Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
//===-- RISCVInstrInfoV.td - RISC-V 'V' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file describes the RISC-V instructions from the standard 'V' Vector
/// extension, version 0.8.
/// This version is still experimental as the 'V' extension hasn't been
/// ratified yet.
///
//===----------------------------------------------------------------------===//

include "RISCVInstrFormatsV.td"

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

def VTypeIAsmOperand : AsmOperandClass {
  let Name = "VTypeI";
  let ParserMethod = "parseVTypeI";
  let DiagnosticType = "InvalidVTypeI";
}

def VTypeIOp : Operand<XLenVT> {
  let ParserMatchClass = VTypeIAsmOperand;
  let PrintMethod = "printVTypeI";
  let DecoderMethod = "decodeUImmOperand<11>";
}

def VRegAsmOperand : AsmOperandClass {
  let Name = "RVVRegOpOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isReg";
  let ParserMethod = "parseRegister";
}

def VRegOp : RegisterOperand<VR> {
  let ParserMatchClass = VRegAsmOperand;
  let PrintMethod = "printOperand";
}

def VMaskAsmOperand : AsmOperandClass {
  let Name = "RVVMaskRegOpOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isV0Reg";
  let ParserMethod = "parseMaskReg";
  let IsOptional = 1;
  let DefaultMethod = "defaultMaskRegOp";
  let DiagnosticType = "InvalidVMaskRegister";
}

def VMaskOp : RegisterOperand<VMV0> {
  let ParserMatchClass = VMaskAsmOperand;
  let PrintMethod = "printVMaskReg";
  let EncoderMethod = "getVMaskReg";
  let DecoderMethod = "decodeVMaskReg";
}

def simm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<5>(Imm);}]> {
  let ParserMatchClass = SImmAsmOperand<5>;
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeSImmOperand<5>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<5>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

def SImm5Plus1AsmOperand : AsmOperandClass {
  let Name = "SImm5Plus1";
  let RenderMethod = "addSImm5Plus1Operands";
  let DiagnosticType = "InvalidSImm5Plus1";
}

def simm5_plus1 : Operand<XLenVT>, ImmLeaf<XLenVT,
                                           [{return isInt<5>(Imm - 1);}]> {
  let ParserMatchClass = SImm5Plus1AsmOperand;
  let PrintMethod = "printSImm5Plus1";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<5>(Imm - 1);
    return MCOp.isBareSymbolRef();
  }];
}

//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
// load vd, (rs1), vm
class VUnitStrideLoad<RISCVMOP mop, RISCVLSUMOP lumop, RISCVWidth width,
                        string opcodestr>
    : RVInstVLU<0b000, mop, lumop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, VMaskOp:$vm), opcodestr, "$vd, (${rs1})$vm">;

// load vd, (rs1), rs2, vm
class VStridedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVLS<0b000, mop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, GPR:$rs2, VMaskOp:$vm), opcodestr,
                "$vd, (${rs1}), $rs2$vm">;

// load vd, (rs1), vs2, vm
class VIndexedLoad<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVLX<0b000, mop, width, (outs VRegOp:$vd),
                (ins GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm), opcodestr,
                "$vd, (${rs1}), $vs2$vm">;

// vl<nf>r.v vd, (rs1)
class VWholeLoad<bits<3> nf, string opcodestr>
    : RVInstVLU<nf, MOPLDUnitStrideU, LUMOPUnitStrideWholeReg,
                LSWidthVSEW, (outs VRegOp:$vd), (ins GPR:$rs1),
                opcodestr, "$vd, (${rs1})"> {
  let vm = 1;
  let Uses = [];
}
} // hasSideEffects = 0, mayLoad = 1, mayStore = 0

let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
// store vd, vs3, (rs1), vm
class VUnitStrideStore<RISCVMOP mop, RISCVLSUMOP sumop, RISCVWidth width,
                         string opcodestr>
    : RVInstVSU<0b000, mop, sumop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, VMaskOp:$vm), opcodestr,
                "$vs3, (${rs1})$vm">;

// store vd, vs3, (rs1), rs2, vm
class VStridedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVSS<0b000, mop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, GPR:$rs2, VMaskOp:$vm),
                opcodestr, "$vs3, (${rs1}), $rs2$vm">;

// store vd, vs3, (rs1), vs2, vm
class VIndexedStore<RISCVMOP mop, RISCVWidth width, string opcodestr>
    : RVInstVSX<0b000, mop, width, (outs),
                (ins VRegOp:$vs3, GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vs3, (${rs1}), $vs2$vm">;

// vs<nf>r.v vd, (rs1)
class VWholeStore<bits<3> nf, string opcodestr>
    : RVInstVSU<nf, MOPSTUnitStride, SUMOPUnitStrideWholeReg,
                LSWidthVSEW, (outs), (ins VRegOp:$vs3, GPR:$rs1),
                opcodestr, "$vs3, (${rs1})"> {
  let vm = 1;
  let Uses = [];
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 1

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// op vd, vs2, vs1, vm
class VALUVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, VRegOp:$vs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $vs1$vm">;

// op vd, vs2, vs1, v0 (without mask, use v0 as carry input)
class VALUmVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, VRegOp:$vs1, VMV0:$v0),
                opcodestr, "$vd, $vs2, $vs1, v0"> {
  let vm = 0;
}

// op vd, vs1, vs2, vm (reverse the order of vs1 and vs2)
class VALUrVV<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $vs1, $vs2$vm">;

// op vd, vs1, vs2
class VALUVVNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVV<funct6, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, VRegOp:$vs1),
               opcodestr, "$vd, $vs2, $vs1"> {
  let vm = 1;
}

// op vd, vs2, rs1, vm
class VALUVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, GPR:$rs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $rs1$vm">;

// op vd, vs2, rs1, v0 (without mask, use v0 as carry input)
class VALUmVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, GPR:$rs1, VMV0:$v0),
                opcodestr, "$vd, $vs2, $rs1, v0"> {
  let vm = 0;
}

// op vd, rs1, vs2, vm (reverse the order of rs1 and vs2)
class VALUrVX<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins GPR:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $rs1, $vs2$vm">;

// op vd, vs1, vs2
class VALUVXNoVm<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, GPR:$rs1),
               opcodestr, "$vd, $vs2, $rs1"> {
  let vm = 1;
}

// op vd, vs2, imm, vm
class VALUVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $imm$vm">;

// op vd, vs2, imm, v0 (without mask, use v0 as carry input)
class VALUmVI<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm, VMV0:$v0),
                opcodestr, "$vd, $vs2, $imm, v0"> {
  let vm = 0;
}

// op vd, vs2, imm, vm
class VALUVINoVm<bits<6> funct6, string opcodestr, Operand optype = simm5>
    : RVInstIVI<funct6, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, optype:$imm),
                opcodestr, "$vd, $vs2, $imm"> {
  let vm = 1;
}

// op vd, vs2, rs1, vm (Float)
class VALUVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins VRegOp:$vs2, FPR32:$rs1, VMaskOp:$vm),
                opcodestr, "$vd, $vs2, $rs1$vm">;

// op vd, rs1, vs2, vm (Float) (with mask, reverse the order of rs1 and vs2)
class VALUrVF<bits<6> funct6, RISCVVFormat opv, string opcodestr>
    : RVInstVX<funct6, opv, (outs VRegOp:$vd),
                (ins FPR32:$rs1, VRegOp:$vs2, VMaskOp:$vm),
                opcodestr, "$vd, $rs1, $vs2$vm">;

// op vd, vs2, vm (use vs1 as instruction encoding)
class VALUVs2<bits<6> funct6, bits<5> vs1, RISCVVFormat opv, string opcodestr>
    : RVInstV<funct6, vs1, opv, (outs VRegOp:$vd),
               (ins VRegOp:$vs2, VMaskOp:$vm),
               opcodestr, "$vd, $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

//===----------------------------------------------------------------------===//
// Combination of instruction classes.
// Use these multiclasses to define instructions more easily.
//===----------------------------------------------------------------------===//
multiclass VALU_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>;
}

multiclass VALU_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V  : VALUVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_IV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPIVV, opcodestr # "." # vw # "v">;
  def X : VALUrVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_IV_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5, string vw = "v"> {
  def X  : VALUVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
  def I  : VALUVI<funct6, opcodestr # "." # vw # "i", optype>;
}

multiclass VALU_IV_V<string opcodestr, bits<6> funct6> {
  def _VS  : VALUVV<funct6, OPIVV, opcodestr # ".vs">;
}

multiclass VALUr_IV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X : VALUrVX<funct6, OPIVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUVV<funct6, OPMVV, opcodestr # "." # vw # "v">;
  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_V<string opcodestr, bits<6> funct6> {
  def _VS : VALUVV<funct6, OPMVV, opcodestr # ".vs">;
}

multiclass VALU_MV_Mask<string opcodestr, bits<6> funct6, string vm = "v"> {
  def M : VALUVVNoVm<funct6, OPMVV, opcodestr # "." # vm # "m">;
}

multiclass VALU_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X  : VALUVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_MV_V_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPMVV, opcodestr # "." # vw # "v">;
  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALUr_MV_X<string opcodestr, bits<6> funct6, string vw = "v"> {
  def X : VALUrVX<funct6, OPMVX, opcodestr # "." # vw # "x">;
}

multiclass VALU_MV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
  def "" : VALUVs2<funct6, vs1, OPMVV, opcodestr>;
}

multiclass VALUm_IV_V_X_I<string opcodestr, bits<6> funct6> {
  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">;
  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">;
  def IM : VALUmVI<funct6, opcodestr # ".vim">;
}

multiclass VALUm_IV_V_X<string opcodestr, bits<6> funct6> {
  def VM : VALUmVV<funct6, OPIVV, opcodestr # ".vvm">;
  def XM : VALUmVX<funct6, OPIVX, opcodestr # ".vxm">;
}

multiclass VALUNoVm_IV_V_X_I<string opcodestr, bits<6> funct6, Operand optype = simm5> {
  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">;
  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">;
  def I : VALUVINoVm<funct6, opcodestr # ".vi", optype>;
}

multiclass VALUNoVm_IV_V_X<string opcodestr, bits<6> funct6> {
  def V : VALUVVNoVm<funct6, OPIVV, opcodestr # ".vv">;
  def X : VALUVXNoVm<funct6, OPIVX, opcodestr # ".vx">;
}

multiclass VALU_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUVV<funct6, OPFVV, opcodestr # "." # vw # "v">;
  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALU_FV_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def F : VALUVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALUr_FV_V_F<string opcodestr, bits<6> funct6, string vw = "v"> {
  def V : VALUrVV<funct6, OPFVV, opcodestr # "." # vw # "v">;
  def F : VALUrVF<funct6, OPFVF, opcodestr # "." # vw # "f">;
}

multiclass VALU_FV_V<string opcodestr, bits<6> funct6> {
  def _VS : VALUVV<funct6, OPFVV, opcodestr # ".vs">;
}

multiclass VALU_FV_VS2<string opcodestr, bits<6> funct6, bits<5> vs1> {
  def "" : VALUVs2<funct6, vs1, OPFVV, opcodestr>;
}

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let Predicates = [HasStdExtV] in {
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def VSETVLI : RVInstSetVLi<(outs GPR:$rd), (ins GPR:$rs1, VTypeIOp:$vtypei),
                           "vsetvli", "$rd, $rs1, $vtypei">;

def VSETVL : RVInstSetVL<(outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
                         "vsetvl", "$rd, $rs1, $rs2">;
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0

// Vector Unit-Stride Instructions
def VLB_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVByte, "vlb.v">;
def VLH_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVHalf, "vlh.v">;
def VLW_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStride, LSWidthVWord, "vlw.v">;

def VLBU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVByte, "vlbu.v">;
def VLHU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVHalf, "vlhu.v">;
def VLWU_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVWord, "vlwu.v">;

def VLE_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStride, LSWidthVSEW, "vle.v">;

def VLBFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVByte, "vlbff.v">;
def VLHFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVHalf, "vlhff.v">;
def VLWFF_V : VUnitStrideLoad<MOPLDUnitStrideS, LUMOPUnitStrideFF, LSWidthVWord, "vlwff.v">;

def VLBUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVByte, "vlbuff.v">;
def VLHUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVHalf, "vlhuff.v">;
def VLWUFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVWord, "vlwuff.v">;

def VLEFF_V : VUnitStrideLoad<MOPLDUnitStrideU, LUMOPUnitStrideFF, LSWidthVSEW, "vleff.v">;

def VSB_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVByte, "vsb.v">;
def VSH_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVHalf, "vsh.v">;
def VSW_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVWord, "vsw.v">;

def VSE_V : VUnitStrideStore<MOPSTUnitStride, SUMOPUnitStride, LSWidthVSEW, "vse.v">;

// Vector Strided Instructions
def VLSB_V : VStridedLoad<MOPLDStridedS, LSWidthVByte, "vlsb.v">;
def VLSH_V : VStridedLoad<MOPLDStridedS, LSWidthVHalf, "vlsh.v">;
def VLSW_V : VStridedLoad<MOPLDStridedS, LSWidthVWord, "vlsw.v">;

def VLSBU_V : VStridedLoad<MOPLDStridedU, LSWidthVByte, "vlsbu.v">;
def VLSHU_V : VStridedLoad<MOPLDStridedU, LSWidthVHalf, "vlshu.v">;
def VLSWU_V : VStridedLoad<MOPLDStridedU, LSWidthVWord, "vlswu.v">;

def VLSE_V : VStridedLoad<MOPLDStridedU, LSWidthVSEW, "vlse.v">;

def VSSB_V : VStridedStore<MOPSTStrided, LSWidthVByte, "vssb.v">;
def VSSH_V : VStridedStore<MOPSTStrided, LSWidthVHalf, "vssh.v">;
def VSSW_V : VStridedStore<MOPSTStrided, LSWidthVWord, "vssw.v">;
def VSSE_V : VStridedStore<MOPSTStrided, LSWidthVSEW, "vsse.v">;

// Vector Indexed Instructions
def VLXB_V : VIndexedLoad<MOPLDIndexedS, LSWidthVByte, "vlxb.v">;
def VLXH_V : VIndexedLoad<MOPLDIndexedS, LSWidthVHalf, "vlxh.v">;
def VLXW_V : VIndexedLoad<MOPLDIndexedS, LSWidthVWord, "vlxw.v">;

def VLXBU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVByte, "vlxbu.v">;
def VLXHU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVHalf, "vlxhu.v">;
def VLXWU_V : VIndexedLoad<MOPLDIndexedU, LSWidthVWord, "vlxwu.v">;

def VLXE_V : VIndexedLoad<MOPLDIndexedU, LSWidthVSEW, "vlxe.v">;

def VSXB_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVByte, "vsxb.v">;
def VSXH_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVHalf, "vsxh.v">;
def VSXW_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVWord, "vsxw.v">;
def VSXE_V : VIndexedStore<MOPSTIndexedOrder, LSWidthVSEW, "vsxe.v">;

def VSUXB_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVByte, "vsuxb.v">;
def VSUXH_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVHalf, "vsuxh.v">;
def VSUXW_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVWord, "vsuxw.v">;
def VSUXE_V : VIndexedStore<MOPSTIndexedUnOrd, LSWidthVSEW, "vsuxe.v">;

def VL1R_V : VWholeLoad<0, "vl1r.v">;
def VS1R_V : VWholeStore<0, "vs1r.v">;

// Vector Single-Width Integer Add and Subtract
defm VADD_V : VALU_IV_V_X_I<"vadd", 0b000000>;
defm VSUB_V : VALU_IV_V_X<"vsub", 0b000010>;
defm VRSUB_V : VALU_IV_X_I<"vrsub", 0b000011>;

// Vector Widening Integer Add/Subtract
// Refer to 11.2 Widening Vector Arithmetic Instructions
// The destination vector register group cannot overlap a source vector
// register group of a different element width (including the mask register
// if masked), otherwise an illegal instruction exception is raised.
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VWADDU_V : VALU_MV_V_X<"vwaddu", 0b110000>;
defm VWSUBU_V : VALU_MV_V_X<"vwsubu", 0b110010>;
defm VWADD_V : VALU_MV_V_X<"vwadd", 0b110001>;
defm VWSUB_V : VALU_MV_V_X<"vwsub", 0b110011>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VWADDU_W : VALU_MV_V_X<"vwaddu", 0b110100, "w">;
defm VWSUBU_W : VALU_MV_V_X<"vwsubu", 0b110110, "w">;
defm VWADD_W : VALU_MV_V_X<"vwadd", 0b110101, "w">;
defm VWSUB_W : VALU_MV_V_X<"vwsub", 0b110111, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"

def : InstAlias<"vwcvt.x.x.v $vd, $vs$vm",
                (VWADD_VX VRegOp:$vd, VRegOp:$vs, X0, VMaskOp:$vm)>;
def : InstAlias<"vwcvtu.x.x.v $vd, $vs$vm",
                (VWADDU_VX VRegOp:$vd, VRegOp:$vs, X0, VMaskOp:$vm)>;

// Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
defm VADC_V : VALUm_IV_V_X_I<"vadc", 0b010000>;
defm VMADC_V : VALUm_IV_V_X_I<"vmadc", 0b010001>;
defm VMADC_V : VALUNoVm_IV_V_X_I<"vmadc", 0b010001>;
defm VSBC_V : VALUm_IV_V_X<"vsbc", 0b010010>;
defm VMSBC_V : VALUm_IV_V_X<"vmsbc", 0b010011>;
defm VMSBC_V : VALUNoVm_IV_V_X<"vmsbc", 0b010011>;

// Vector Bitwise Logical Instructions
defm VAND_V : VALU_IV_V_X_I<"vand", 0b001001>;
defm VOR_V : VALU_IV_V_X_I<"vor", 0b001010>;
defm VXOR_V : VALU_IV_V_X_I<"vxor", 0b001011>;

def : InstAlias<"vnot.v $vd, $vs$vm",
                (VXOR_VI VRegOp:$vd, VRegOp:$vs, -1, VMaskOp:$vm)>;

// Vector Single-Width Bit Shift Instructions
defm VSLL_V : VALU_IV_V_X_I<"vsll", 0b100101, uimm5>;
defm VSRL_V : VALU_IV_V_X_I<"vsrl", 0b101000, uimm5>;
defm VSRA_V : VALU_IV_V_X_I<"vsra", 0b101001, uimm5>;

// Vector Narrowing Integer Right Shift Instructions
// Refer to 11.3. Narrowing Vector Arithmetic Instructions
// The destination vector register group cannot overlap the first source
// vector register group (specified by vs2). The destination vector register
// group cannot overlap the mask register if used, unless LMUL=1.
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VNSRL_W : VALU_IV_V_X_I<"vnsrl", 0b101100, uimm5, "w">;
defm VNSRA_W : VALU_IV_V_X_I<"vnsra", 0b101101, uimm5, "w">;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Integer Comparison Instructions
defm VMSEQ_V : VALU_IV_V_X_I<"vmseq", 0b011000>;
defm VMSNE_V : VALU_IV_V_X_I<"vmsne", 0b011001>;
defm VMSLTU_V : VALU_IV_V_X<"vmsltu", 0b011010>;
defm VMSLT_V : VALU_IV_V_X<"vmslt", 0b011011>;
defm VMSLEU_V : VALU_IV_V_X_I<"vmsleu", 0b011100>;
defm VMSLE_V : VALU_IV_V_X_I<"vmsle", 0b011101>;
defm VMSGTU_V : VALU_IV_X_I<"vmsgtu", 0b011110>;
defm VMSGT_V : VALU_IV_X_I<"vmsgt", 0b011111>;

def : InstAlias<"vmsgtu.vv $vd, $va, $vb$vm",
                (VMSLTU_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgt.vv $vd, $va, $vb$vm",
                (VMSLT_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsgeu.vv $vd, $va, $vb$vm",
                (VMSLEU_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsge.vv $vd, $va, $vb$vm",
                (VMSLE_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmsltu.vi $vd, $va, $imm$vm",
                (VMSLEU_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmslt.vi $vd, $va, $imm$vm",
                (VMSLE_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmsgeu.vi $vd, $va, $imm$vm",
                (VMSGTU_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;
def : InstAlias<"vmsge.vi $vd, $va, $imm$vm",
                (VMSGT_VI VRegOp:$vd, VRegOp:$va, simm5_plus1:$imm,
                 VMaskOp:$vm), 0>;

// Vector Integer Min/Max Instructions
defm VMINU_V : VALU_IV_V_X<"vminu", 0b000100>;
defm VMIN_V : VALU_IV_V_X<"vmin", 0b000101>;
defm VMAXU_V : VALU_IV_V_X<"vmaxu", 0b000110>;
defm VMAX_V : VALU_IV_V_X<"vmax", 0b000111>;

// Vector Single-Width Integer Multiply Instructions
defm VMUL_V : VALU_MV_V_X<"vmul", 0b100101>;
defm VMULH_V : VALU_MV_V_X<"vmulh", 0b100111>;
defm VMULHU_V : VALU_MV_V_X<"vmulhu", 0b100100>;
defm VMULHSU_V : VALU_MV_V_X<"vmulhsu", 0b100110>;

// Vector Integer Divide Instructions
defm VDIVU_V : VALU_MV_V_X<"vdivu", 0b100000>;
defm VDIV_V : VALU_MV_V_X<"vdiv", 0b100001>;
defm VREMU_V : VALU_MV_V_X<"vremu", 0b100010>;
defm VREM_V : VALU_MV_V_X<"vrem", 0b100011>;

// Vector Widening Integer Multiply Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMUL_V : VALU_MV_V_X<"vwmul", 0b111011>;
defm VWMULU_V : VALU_MV_V_X<"vwmulu", 0b111000>;
defm VWMULSU_V : VALU_MV_V_X<"vwmulsu", 0b111010>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Single-Width Integer Multiply-Add Instructions
defm VMACC_V : VALUr_MV_V_X<"vmacc", 0b101101>;
defm VNMSAC_V : VALUr_MV_V_X<"vnmsac", 0b101111>;
defm VMADD_V : VALUr_MV_V_X<"vmadd", 0b101001>;
defm VNMSUB_V : VALUr_MV_V_X<"vnmsub", 0b101011>;

// Vector Widening Integer Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VWMACCU_V : VALUr_MV_V_X<"vwmaccu", 0b111100>;
defm VWMACC_V : VALUr_MV_V_X<"vwmacc", 0b111101>;
defm VWMACCSU_V : VALUr_MV_V_X<"vwmaccsu", 0b111111>;
defm VWMACCUS_V : VALUr_MV_X<"vwmaccus", 0b111110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Integer Merge Instructions
defm VMERGE_V : VALUm_IV_V_X_I<"vmerge", 0b010111>;

// Vector Integer Move Instructions
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vs2 = 0, vm = 1 in {
// op vd, vs1
def VMV_V_V : RVInstVV<0b010111, OPIVV, (outs VRegOp:$vd),
                       (ins VRegOp:$vs1), "vmv.v.v", "$vd, $vs1">;
// op vd, rs1
def VMV_V_X : RVInstVX<0b010111, OPIVX, (outs VRegOp:$vd),
                       (ins GPR:$rs1), "vmv.v.x", "$vd, $rs1">;
// op vd, imm
def VMV_V_I : RVInstIVI<0b010111, (outs VRegOp:$vd),
                       (ins simm5:$imm), "vmv.v.i", "$vd, $imm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// Vector Fixed-Point Arithmetic Instructions
defm VSADDU_V : VALU_IV_V_X_I<"vsaddu", 0b100000>;
defm VSADD_V : VALU_IV_V_X_I<"vsadd", 0b100001>;
defm VSSUBU_V : VALU_IV_V_X<"vssubu", 0b100010>;
defm VSSUB_V : VALU_IV_V_X<"vssub", 0b100011>;

// Vector Single-Width Averaging Add and Subtract
defm VAADDU_V : VALU_MV_V_X<"vaaddu", 0b001000>;
defm VAADD_V : VALU_MV_V_X<"vaadd", 0b001001>;
defm VASUBU_V : VALU_MV_V_X<"vasubu", 0b001010>;
defm VASUB_V : VALU_MV_V_X<"vasub", 0b001011>;

// Vector Single-Width Fractional Multiply with Rounding and Saturation
defm VSMUL_V : VALU_IV_V_X<"vsmul", 0b100111>;

// Vector Single-Width Scaling Shift Instructions
defm VSSRL_V : VALU_IV_V_X_I<"vssrl", 0b101010, uimm5>;
defm VSSRA_V : VALU_IV_V_X_I<"vssra", 0b101011, uimm5>;

// Vector Narrowing Fixed-Point Clip Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VNCLIPU_W : VALU_IV_V_X_I<"vnclipu", 0b101110, uimm5, "w">;
defm VNCLIP_W : VALU_IV_V_X_I<"vnclip", 0b101111, uimm5, "w">;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Single-Width Floating-Point Add/Subtract Instructions
defm VFADD_V : VALU_FV_V_F<"vfadd", 0b000000>;
defm VFSUB_V : VALU_FV_V_F<"vfsub", 0b000010>;
defm VFRSUB_V : VALU_FV_F<"vfrsub", 0b100111>;

// Vector Widening Floating-Point Add/Subtract Instructions
let Constraints = "@earlyclobber $vd" in {
let RVVConstraint = WidenV in {
defm VFWADD_V : VALU_FV_V_F<"vfwadd", 0b110000>;
defm VFWSUB_V : VALU_FV_V_F<"vfwsub", 0b110010>;
} // RVVConstraint = WidenV
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
let RVVConstraint = WidenW in {
defm VFWADD_W : VALU_FV_V_F<"vfwadd", 0b110100, "w">;
defm VFWSUB_W : VALU_FV_V_F<"vfwsub", 0b110110, "w">;
} // RVVConstraint = WidenW
} // Constraints = "@earlyclobber $vd"

// Vector Single-Width Floating-Point Multiply/Divide Instructions
defm VFMUL_V : VALU_FV_V_F<"vfmul", 0b100100>;
defm VFDIV_V : VALU_FV_V_F<"vfdiv", 0b100000>;
defm VFRDIV_V : VALU_FV_F<"vfrdiv", 0b100001>;

// Vector Widening Floating-Point Multiply
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMUL_V : VALU_FV_V_F<"vfwmul", 0b111000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Single-Width Floating-Point Fused Multiply-Add Instructions
defm VFMACC_V : VALUr_FV_V_F<"vfmacc", 0b101100>;
defm VFNMACC_V : VALUr_FV_V_F<"vfnmacc", 0b101101>;
defm VFMSAC_V : VALUr_FV_V_F<"vfmsac", 0b101110>;
defm VFNMSAC_V : VALUr_FV_V_F<"vfnmsac", 0b101111>;
defm VFMADD_V : VALUr_FV_V_F<"vfmadd", 0b101000>;
defm VFNMADD_V : VALUr_FV_V_F<"vfnmadd", 0b101001>;
defm VFMSUB_V : VALUr_FV_V_F<"vfmsub", 0b101010>;
defm VFNMSUB_V : VALUr_FV_V_F<"vfnmsub", 0b101011>;

// Vector Widening Floating-Point Fused Multiply-Add Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenV in {
defm VFWMACC_V : VALUr_FV_V_F<"vfwmacc", 0b111100>;
defm VFWNMACC_V : VALUr_FV_V_F<"vfwnmacc", 0b111101>;
defm VFWMSAC_V : VALUr_FV_V_F<"vfwmsac", 0b111110>;
defm VFWNMSAC_V : VALUr_FV_V_F<"vfwnmsac", 0b111111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenV

// Vector Floating-Point Square-Root Instruction
defm VFSQRT_V : VALU_FV_VS2<"vfsqrt.v", 0b100011, 0b00000>;

// Vector Floating-Point MIN/MAX Instructions
defm VFMIN_V : VALU_FV_V_F<"vfmin", 0b000100>;
defm VFMAX_V : VALU_FV_V_F<"vfmax", 0b000110>;

// Vector Floating-Point Sign-Injection Instructions
defm VFSGNJ_V : VALU_FV_V_F<"vfsgnj", 0b001000>;
defm VFSGNJN_V : VALU_FV_V_F<"vfsgnjn", 0b001001>;
defm VFSGNJX_V : VALU_FV_V_F<"vfsgnjx", 0b001010>;

// Vector Floating-Point Compare Instructions
defm VMFEQ_V : VALU_FV_V_F<"vmfeq", 0b011000>;
defm VMFNE_V : VALU_FV_V_F<"vmfne", 0b011100>;
defm VMFLT_V : VALU_FV_V_F<"vmflt", 0b011011>;
defm VMFLE_V : VALU_FV_V_F<"vmfle", 0b011001>;
defm VMFGT_V : VALU_FV_F<"vmfgt", 0b011101>;
defm VMFGE_V : VALU_FV_F<"vmfge", 0b011111>;

def : InstAlias<"vmfgt.vv $vd, $va, $vb$vm",
                (VMFLT_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;
def : InstAlias<"vmfge.vv $vd, $va, $vb$vm",
                (VMFLE_VV VRegOp:$vd, VRegOp:$vb, VRegOp:$va, VMaskOp:$vm), 0>;

// Vector Floating-Point Classify Instruction
defm VFCLASS_V : VALU_FV_VS2<"vfclass.v", 0b100011, 0b10000>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// Vector Floating-Point Merge Instruction
def VFMERGE_VFM : RVInstVX<0b010111, OPFVF, (outs VRegOp:$vd),
                           (ins VRegOp:$vs2, FPR32:$rs1, VMV0:$v0),
                           "vfmerge.vfm", "$vd, $vs2, $rs1, v0"> {
  let vm = 0;
}

// Vector Floating-Point Move Instruction
def VFMV_V_F : RVInstVX<0b010111, OPFVF, (outs VRegOp:$vd),
                       (ins FPR32:$rs1), "vfmv.v.f", "$vd, $rs1"> {
  let vs2 = 0;
  let vm = 1;
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// Single-Width Floating-Point/Integer Type-Convert Instructions
defm VFCVT_XU_F_V : VALU_FV_VS2<"vfcvt.xu.f.v", 0b100010, 0b00000>;
defm VFCVT_X_F_V : VALU_FV_VS2<"vfcvt.x.f.v", 0b100010, 0b00001>;
defm VFCVT_F_XU_V : VALU_FV_VS2<"vfcvt.f.xu.v", 0b100010, 0b00010>;
defm VFCVT_F_X_V : VALU_FV_VS2<"vfcvt.f.x.v", 0b100010, 0b00011>;

// Widening Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt in {
defm VFWCVT_XU_F_V : VALU_FV_VS2<"vfwcvt.xu.f.v", 0b100010, 0b01000>;
defm VFWCVT_X_F_V : VALU_FV_VS2<"vfwcvt.x.f.v", 0b100010, 0b01001>;
defm VFWCVT_F_XU_V : VALU_FV_VS2<"vfwcvt.f.xu.v", 0b100010, 0b01010>;
defm VFWCVT_F_X_V : VALU_FV_VS2<"vfwcvt.f.x.v", 0b100010, 0b01011>;
defm VFWCVT_F_F_V : VALU_FV_VS2<"vfwcvt.f.f.v", 0b100010, 0b01100>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = WidenCvt

// Narrowing Floating-Point/Integer Type-Convert Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = Narrow in {
defm VFNCVT_XU_F_W : VALU_FV_VS2<"vfncvt.xu.f.w", 0b100010, 0b10000>;
defm VFNCVT_X_F_W : VALU_FV_VS2<"vfncvt.x.f.w", 0b100010, 0b10001>;
defm VFNCVT_F_XU_W : VALU_FV_VS2<"vfncvt.f.xu.w", 0b100010, 0b10010>;
defm VFNCVT_F_X_W : VALU_FV_VS2<"vfncvt.f.x.w", 0b100010, 0b10011>;
defm VFNCVT_F_F_W : VALU_FV_VS2<"vfncvt.f.f.w", 0b100010, 0b10100>;
defm VFNCVT_ROD_F_F_W : VALU_FV_VS2<"vfncvt.rod.f.f.w", 0b100010, 0b10101>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Narrow

// Vector Single-Width Integer Reduction Instructions
defm VREDSUM : VALU_MV_V<"vredsum", 0b000000>;
defm VREDMAXU : VALU_MV_V<"vredmaxu", 0b000110>;
defm VREDMAX : VALU_MV_V<"vredmax", 0b000111>;
defm VREDMINU : VALU_MV_V<"vredminu", 0b000100>;
defm VREDMIN : VALU_MV_V<"vredmin", 0b000101>;
defm VREDAND : VALU_MV_V<"vredand", 0b000001>;
defm VREDOR : VALU_MV_V<"vredor", 0b000010>;
defm VREDXOR : VALU_MV_V<"vredxor", 0b000011>;

// Vector Widening Integer Reduction Instructions
let Constraints = "@earlyclobber $vd" in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VWREDSUMU : VALU_IV_V<"vwredsumu", 0b110000>;
defm VWREDSUM : VALU_IV_V<"vwredsum", 0b110001>;
} // Constraints = "@earlyclobber $vd"

// Vector Single-Width Floating-Point Reduction Instructions
defm VFREDOSUM : VALU_FV_V<"vfredosum", 0b000011>;
defm VFREDSUM : VALU_FV_V<"vfredsum", 0b000001>;
defm VFREDMAX : VALU_FV_V<"vfredmax", 0b000111>;
defm VFREDMIN : VALU_FV_V<"vfredmin", 0b000101>;

// Vector Widening Floating-Point Reduction Instructions
let Constraints = "@earlyclobber $vd" in {
// Set earlyclobber for following instructions for second and mask operands.
// This has the downside that the earlyclobber constraint is too coarse and
// will impose unnecessary restrictions by not allowing the destination to
// overlap with the first (wide) operand.
defm VFWREDOSUM : VALU_FV_V<"vfwredosum", 0b110011>;
defm VFWREDSUM : VALU_FV_V<"vfwredsum", 0b110001>;
} // Constraints = "@earlyclobber $vd"

// Vector Mask-Register Logical Instructions
defm VMAND_M : VALU_MV_Mask<"vmand", 0b011001, "m">;
defm VMNAND_M : VALU_MV_Mask<"vmnand", 0b011101, "m">;
defm VMANDNOT_M : VALU_MV_Mask<"vmandnot", 0b011000, "m">;
defm VMXOR_M : VALU_MV_Mask<"vmxor", 0b011011, "m">;
defm VMOR_M : VALU_MV_Mask<"vmor", 0b011010, "m">;
defm VMNOR_M : VALU_MV_Mask<"vmnor", 0b011110, "m">;
defm VMORNOT_M : VALU_MV_Mask<"vmornot", 0b011100, "m">;
defm VMXNOR_M : VALU_MV_Mask<"vmxnor", 0b011111, "m">;

def : InstAlias<"vmcpy.m $vd, $vs",
                (VMAND_MM VRegOp:$vd, VRegOp:$vs, VRegOp:$vs)>;
def : InstAlias<"vmclr.m $vd",
                (VMXOR_MM VRegOp:$vd, VRegOp:$vd, VRegOp:$vd)>;
def : InstAlias<"vmset.m $vd",
                (VMXNOR_MM VRegOp:$vd, VRegOp:$vd, VRegOp:$vd)>;
def : InstAlias<"vmnot.m $vd, $vs",
                (VMNAND_MM VRegOp:$vd, VRegOp:$vs, VRegOp:$vs)>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
// Vector mask population count vpopc
def VPOPC_M : RVInstV<0b010000, 0b10000, OPMVV, (outs GPR:$vd),
                        (ins VRegOp:$vs2, VMaskOp:$vm),
                        "vpopc.m", "$vd, $vs2$vm">;

// vfirst find-first-set mask bit
def VFIRST_M : RVInstV<0b010000, 0b10001, OPMVV, (outs GPR:$vd),
                        (ins VRegOp:$vs2, VMaskOp:$vm),
                        "vfirst.m", "$vd, $vs2$vm">;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

// vmsbf.m set-before-first mask bit
defm VMSBF_M : VALU_MV_VS2<"vmsbf.m", 0b010100, 0b00001>;

// vmsif.m set-including-first mask bit
defm VMSIF_M : VALU_MV_VS2<"vmsif.m", 0b010100, 0b00011>;

// vmsof.m set-only-first mask bit
defm VMSOF_M : VALU_MV_VS2<"vmsof.m", 0b010100, 0b00010>;

// Vector Iota Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Iota in {
defm VIOTA_M : VALU_MV_VS2<"viota.m", 0b010100, 0b10000>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Iota

// Vector Element Index Instruction
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
def VID_V : RVInstV<0b010100, 0b10001, OPMVV, (outs VRegOp:$vd),
                      (ins VMaskOp:$vm), "vid.v", "$vd$vm"> {
  let vs2 = 0;
}

// Integer Scalar Move Instructions
let vm = 1 in {
def VMV_X_S : RVInstV<0b010000, 0b00000, OPMVV, (outs GPR:$vd),
                      (ins VRegOp:$vs2), "vmv.x.s", "$vd, $vs2">;
def VMV_S_X : RVInstV2<0b010000, 0b00000, OPMVX, (outs VRegOp:$vd),
                      (ins GPR:$rs1), "vmv.s.x", "$vd, $rs1">;

}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1 in {
// Floating-Point Scalar Move Instructions
def VFMV_F_S : RVInstV<0b010000, 0b00000, OPFVV, (outs FPR32:$vd),
                      (ins VRegOp:$vs2), "vfmv.f.s", "$vd, $vs2">;
def VFMV_S_F : RVInstV2<0b010000, 0b00000, OPFVF, (outs VRegOp:$vd),
                      (ins FPR32:$rs1), "vfmv.s.f", "$vd, $rs1">;

} // hasSideEffects = 0, mayLoad = 0, mayStore = 0, vm = 1

// Vector Slide Instructions
let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VSLIDEUP_V : VALU_IV_X_I<"vslideup", 0b001110, uimm5>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VSLIDEDOWN_V : VALU_IV_X_I<"vslidedown", 0b001111, uimm5>;

let Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp in {
defm VSLIDE1UP_V : VALU_MV_X<"vslide1up", 0b001110>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = SlideUp
defm VSLIDE1DOWN_V : VALU_MV_X<"vslide1down", 0b001111>;

// Vector Register Gather Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather in {
defm VRGATHER_V : VALU_IV_V_X_I<"vrgather", 0b001100, uimm5>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vrgather

// Vector Compress Instruction
let Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress in {
defm VCOMPRESS_V : VALU_MV_Mask<"vcompress", 0b010111>;
} // Constraints = "@earlyclobber $vd", RVVConstraint = Vcompress

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
foreach nf = [1, 2, 4, 8] in {
  def VMV#nf#R_V  : RVInstV<0b100111, !add(nf, -1), OPIVI, (outs VRegOp:$vd),
                            (ins VRegOp:$vs2), "vmv" # nf # "r.v",
                            "$vd, $vs2"> {
    let Uses = [];
    let vm = 1;
  }
}
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
} // Predicates = [HasStdExtV]