block

  ReduceEntryFunArgs(MachineInstr *argMI, const ReduceEntry &argEntry,
                     MachineBasicBlock::instr_iterator &argNextMII)
      : MI(argMI), Entry(argEntry), NextMII(argNextMII) {}
};

typedef llvm::SmallVector<ReduceEntry, 32> ReduceEntryVector;

class MicroMipsSizeReduce : public MachineFunctionPass {
public:
  static char ID;
  MicroMipsSizeReduce();

  static const MipsInstrInfo *MipsII;
  const MipsSubtarget *Subtarget;

  bool runOnMachineFunction(MachineFunction &MF) override;

  llvm::StringRef getPassName() const override {
    return "microMIPS instruction size reduction pass";
  }

private:
  /// Reduces width of instructions in the specified basic block.
  bool ReduceMBB(MachineBasicBlock &MBB);

  /// Attempts to reduce MI, returns true on success.
  bool ReduceMI(const MachineBasicBlock::instr_iterator &MII,
                MachineBasicBlock::instr_iterator &NextMII);

  // Attempts to reduce LW/SW instruction into LWSP/SWSP,
  // returns true on success.
  static bool ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce two LW/SW instructions into LWP/SWP instruction,
  // returns true on success.
  static bool ReduceXWtoXWP(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce LBU/LHU instruction into LBU16/LHU16,
  // returns true on success.
  static bool ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce SB/SH instruction into SB16/SH16,
  // returns true on success.
  static bool ReduceSXtoSX16(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce two MOVE instructions into MOVEP instruction,
  // returns true on success.
  static bool ReduceMoveToMovep(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce arithmetic instructions, returns true on success.
  static bool ReduceArithmeticInstructions(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce ADDIU into ADDIUSP instruction,
  // returns true on success.
  static bool ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce ADDIU into ADDIUR1SP instruction,
  // returns true on success.
  static bool ReduceADDIUToADDIUR1SP(ReduceEntryFunArgs *Arguments);

  // Attempts to reduce XOR into XOR16 instruction,
  // returns true on success.
  static bool ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments);

  // Changes opcode of an instruction, replaces an instruction with a
  // new one, or replaces two instructions with a new instruction
  // depending on their order i.e. if these are consecutive forward
  // or consecutive backward
  static bool ReplaceInstruction(MachineInstr *MI, const ReduceEntry &Entry,
                                 MachineInstr *MI2 = nullptr,
                                 bool ConsecutiveForward = true);

  // Table with transformation rules for each instruction.
  static ReduceEntryVector ReduceTable;
};

char MicroMipsSizeReduce::ID = 0;
const MipsInstrInfo *MicroMipsSizeReduce::MipsII;

// This table must be sorted by WideOpc as a main criterion and
// ReduceType as a sub-criterion (when wide opcodes are the same).
ReduceEntryVector MicroMipsSizeReduce::ReduceTable = {

    // ReduceType, OpCodes, ReduceFunction,
    // OpInfo(TransferOperands),
    // ImmField(Shift, LBound, HBound, ImmFieldPosition)
    {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUR1SP_MM),
     ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
    {RT_OneInstr, OpCodes(Mips::ADDiu, Mips::ADDIUSP_MM), ReduceADDIUToADDIUSP,
     OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
    {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUR1SP_MM),
     ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
    {RT_OneInstr, OpCodes(Mips::ADDiu_MM, Mips::ADDIUSP_MM),
     ReduceADDIUToADDIUSP, OpInfo(OT_Operand2), ImmField(0, 0, 0, 2)},
    {RT_OneInstr, OpCodes(Mips::ADDu, Mips::ADDU16_MM),
     ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
     ImmField(0, 0, 0, -1)},
    {RT_OneInstr, OpCodes(Mips::ADDu_MM, Mips::ADDU16_MM),
     ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
     ImmField(0, 0, 0, -1)},
    {RT_OneInstr, OpCodes(Mips::LBu, Mips::LBU16_MM), ReduceLXUtoLXU16,
     OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
    {RT_OneInstr, OpCodes(Mips::LBu_MM, Mips::LBU16_MM), ReduceLXUtoLXU16,
     OpInfo(OT_OperandsAll), ImmField(0, -1, 15, 2)},
    {RT_OneInstr, OpCodes(Mips::LEA_ADDiu, Mips::ADDIUR1SP_MM),
     ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
    {RT_OneInstr, OpCodes(Mips::LEA_ADDiu_MM, Mips::ADDIUR1SP_MM),
     ReduceADDIUToADDIUR1SP, OpInfo(OT_Operands02), ImmField(2, 0, 64, 2)},
    {RT_OneInstr, OpCodes(Mips::LHu, Mips::LHU16_MM), ReduceLXUtoLXU16,
     OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
    {RT_OneInstr, OpCodes(Mips::LHu_MM, Mips::LHU16_MM), ReduceLXUtoLXU16,
     OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
    {RT_TwoInstr, OpCodes(Mips::LW, Mips::LWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
    {RT_OneInstr, OpCodes(Mips::LW, Mips::LWSP_MM), ReduceXWtoXWSP,
     OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
    {RT_TwoInstr, OpCodes(Mips::LW16_MM, Mips::LWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
    {RT_TwoInstr, OpCodes(Mips::LW_MM, Mips::LWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsLwp), ImmField(0, -2048, 2048, 2)},
    {RT_OneInstr, OpCodes(Mips::LW_MM, Mips::LWSP_MM), ReduceXWtoXWSP,
     OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
    {RT_TwoInstr, OpCodes(Mips::MOVE16_MM, Mips::MOVEP_MM), ReduceMoveToMovep,
     OpInfo(OT_OperandsMovep), ImmField(0, 0, 0, -1)},
    {RT_OneInstr, OpCodes(Mips::SB, Mips::SB16_MM), ReduceSXtoSX16,
     OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
    {RT_OneInstr, OpCodes(Mips::SB_MM, Mips::SB16_MM), ReduceSXtoSX16,
     OpInfo(OT_OperandsAll), ImmField(0, 0, 16, 2)},
    {RT_OneInstr, OpCodes(Mips::SH, Mips::SH16_MM), ReduceSXtoSX16,
     OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
    {RT_OneInstr, OpCodes(Mips::SH_MM, Mips::SH16_MM), ReduceSXtoSX16,
     OpInfo(OT_OperandsAll), ImmField(1, 0, 16, 2)},
    {RT_OneInstr, OpCodes(Mips::SUBu, Mips::SUBU16_MM),
     ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
     ImmField(0, 0, 0, -1)},
    {RT_OneInstr, OpCodes(Mips::SUBu_MM, Mips::SUBU16_MM),
     ReduceArithmeticInstructions, OpInfo(OT_OperandsAll),
     ImmField(0, 0, 0, -1)},
    {RT_TwoInstr, OpCodes(Mips::SW, Mips::SWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
    {RT_OneInstr, OpCodes(Mips::SW, Mips::SWSP_MM), ReduceXWtoXWSP,
     OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
    {RT_TwoInstr, OpCodes(Mips::SW16_MM, Mips::SWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
    {RT_TwoInstr, OpCodes(Mips::SW_MM, Mips::SWP_MM), ReduceXWtoXWP,
     OpInfo(OT_OperandsSwp), ImmField(0, -2048, 2048, 2)},
    {RT_OneInstr, OpCodes(Mips::SW_MM, Mips::SWSP_MM), ReduceXWtoXWSP,
     OpInfo(OT_OperandsAll), ImmField(2, 0, 32, 2)},
    {RT_OneInstr, OpCodes(Mips::XOR, Mips::XOR16_MM), ReduceXORtoXOR16,
     OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)},
    {RT_OneInstr, OpCodes(Mips::XOR_MM, Mips::XOR16_MM), ReduceXORtoXOR16,
     OpInfo(OT_OperandsXOR), ImmField(0, 0, 0, -1)}};
} // end anonymous namespace

INITIALIZE_PASS(MicroMipsSizeReduce, DEBUG_TYPE, MICROMIPS_SIZE_REDUCE_NAME,
                false, false)

// Returns true if the machine operand MO is register SP.
static bool IsSP(const MachineOperand &MO) {
  if (MO.isReg() && ((MO.getReg() == Mips::SP)))
    return true;
  return false;
}

// Returns true if the machine operand MO is register $16, $17, or $2-$7.
static bool isMMThreeBitGPRegister(const MachineOperand &MO) {
  if (MO.isReg() && Mips::GPRMM16RegClass.contains(MO.getReg()))
    return true;
  return false;
}

// Returns true if the machine operand MO is register $0, $17, or $2-$7.
static bool isMMSourceRegister(const MachineOperand &MO) {
  if (MO.isReg() && Mips::GPRMM16ZeroRegClass.contains(MO.getReg()))
    return true;
  return false;
}

// Returns true if the operand Op is an immediate value
// and writes the immediate value into variable Imm.
static bool GetImm(MachineInstr *MI, unsigned Op, int64_t &Imm) {

  if (!MI->getOperand(Op).isImm())
    return false;
  Imm = MI->getOperand(Op).getImm();
  return true;
}

// Returns true if the value is a valid immediate for ADDIUSP.
static bool AddiuspImmValue(int64_t Value) {
  int64_t Value2 = Value >> 2;
  if (((Value & (int64_t)maskTrailingZeros<uint64_t>(2)) == Value) &&
      ((Value2 >= 2 && Value2 <= 257) || (Value2 >= -258 && Value2 <= -3)))
    return true;
  return false;
}

// Returns true if the variable Value has the number of least-significant zero
// bits equal to Shift and if the shifted value is between the bounds.
static bool InRange(int64_t Value, unsigned short Shift, int LBound,
                    int HBound) {
  int64_t Value2 = Value >> Shift;
  if (((Value & (int64_t)maskTrailingZeros<uint64_t>(Shift)) == Value) &&
      (Value2 >= LBound) && (Value2 < HBound))
    return true;
  return false;
}

// Returns true if immediate operand is in range.
static bool ImmInRange(MachineInstr *MI, const ReduceEntry &Entry) {

  int64_t offset;

  if (!GetImm(MI, Entry.ImmField(), offset))
    return false;

  if (!InRange(offset, Entry.Shift(), Entry.LBound(), Entry.HBound()))
    return false;

  return true;
}

// Returns true if MI can be reduced to lwp/swp instruction
static bool CheckXWPInstr(MachineInstr *MI, bool ReduceToLwp,
                          const ReduceEntry &Entry) {

  if (ReduceToLwp &&
      !(MI->getOpcode() == Mips::LW || MI->getOpcode() == Mips::LW_MM ||
        MI->getOpcode() == Mips::LW16_MM))
    return false;

  if (!ReduceToLwp &&
      !(MI->getOpcode() == Mips::SW || MI->getOpcode() == Mips::SW_MM ||
        MI->getOpcode() == Mips::SW16_MM))
    return false;

  Register reg = MI->getOperand(0).getReg();
  if (reg == Mips::RA)
    return false;

  if (!ImmInRange(MI, Entry))
    return false;

  if (ReduceToLwp && (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
    return false;

  return true;
}

// Returns true if the registers Reg1 and Reg2 are consecutive
static bool ConsecutiveRegisters(unsigned Reg1, unsigned Reg2) {
  constexpr std::array<unsigned, 31> Registers = {
      {Mips::AT, Mips::V0, Mips::V1, Mips::A0, Mips::A1, Mips::A2, Mips::A3,
       Mips::T0, Mips::T1, Mips::T2, Mips::T3, Mips::T4, Mips::T5, Mips::T6,
       Mips::T7, Mips::S0, Mips::S1, Mips::S2, Mips::S3, Mips::S4, Mips::S5,
       Mips::S6, Mips::S7, Mips::T8, Mips::T9, Mips::K0, Mips::K1, Mips::GP,
       Mips::SP, Mips::FP, Mips::RA}};

  for (uint8_t i = 0; i < Registers.size() - 1; i++) {
    if (Registers[i] == Reg1) {
      if (Registers[i + 1] == Reg2)
        return true;
      else
        return false;
    }
  }
  return false;
}

// Returns true if registers and offsets are consecutive
static bool ConsecutiveInstr(MachineInstr *MI1, MachineInstr *MI2) {

  int64_t Offset1, Offset2;
  if (!GetImm(MI1, 2, Offset1))
    return false;
  if (!GetImm(MI2, 2, Offset2))
    return false;

  Register Reg1 = MI1->getOperand(0).getReg();
  Register Reg2 = MI2->getOperand(0).getReg();

  return ((Offset1 == (Offset2 - 4)) && (ConsecutiveRegisters(Reg1, Reg2)));
}

MicroMipsSizeReduce::MicroMipsSizeReduce() : MachineFunctionPass(ID) {}

bool MicroMipsSizeReduce::ReduceMI(const MachineBasicBlock::instr_iterator &MII,
                                   MachineBasicBlock::instr_iterator &NextMII) {

  MachineInstr *MI = &*MII;
  unsigned Opcode = MI->getOpcode();

  // Search the table.
  ReduceEntryVector::const_iterator Start = std::begin(ReduceTable);
  ReduceEntryVector::const_iterator End = std::end(ReduceTable);

  std::pair<ReduceEntryVector::const_iterator,
            ReduceEntryVector::const_iterator>
      Range = std::equal_range(Start, End, Opcode);

  if (Range.first == Range.second)
    return false;

  for (ReduceEntryVector::const_iterator Entry = Range.first;
       Entry != Range.second; ++Entry) {
    ReduceEntryFunArgs Arguments(&(*MII), *Entry, NextMII);
    if (((*Entry).ReduceFunction)(&Arguments))
      return true;
  }
  return false;
}

bool MicroMipsSizeReduce::ReduceXWtoXWSP(ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!ImmInRange(MI, Entry))
    return false;

  if (!IsSP(MI->getOperand(1)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceXWtoXWP(ReduceEntryFunArgs *Arguments) {

  const ReduceEntry &Entry = Arguments->Entry;
  MachineBasicBlock::instr_iterator &NextMII = Arguments->NextMII;
  const MachineBasicBlock::instr_iterator &E =
      Arguments->MI->getParent()->instr_end();

  if (NextMII == E)
    return false;

  MachineInstr *MI1 = Arguments->MI;
  MachineInstr *MI2 = &*NextMII;

  // ReduceToLwp = true/false - reduce to LWP/SWP instruction
  bool ReduceToLwp = (MI1->getOpcode() == Mips::LW) ||
                     (MI1->getOpcode() == Mips::LW_MM) ||
                     (MI1->getOpcode() == Mips::LW16_MM);

  if (!CheckXWPInstr(MI1, ReduceToLwp, Entry))
    return false;

  if (!CheckXWPInstr(MI2, ReduceToLwp, Entry))
    return false;

  Register Reg1 = MI1->getOperand(1).getReg();
  Register Reg2 = MI2->getOperand(1).getReg();

  if (Reg1 != Reg2)
    return false;

  bool ConsecutiveForward = ConsecutiveInstr(MI1, MI2);
  bool ConsecutiveBackward = ConsecutiveInstr(MI2, MI1);

  if (!(ConsecutiveForward || ConsecutiveBackward))
    return false;

  NextMII = std::next(NextMII);
  return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward);
}

bool MicroMipsSizeReduce::ReduceArithmeticInstructions(
    ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
      !isMMThreeBitGPRegister(MI->getOperand(1)) ||
      !isMMThreeBitGPRegister(MI->getOperand(2)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceADDIUToADDIUR1SP(
    ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!ImmInRange(MI, Entry))
    return false;

  if (!isMMThreeBitGPRegister(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceADDIUToADDIUSP(ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  int64_t ImmValue;
  if (!GetImm(MI, Entry.ImmField(), ImmValue))
    return false;

  if (!AddiuspImmValue(ImmValue))
    return false;

  if (!IsSP(MI->getOperand(0)) || !IsSP(MI->getOperand(1)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceLXUtoLXU16(ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!ImmInRange(MI, Entry))
    return false;

  if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
      !isMMThreeBitGPRegister(MI->getOperand(1)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceSXtoSX16(ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!ImmInRange(MI, Entry))
    return false;

  if (!isMMSourceRegister(MI->getOperand(0)) ||
      !isMMThreeBitGPRegister(MI->getOperand(1)))
    return false;

  return ReplaceInstruction(MI, Entry);
}

// Returns true if Reg can be a source register
// of MOVEP instruction
static bool IsMovepSrcRegister(unsigned Reg) {

  if (Reg == Mips::ZERO || Reg == Mips::V0 || Reg == Mips::V1 ||
      Reg == Mips::S0 || Reg == Mips::S1 || Reg == Mips::S2 ||
      Reg == Mips::S3 || Reg == Mips::S4)
    return true;

  return false;
}

// Returns true if Reg can be a destination register
// of MOVEP instruction
static bool IsMovepDestinationReg(unsigned Reg) {

  if (Reg == Mips::A0 || Reg == Mips::A1 || Reg == Mips::A2 ||
      Reg == Mips::A3 || Reg == Mips::S5 || Reg == Mips::S6)
    return true;

  return false;
}

// Returns true if the registers can be a pair of destination
// registers in MOVEP instruction
static bool IsMovepDestinationRegPair(unsigned R0, unsigned R1) {

  if ((R0 == Mips::A0 && R1 == Mips::S5) ||
      (R0 == Mips::A0 && R1 == Mips::S6) ||
      (R0 == Mips::A0 && R1 == Mips::A1) ||
      (R0 == Mips::A0 && R1 == Mips::A2) ||
      (R0 == Mips::A0 && R1 == Mips::A3) ||
      (R0 == Mips::A1 && R1 == Mips::A2) ||
      (R0 == Mips::A1 && R1 == Mips::A3) ||
      (R0 == Mips::A2 && R1 == Mips::A3))
    return true;

  return false;
}

bool MicroMipsSizeReduce::ReduceMoveToMovep(ReduceEntryFunArgs *Arguments) {

  const ReduceEntry &Entry = Arguments->Entry;
  MachineBasicBlock::instr_iterator &NextMII = Arguments->NextMII;
  const MachineBasicBlock::instr_iterator &E =
      Arguments->MI->getParent()->instr_end();

  if (NextMII == E)
    return false;

  MachineInstr *MI1 = Arguments->MI;
  MachineInstr *MI2 = &*NextMII;

  Register RegDstMI1 = MI1->getOperand(0).getReg();
  Register RegSrcMI1 = MI1->getOperand(1).getReg();

  if (!IsMovepSrcRegister(RegSrcMI1))
    return false;

  if (!IsMovepDestinationReg(RegDstMI1))
    return false;

  if (MI2->getOpcode() != Entry.WideOpc())
    return false;

  Register RegDstMI2 = MI2->getOperand(0).getReg();
  Register RegSrcMI2 = MI2->getOperand(1).getReg();

  if (!IsMovepSrcRegister(RegSrcMI2))
    return false;

  bool ConsecutiveForward;
  if (IsMovepDestinationRegPair(RegDstMI1, RegDstMI2)) {
    ConsecutiveForward = true;
  } else if (IsMovepDestinationRegPair(RegDstMI2, RegDstMI1)) {
    ConsecutiveForward = false;
  } else
    return false;

  NextMII = std::next(NextMII);
  return ReplaceInstruction(MI1, Entry, MI2, ConsecutiveForward);
}

bool MicroMipsSizeReduce::ReduceXORtoXOR16(ReduceEntryFunArgs *Arguments) {

  MachineInstr *MI = Arguments->MI;
  const ReduceEntry &Entry = Arguments->Entry;

  if (!isMMThreeBitGPRegister(MI->getOperand(0)) ||
      !isMMThreeBitGPRegister(MI->getOperand(1)) ||
      !isMMThreeBitGPRegister(MI->getOperand(2)))
    return false;

  if (!(MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) &&
      !(MI->getOperand(0).getReg() == MI->getOperand(1).getReg()))
    return false;

  return ReplaceInstruction(MI, Entry);
}

bool MicroMipsSizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
  bool Modified = false;
  MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),
                                    E = MBB.instr_end();
  MachineBasicBlock::instr_iterator NextMII;

  // Iterate through the instructions in the basic block
  for (; MII != E; MII = NextMII) {
    NextMII = std::next(MII);
    MachineInstr *MI = &*MII;

    // Don't reduce bundled instructions or pseudo operations
    if (MI->isBundle() || MI->isTransient())
      continue;

    // Try to reduce 32-bit instruction into 16-bit instruction
    Modified |= ReduceMI(MII, NextMII);
  }

  return Modified;
}

bool MicroMipsSizeReduce::ReplaceInstruction(MachineInstr *MI,
                                             const ReduceEntry &Entry,
                                             MachineInstr *MI2,
                                             bool ConsecutiveForward) {

  enum OperandTransfer OpTransfer = Entry.TransferOperands();

  LLVM_DEBUG(dbgs() << "Converting 32-bit: " << *MI);
  ++NumReduced;

  if (OpTransfer == OT_OperandsAll) {
    MI->setDesc(MipsII->get(Entry.NarrowOpc()));
    LLVM_DEBUG(dbgs() << "       to 16-bit: " << *MI);
    return true;
  } else {
    MachineBasicBlock &MBB = *MI->getParent();
    const MCInstrDesc &NewMCID = MipsII->get(Entry.NarrowOpc());
    DebugLoc dl = MI->getDebugLoc();
    MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
    switch (OpTransfer) {
    case OT_Operand2:
      MIB.add(MI->getOperand(2));
      break;
    case OT_Operands02: {
      MIB.add(MI->getOperand(0));
      MIB.add(MI->getOperand(2));
      break;
    }
    case OT_OperandsXOR: {
      if (MI->getOperand(0).getReg() == MI->getOperand(2).getReg()) {
        MIB.add(MI->getOperand(0));
        MIB.add(MI->getOperand(1));
        MIB.add(MI->getOperand(2));
      } else {
        MIB.add(MI->getOperand(0));
        MIB.add(MI->getOperand(2));
        MIB.add(MI->getOperand(1));
      }
      break;
    }
    case OT_OperandsMovep:
    case OT_OperandsLwp:
    case OT_OperandsSwp: {
      if (ConsecutiveForward) {
        MIB.add(MI->getOperand(0));
        MIB.add(MI2->getOperand(0));
        MIB.add(MI->getOperand(1));
        if (OpTransfer == OT_OperandsMovep)
          MIB.add(MI2->getOperand(1));
        else
          MIB.add(MI->getOperand(2));
      } else { // consecutive backward
        MIB.add(MI2->getOperand(0));
        MIB.add(MI->getOperand(0));
        MIB.add(MI2->getOperand(1));
        if (OpTransfer == OT_OperandsMovep)
          MIB.add(MI->getOperand(1));
        else
          MIB.add(MI2->getOperand(2));
      }

      LLVM_DEBUG(dbgs() << "and converting 32-bit: " << *MI2
                        << "       to: " << *MIB);

      MBB.erase_instr(MI);
      MBB.erase_instr(MI2);
      return true;
    }
    default:
      llvm_unreachable("Unknown operand transfer!");
    }

    // Transfer MI flags.
    MIB.setMIFlags(MI->getFlags());

    LLVM_DEBUG(dbgs() << "       to 16-bit: " << *MIB);
    MBB.erase_instr(MI);
    return true;
  }
  return false;
}

bool MicroMipsSizeReduce::runOnMachineFunction(MachineFunction &MF) {

  Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());

  // TODO: Add support for the subtarget microMIPS32R6.
  if (!Subtarget->inMicroMipsMode() || !Subtarget->hasMips32r2() ||
      Subtarget->hasMips32r6())
    return false;

  MipsII = static_cast<const MipsInstrInfo *>(Subtarget->getInstrInfo());

  bool Modified = false;
  MachineFunction::iterator I = MF.begin(), E = MF.end();

  for (; I != E; ++I)
    Modified |= ReduceMBB(*I);
  return Modified;
}

/// Returns an instance of the MicroMips size reduction pass.
FunctionPass *llvm::createMicroMipsSizeReducePass() {
  return new MicroMipsSizeReduce();
}