Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H

#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {

namespace X86 {
  // Enums for memory operand decoding.  Each memory operand is represented with
  // a 5 operand sequence in the form:
  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
  // These enums help decode this.
  enum {
    AddrBaseReg = 0,
    AddrScaleAmt = 1,
    AddrIndexReg = 2,
    AddrDisp = 3,

    /// AddrSegmentReg - The operand # of the segment in the memory operand.
    AddrSegmentReg = 4,

    /// AddrNumOperands - Total number of operands in a memory reference.
    AddrNumOperands = 5
  };

  /// AVX512 static rounding constants.  These need to match the values in
  /// avx512fintrin.h.
  enum STATIC_ROUNDING {
    TO_NEAREST_INT = 0,
    TO_NEG_INF = 1,
    TO_POS_INF = 2,
    TO_ZERO = 3,
    CUR_DIRECTION = 4,
    NO_EXC = 8
  };

  /// The constants to describe instr prefixes if there are
  enum IPREFIXES {
    IP_NO_PREFIX = 0,
    IP_HAS_OP_SIZE = 1,
    IP_HAS_AD_SIZE = 2,
    IP_HAS_REPEAT_NE = 4,
    IP_HAS_REPEAT = 8,
    IP_HAS_LOCK = 16,
    IP_HAS_NOTRACK = 32,
    IP_USE_VEX3 = 64,
  };

  enum OperandType : unsigned {
    /// AVX512 embedded rounding control. This should only have values 0-3.
    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
    OPERAND_COND_CODE,
  };

  // X86 specific condition code. These correspond to X86_*_COND in
  // X86InstrInfo.td. They must be kept in synch.
  enum CondCode {
    COND_O = 0,
    COND_NO = 1,
    COND_B = 2,
    COND_AE = 3,
    COND_E = 4,
    COND_NE = 5,
    COND_BE = 6,
    COND_A = 7,
    COND_S = 8,
    COND_NS = 9,
    COND_P = 10,
    COND_NP = 11,
    COND_L = 12,
    COND_GE = 13,
    COND_LE = 14,
    COND_G = 15,
    LAST_VALID_COND = COND_G,

    // Artificial condition codes. These are used by analyzeBranch
    // to indicate a block terminated with two conditional branches that together
    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
    // which can't be represented on x86 with a single condition. These
    // are never used in MachineInstrs and are inverses of one another.
    COND_NE_OR_P,
    COND_E_AND_NP,

    COND_INVALID
  };

  // The classification for the first instruction in macro fusion.
  enum class FirstMacroFusionInstKind {
    // TEST
    Test,
    // CMP
    Cmp,
    // AND
    And,
    // ADD, SUB
    AddSub,
    // INC, DEC
    IncDec,
    // Not valid as a first macro fusion instruction
    Invalid
  };

  enum class SecondMacroFusionInstKind {
    // JA, JB and variants.
    AB,
    // JE, JL, JG and variants.
    ELG,
    // JS, JP, JO and variants
    SPO,
    // Not a fusible jump.
    Invalid,
  };

  /// \returns the type of the first instruction in macro-fusion.
  inline FirstMacroFusionInstKind
  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
    switch (Opcode) {
    default:
      return FirstMacroFusionInstKind::Invalid;
    // TEST
    case X86::TEST16i16:
    case X86::TEST16mr:
    case X86::TEST16ri:
    case X86::TEST16rr:
    case X86::TEST32i32:
    case X86::TEST32mr:
    case X86::TEST32ri:
    case X86::TEST32rr:
    case X86::TEST64i32:
    case X86::TEST64mr:
    case X86::TEST64ri32:
    case X86::TEST64rr:
    case X86::TEST8i8:
    case X86::TEST8mr:
    case X86::TEST8ri:
    case X86::TEST8rr:
      return FirstMacroFusionInstKind::Test;
    case X86::AND16i16:
    case X86::AND16ri:
    case X86::AND16ri8:
    case X86::AND16rm:
    case X86::AND16rr:
    case X86::AND16rr_REV:
    case X86::AND32i32:
    case X86::AND32ri:
    case X86::AND32ri8:
    case X86::AND32rm:
    case X86::AND32rr:
    case X86::AND32rr_REV:
    case X86::AND64i32:
    case X86::AND64ri32:
    case X86::AND64ri8:
    case X86::AND64rm:
    case X86::AND64rr:
    case X86::AND64rr_REV:
    case X86::AND8i8:
    case X86::AND8ri:
    case X86::AND8ri8:
    case X86::AND8rm:
    case X86::AND8rr:
    case X86::AND8rr_REV:
      return FirstMacroFusionInstKind::And;
    // CMP
    case X86::CMP16i16:
    case X86::CMP16mr:
    case X86::CMP16ri:
    case X86::CMP16ri8:
    case X86::CMP16rm:
    case X86::CMP16rr:
    case X86::CMP16rr_REV:
    case X86::CMP32i32:
    case X86::CMP32mr:
    case X86::CMP32ri:
    case X86::CMP32ri8:
    case X86::CMP32rm:
    case X86::CMP32rr:
    case X86::CMP32rr_REV:
    case X86::CMP64i32:
    case X86::CMP64mr:
    case X86::CMP64ri32:
    case X86::CMP64ri8:
    case X86::CMP64rm:
    case X86::CMP64rr:
    case X86::CMP64rr_REV:
    case X86::CMP8i8:
    case X86::CMP8mr:
    case X86::CMP8ri:
    case X86::CMP8ri8:
    case X86::CMP8rm:
    case X86::CMP8rr:
    case X86::CMP8rr_REV:
      return FirstMacroFusionInstKind::Cmp;
    // ADD
    case X86::ADD16i16:
    case X86::ADD16ri:
    case X86::ADD16ri8:
    case X86::ADD16rm:
    case X86::ADD16rr:
    case X86::ADD16rr_REV:
    case X86::ADD32i32:
    case X86::ADD32ri:
    case X86::ADD32ri8:
    case X86::ADD32rm:
    case X86::ADD32rr:
    case X86::ADD32rr_REV:
    case X86::ADD64i32:
    case X86::ADD64ri32:
    case X86::ADD64ri8:
    case X86::ADD64rm:
    case X86::ADD64rr:
    case X86::ADD64rr_REV:
    case X86::ADD8i8:
    case X86::ADD8ri:
    case X86::ADD8ri8:
    case X86::ADD8rm:
    case X86::ADD8rr:
    case X86::ADD8rr_REV:
    // SUB
    case X86::SUB16i16:
    case X86::SUB16ri:
    case X86::SUB16ri8:
    case X86::SUB16rm:
    case X86::SUB16rr:
    case X86::SUB16rr_REV:
    case X86::SUB32i32:
    case X86::SUB32ri:
    case X86::SUB32ri8:
    case X86::SUB32rm:
    case X86::SUB32rr:
    case X86::SUB32rr_REV:
    case X86::SUB64i32:
    case X86::SUB64ri32:
    case X86::SUB64ri8:
    case X86::SUB64rm:
    case X86::SUB64rr:
    case X86::SUB64rr_REV:
    case X86::SUB8i8:
    case X86::SUB8ri:
    case X86::SUB8ri8:
    case X86::SUB8rm:
    case X86::SUB8rr:
    case X86::SUB8rr_REV:
      return FirstMacroFusionInstKind::AddSub;
    // INC
    case X86::INC16r:
    case X86::INC16r_alt:
    case X86::INC32r:
    case X86::INC32r_alt:
    case X86::INC64r:
    case X86::INC8r:
    // DEC
    case X86::DEC16r:
    case X86::DEC16r_alt:
    case X86::DEC32r:
    case X86::DEC32r_alt:
    case X86::DEC64r:
    case X86::DEC8r:
      return FirstMacroFusionInstKind::IncDec;
    }
  }

  /// \returns the type of the second instruction in macro-fusion.
  inline SecondMacroFusionInstKind
  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
    if (CC == X86::COND_INVALID)
      return SecondMacroFusionInstKind::Invalid;

    switch (CC) {
    default:
      return SecondMacroFusionInstKind::Invalid;
    // JE,JZ
    case X86::COND_E:
    // JNE,JNZ
    case X86::COND_NE:
    // JL,JNGE
    case X86::COND_L:
    // JLE,JNG
    case X86::COND_LE:
    // JG,JNLE
    case X86::COND_G:
    // JGE,JNL
    case X86::COND_GE:
      return SecondMacroFusionInstKind::ELG;
    // JB,JC
    case X86::COND_B:
    // JNA,JBE
    case X86::COND_BE:
    // JA,JNBE
    case X86::COND_A:
    // JAE,JNC,JNB
    case X86::COND_AE:
      return SecondMacroFusionInstKind::AB;
    // JS
    case X86::COND_S:
    // JNS
    case X86::COND_NS:
    // JP,JPE
    case X86::COND_P:
    // JNP,JPO
    case X86::COND_NP:
    // JO
    case X86::COND_O:
    // JNO
    case X86::COND_NO:
      return SecondMacroFusionInstKind::SPO;
    }
  }

  /// \param FirstKind kind of the first instruction in macro fusion.
  /// \param SecondKind kind of the second instruction in macro fusion.
  ///
  /// \returns true if the two instruction can be macro fused.
  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
                           SecondMacroFusionInstKind SecondKind) {
    switch (FirstKind) {
    case X86::FirstMacroFusionInstKind::Test:
    case X86::FirstMacroFusionInstKind::And:
      return true;
    case X86::FirstMacroFusionInstKind::Cmp:
    case X86::FirstMacroFusionInstKind::AddSub:
      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
             SecondKind == X86::SecondMacroFusionInstKind::ELG;
    case X86::FirstMacroFusionInstKind::IncDec:
      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
    case X86::FirstMacroFusionInstKind::Invalid:
      return false;
    }
    llvm_unreachable("unknown fusion type");
  }

  /// Defines the possible values of the branch boundary alignment mask.
  enum AlignBranchBoundaryKind : uint8_t {
    AlignBranchNone = 0,
    AlignBranchFused = 1U << 0,
    AlignBranchJcc = 1U << 1,
    AlignBranchJmp = 1U << 2,
    AlignBranchCall = 1U << 3,
    AlignBranchRet = 1U << 4,
    AlignBranchIndirect = 1U << 5
  };

  /// Defines the encoding values for segment override prefix.
  enum EncodingOfSegmentOverridePrefix : uint8_t {
    CS_Encoding = 0x2E,
    DS_Encoding = 0x3E,
    ES_Encoding = 0x26,
    FS_Encoding = 0x64,
    GS_Encoding = 0x65,
    SS_Encoding = 0x36
  };

  /// Given a segment register, return the encoding of the segment override
  /// prefix for it.
  inline EncodingOfSegmentOverridePrefix
  getSegmentOverridePrefixForReg(unsigned Reg) {
    switch (Reg) {
    default:
      llvm_unreachable("Unknown segment register!");
    case X86::CS:
      return CS_Encoding;
    case X86::DS:
      return DS_Encoding;
    case X86::ES:
      return ES_Encoding;
    case X86::FS:
      return FS_Encoding;
    case X86::GS:
      return GS_Encoding;
    case X86::SS:
      return SS_Encoding;
    }
  }

} // end namespace X86;

/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
  /// Target Operand Flag enum.
  enum TOF {
    //===------------------------------------------------------------------===//
    // X86 Specific MachineOperand flags.

    MO_NO_FLAG,

    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
    /// relocation of:
    ///    SYMBOL_LABEL + [. - PICBASELABEL]
    MO_GOT_ABSOLUTE_ADDRESS,

    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
    /// immediate should get the value of the symbol minus the PIC base label:
    ///    SYMBOL_LABEL - PICBASELABEL
    MO_PIC_BASE_OFFSET,

    /// MO_GOT - On a symbol operand this indicates that the immediate is the
    /// offset to the GOT entry for the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOT
    MO_GOT,

    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
    /// the offset to the location of the symbol name from the base of the GOT.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTOFF
    MO_GOTOFF,

    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
    /// offset to the GOT entry for the symbol name from the current code
    /// location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @GOTPCREL
    MO_GOTPCREL,

    /// MO_PLT - On a symbol operand this indicates that the immediate is
    /// offset to the PLT entry of symbol name from the current code location.
    ///
    /// See the X86-64 ELF ABI supplement for more details.
    ///    SYMBOL_LABEL @PLT
    MO_PLT,

    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index structure that contains
    /// the module number and variable offset for the symbol. Used in the
    /// general dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSGD
    MO_TLSGD,

    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// __tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLD
    MO_TLSLD,

    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS index for the module that
    /// contains the symbol. When this index is passed to a call to
    /// ___tls_get_addr, the function will return the base address of the TLS
    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TLSLDM
    MO_TLSLDM,

    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the thread-pointer offset for the
    /// symbol. Used in the x86-64 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTTPOFF
    MO_GOTTPOFF,

    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    /// the absolute address of the GOT entry with the negative thread-pointer
    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    /// model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @INDNTPOFF
    MO_INDNTPOFF,

    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    /// the thread-pointer offset for the symbol. Used in the x86-64 local
    /// exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @TPOFF
    MO_TPOFF,

    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the TLS offset of the symbol. Used
    /// in the local dynamic TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @DTPOFF
    MO_DTPOFF,

    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    /// the negative thread-pointer offset for the symbol. Used in the IA32
    /// local exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @NTPOFF
    MO_NTPOFF,

    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    /// the offset of the GOT entry with the negative thread-pointer offset for
    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    ///
    /// See 'ELF Handling for Thread-Local Storage' for more details.
    ///    SYMBOL_LABEL @GOTNTPOFF
    MO_GOTNTPOFF,

    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "__imp_FOO" symbol.  This is used for
    /// dllimport linkage on windows.
    MO_DLLIMPORT,

    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY,

    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    MO_DARWIN_NONLAZY_PIC_BASE,

    /// MO_TLVP - On a symbol operand this indicates that the immediate is
    /// some TLS offset.
    ///
    /// This is the TLS offset for the Darwin TLS mechanism.
    MO_TLVP,

    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    /// is some TLS offset from the picbase.
    ///
    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    MO_TLVP_PIC_BASE,

    /// MO_SECREL - On a symbol operand this indicates that the immediate is
    /// the offset from beginning of section.
    ///
    /// This is the TLS offset for the COFF/Windows TLS mechanism.
    MO_SECREL,

    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
    /// symbol modifier.
    MO_ABS8,

    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
    /// stub symbols on windows.
    MO_COFFSTUB,
  };

  enum : uint64_t {
    //===------------------------------------------------------------------===//
    // Instruction encodings.  These are the standard/most common forms for X86
    // instructions.
    //

    // PseudoFrm - This represents an instruction that is a pseudo instruction
    // or one that has not been implemented yet.  It is illegal to code generate
    // it, but tolerated for intermediate implementation stages.
    Pseudo         = 0,

    /// Raw - This form is for instructions that don't have any operands, so
    /// they are just a fixed opcode value, like 'leave'.
    RawFrm         = 1,

    /// AddRegFrm - This form is used for instructions like 'push r32' that have
    /// their one register operand added to their opcode.
    AddRegFrm      = 2,

    /// RawFrmMemOffs - This form is for instructions that store an absolute
    /// memory offset as an immediate with a possible segment override.
    RawFrmMemOffs  = 3,

    /// RawFrmSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override.
    RawFrmSrc      = 4,

    /// RawFrmDst - This form is for instructions that use the destination index
    /// register DI/EDI/RDI.
    RawFrmDst      = 5,

    /// RawFrmDstSrc - This form is for instructions that use the source index
    /// register SI/ESI/RSI with a possible segment override, and also the
    /// destination index register DI/EDI/RDI.
    RawFrmDstSrc   = 6,

    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    /// immediates, the first of which is a 16-bit immediate (specified by
    /// the imm encoding) and the second is a 8-bit fixed value.
    RawFrmImm8 = 7,

    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    /// manual, this operand is described as pntr16:32 and pntr16:16
    RawFrmImm16 = 8,

    /// AddCCFrm - This form is used for Jcc that encode the condition code
    /// in the lower 4 bits of the opcode.
    AddCCFrm = 9,

    /// PrefixByte - This form is used for instructions that represent a prefix
    /// byte like data16 or rep.
    PrefixByte = 10,

    /// MRM[0-7][rm] - These forms are used to represent instructions that use
    /// a Mod/RM byte, and use the middle field to hold extended opcode
    /// information.  In the intel manual these are represented as /0, /1, ...
    ///

    // Instructions operate on a register Reg/Opcode operand not the r/m field.
    MRMr0 = 21,

    /// MRMSrcMem - But force to use the SIB field.
    MRMSrcMemFSIB  = 22,

    /// MRMDestMem - But force to use the SIB field.
    MRMDestMemFSIB = 23,

    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is memory.
    ///
    MRMDestMem     = 24,

    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is memory.
    ///
    MRMSrcMem      = 25,

    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and load from memory.
    ///
    MRMSrcMem4VOp3 = 26,

    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is memory.
    ///
    MRMSrcMemOp4   = 27,

    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code.
    ///
    MRMSrcMemCC    = 28,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXmCC = 30,

    /// MRMXm - This form is used for instructions that use the Mod/RM byte
    /// to specify a memory source, but doesn't use the middle field.
    ///
    MRMXm = 31,

    // Next, instructions that operate on a memory r/m operand...
    MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
    MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7

    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is a register.
    ///
    MRMDestReg     = 40,

    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is a register.
    ///
    MRMSrcReg      = 41,

    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
    /// operand 3 with VEX.VVVV and do not load from memory.
    ///
    MRMSrcReg4VOp3 = 42,

    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
    /// byte to specify the fourth source, which in this case is a register.
    ///
    MRMSrcRegOp4   = 43,

    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
    /// byte to specify the operands and also encodes a condition code
    ///
    MRMSrcRegCC    = 44,

    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field. And has
    /// a condition code.
    ///
    MRMXrCC = 46,

    /// MRMXr - This form is used for instructions that use the Mod/RM byte
    /// to specify a register source, but doesn't use the middle field.
    ///
    MRMXr = 47,

    // Instructions that operate on a register r/m operand...
    MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
    MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7

    // Instructions that operate that have mod=11 and an opcode but ignore r/m.
    MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
    MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7

    /// MRM_XX - A mod/rm byte of exactly 0xXX.
    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,

    FormMask       = 127,

    //===------------------------------------------------------------------===//
    // Actual flags...

    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    // prefix in 16-bit mode.
    OpSizeShift = 7,
    OpSizeMask = 0x3 << OpSizeShift,

    OpSizeFixed  = 0 << OpSizeShift,
    OpSize16     = 1 << OpSizeShift,
    OpSize32     = 2 << OpSizeShift,

    // AsSize - AdSizeX implies this instruction determines its need of 0x67
    // prefix from a normal ModRM memory operand. The other types indicate that
    // an operand is encoded with a specific width and a prefix is needed if
    // it differs from the current mode.
    AdSizeShift = OpSizeShift + 2,
    AdSizeMask  = 0x3 << AdSizeShift,

    AdSizeX  = 0 << AdSizeShift,
    AdSize16 = 1 << AdSizeShift,
    AdSize32 = 2 << AdSizeShift,
    AdSize64 = 3 << AdSizeShift,

    //===------------------------------------------------------------------===//
    // OpPrefix - There are several prefix bytes that are used as opcode
    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    // no prefix.
    //
    OpPrefixShift = AdSizeShift + 2,
    OpPrefixMask  = 0x3 << OpPrefixShift,

    // PD - Prefix code for packed double precision vector floating point
    // operations performed in the SSE registers.
    PD = 1 << OpPrefixShift,

    // XS, XD - These prefix codes are for single and double precision scalar
    // floating point operations performed in the SSE registers.
    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,

    //===------------------------------------------------------------------===//
    // OpMap - This field determines which opcode map this instruction
    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    //
    OpMapShift = OpPrefixShift + 2,
    OpMapMask  = 0x7 << OpMapShift,

    // OB - OneByte - Set if this instruction has a one byte opcode.
    OB = 0 << OpMapShift,

    // TB - TwoByte - Set if this instruction has a two byte opcode, which
    // starts with a 0x0F byte before the real opcode.
    TB = 1 << OpMapShift,

    // T8, TA - Prefix after the 0x0F prefix.
    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,

    // XOP8 - Prefix to include use of imm byte.
    XOP8 = 4 << OpMapShift,

    // XOP9 - Prefix to exclude use of imm byte.
    XOP9 = 5 << OpMapShift,

    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    XOPA = 6 << OpMapShift,

    /// ThreeDNow - This indicates that the instruction uses the
    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    /// storing a classifier in the imm8 field.  To simplify our implementation,
    /// we handle this by storeing the classifier in the opcode field and using
    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    ThreeDNow = 7 << OpMapShift,

    //===------------------------------------------------------------------===//
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
    // etc. We only cares about REX.W and REX.R bits and only the former is
    // statically determined.
    //
    REXShift    = OpMapShift + 3,
    REX_W       = 1 << REXShift,

    //===------------------------------------------------------------------===//
    // This three-bit field describes the size of an immediate operand.  Zero is
    // unused so that we can tell if we forgot to set a value.
    ImmShift = REXShift + 1,
    ImmMask    = 15 << ImmShift,
    Imm8       = 1 << ImmShift,
    Imm8PCRel  = 2 << ImmShift,
    Imm8Reg    = 3 << ImmShift,
    Imm16      = 4 << ImmShift,
    Imm16PCRel = 5 << ImmShift,
    Imm32      = 6 << ImmShift,
    Imm32PCRel = 7 << ImmShift,
    Imm32S     = 8 << ImmShift,
    Imm64      = 9 << ImmShift,

    //===------------------------------------------------------------------===//
    // FP Instruction Classification...  Zero is non-fp instruction.

    // FPTypeMask - Mask for all of the FP types...
    FPTypeShift = ImmShift + 4,
    FPTypeMask  = 7 << FPTypeShift,

    // NotFP - The default, set for instructions that do not use FP registers.
    NotFP      = 0 << FPTypeShift,

    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    ZeroArgFP  = 1 << FPTypeShift,

    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    OneArgFP   = 2 << FPTypeShift,

    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    // result back to ST(0).  For example, fcos, fsqrt, etc.
    //
    OneArgFPRW = 3 << FPTypeShift,

    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    // explicit argument, storing the result to either ST(0) or the implicit
    // argument.  For example: fadd, fsub, fmul, etc...
    TwoArgFP   = 4 << FPTypeShift,

    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    CompareFP  = 5 << FPTypeShift,

    // CondMovFP - "2 operand" floating point conditional move instructions.
    CondMovFP  = 6 << FPTypeShift,

    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    SpecialFP  = 7 << FPTypeShift,

    // Lock prefix
    LOCKShift = FPTypeShift + 3,
    LOCK = 1 << LOCKShift,

    // REP prefix
    REPShift = LOCKShift + 1,
    REP = 1 << REPShift,

    // Execution domain for SSE instructions.
    // 0 means normal, non-SSE instruction.
    SSEDomainShift = REPShift + 1,

    // Encoding
    EncodingShift = SSEDomainShift + 2,
    EncodingMask = 0x3 << EncodingShift,

    // VEX - encoding using 0xC4/0xC5
    VEX = 1 << EncodingShift,

    /// XOP - Opcode prefix used by XOP instructions.
    XOP = 2 << EncodingShift,

    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    // syntax support up to 32 512-bit register operands and up to 7 16-bit
    // mask operands as well as source operand data swizzling/memory operand
    // conversion, eviction hint, and rounding mode.
    EVEX = 3 << EncodingShift,

    // Opcode
    OpcodeShift   = EncodingShift + 2,

    /// VEX_W - Has a opcode specific functionality, but is used in the same
    /// way as REX_W is for regular SSE instructions.
    VEX_WShift  = OpcodeShift + 8,
    VEX_W       = 1ULL << VEX_WShift,

    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    /// address instructions in SSE are represented as 3 address ones in AVX
    /// and the additional register is encoded in VEX_VVVV prefix.
    VEX_4VShift = VEX_WShift + 1,
    VEX_4V      = 1ULL << VEX_4VShift,

    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    /// instruction uses 256-bit wide registers. This is usually auto detected
    /// if a VR256 register is used, but some AVX instructions also have this
    /// field marked when using a f256 memory references.
    VEX_LShift = VEX_4VShift + 1,
    VEX_L       = 1ULL << VEX_LShift,

    // EVEX_K - Set if this instruction requires masking
    EVEX_KShift = VEX_LShift + 1,
    EVEX_K      = 1ULL << EVEX_KShift,

    // EVEX_Z - Set if this instruction has EVEX.Z field set.
    EVEX_ZShift = EVEX_KShift + 1,
    EVEX_Z      = 1ULL << EVEX_ZShift,

    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    EVEX_L2Shift = EVEX_ZShift + 1,
    EVEX_L2     = 1ULL << EVEX_L2Shift,

    // EVEX_B - Set if this instruction has EVEX.B field set.
    EVEX_BShift = EVEX_L2Shift + 1,
    EVEX_B      = 1ULL << EVEX_BShift,

    // The scaling factor for the AVX512's 8-bit compressed displacement.
    CD8_Scale_Shift = EVEX_BShift + 1,
    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,

    /// Explicitly specified rounding control
    EVEX_RCShift = CD8_Scale_Shift + 7,
    EVEX_RC = 1ULL << EVEX_RCShift,

    // NOTRACK prefix
    NoTrackShift = EVEX_RCShift + 1,
    NOTRACK = 1ULL << NoTrackShift
  };

  /// \returns true if the instruction with given opcode is a prefix.
  inline bool isPrefix(uint64_t TSFlags) {
    return (TSFlags & X86II::FormMask) == PrefixByte;
  }

  /// \returns true if the instruction with given opcode is a pseudo.
  inline bool isPseudo(uint64_t TSFlags) {
    return (TSFlags & X86II::FormMask) == Pseudo;
  }

  /// \returns the "base" X86 opcode for the specified machine
  /// instruction.
  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
    return TSFlags >> X86II::OpcodeShift;
  }

  inline bool hasImm(uint64_t TSFlags) {
    return (TSFlags & X86II::ImmMask) != 0;
  }

  /// Decode the "size of immediate" field from the TSFlags field of the 
  /// specified instruction.
  inline unsigned getSizeOfImm(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:    return 1;
    case X86II::Imm16:
    case X86II::Imm16PCRel: return 2;
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm32PCRel: return 4;
    case X86II::Imm64:      return 8;
    }
  }

  /// \returns true if the immediate of the specified instruction's TSFlags
  /// indicates that it is pc relative.
  inline bool isImmPCRel(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate size");
    case X86II::Imm8PCRel:
    case X86II::Imm16PCRel:
    case X86II::Imm32PCRel:
      return true;
    case X86II::Imm8:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm32:
    case X86II::Imm32S:
    case X86II::Imm64:
      return false;
    }
  }

  /// \returns true if the immediate of the specified instruction's
  /// TSFlags indicates that it is signed.
  inline bool isImmSigned(uint64_t TSFlags) {
    switch (TSFlags & X86II::ImmMask) {
    default: llvm_unreachable("Unknown immediate signedness");
    case X86II::Imm32S:
      return true;
    case X86II::Imm8:
    case X86II::Imm8PCRel:
    case X86II::Imm8Reg:
    case X86II::Imm16:
    case X86II::Imm16PCRel:
    case X86II::Imm32:
    case X86II::Imm32PCRel:
    case X86II::Imm64:
      return false;
    }
  }

  /// Compute whether all of the def operands are repeated in the uses and
  /// therefore should be skipped.
  /// This determines the start of the unique operand list. We need to determine
  /// if all of the defs have a corresponding tied operand in the uses.
  /// Unfortunately, the tied operand information is encoded in the uses not
  /// the defs so we have to use some heuristics to find which operands to
  /// query.
  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
    unsigned NumDefs = Desc.getNumDefs();
    unsigned NumOps = Desc.getNumOperands();
    switch (NumDefs) {
    default: llvm_unreachable("Unexpected number of defs");
    case 0:
      return 0;
    case 1:
      // Common two addr case.
      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
        return 1;
      // Check for AVX-512 scatter which has a TIED_TO in the second to last
      // operand.
      if (NumOps == 8 &&
          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
        return 1;
      return 0;
    case 2:
      // XCHG/XADD have two destinations and two sources.
      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
        return 2;
      // Check for gather. AVX-512 has the second tied operand early. AVX2
      // has it as the last op.
      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
        return 2;
      return 0;
    }
  }

  /// The function returns the MCInst operand # for the first field of the
  /// memory operand.  If the instruction doesn't have a
  /// memory operand, this returns -1.
  ///
  /// Note that this ignores tied operands.  If there is a tied register which
  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
  /// counted as one operand.
  ///
  inline int getMemoryOperandNo(uint64_t TSFlags) {
    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    bool HasEVEX_K = TSFlags & X86II::EVEX_K;

    switch (TSFlags & X86II::FormMask) {
    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    case X86II::Pseudo:
    case X86II::RawFrm:
    case X86II::AddRegFrm:
    case X86II::RawFrmImm8:
    case X86II::RawFrmImm16:
    case X86II::RawFrmMemOffs:
    case X86II::RawFrmSrc:
    case X86II::RawFrmDst:
    case X86II::RawFrmDstSrc:
    case X86II::AddCCFrm:
    case X86II::PrefixByte:
      return -1;
    case X86II::MRMDestMem:
    case X86II::MRMDestMemFSIB:
      return 0;
    case X86II::MRMSrcMem:
    case X86II::MRMSrcMemFSIB:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1 + HasVEX_4V + HasEVEX_K;
    case X86II::MRMSrcMem4VOp3:
      // Skip registers encoded in reg.
      return 1 + HasEVEX_K;
    case X86II::MRMSrcMemOp4:
      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
      return 3;
    case X86II::MRMSrcMemCC:
      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
      // mask register.
      return 1;
    case X86II::MRMDestReg:
    case X86II::MRMSrcReg:
    case X86II::MRMSrcReg4VOp3:
    case X86II::MRMSrcRegOp4:
    case X86II::MRMSrcRegCC:
    case X86II::MRMXrCC:
    case X86II::MRMr0:
    case X86II::MRMXr:
    case X86II::MRM0r: case X86II::MRM1r:
    case X86II::MRM2r: case X86II::MRM3r:
    case X86II::MRM4r: case X86II::MRM5r:
    case X86II::MRM6r: case X86II::MRM7r:
      return -1;
    case X86II::MRM0X: case X86II::MRM1X:
    case X86II::MRM2X: case X86II::MRM3X:
    case X86II::MRM4X: case X86II::MRM5X:
    case X86II::MRM6X: case X86II::MRM7X:
      return -1;
    case X86II::MRMXmCC:
    case X86II::MRMXm:
    case X86II::MRM0m: case X86II::MRM1m:
    case X86II::MRM2m: case X86II::MRM3m:
    case X86II::MRM4m: case X86II::MRM5m:
    case X86II::MRM6m: case X86II::MRM7m:
      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
      return 0 + HasVEX_4V + HasEVEX_K;
    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
    case X86II::MRM_FF:
      return -1;
    }
  }

  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
  inline bool isX86_64ExtendedReg(unsigned RegNo) {
    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
      return true;

    switch (RegNo) {
    default: break;
    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
      return true;
    }
    return false;
  }

  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
  /// registers, e.g. zmm21, etc.
  static inline bool is32ExtendedReg(unsigned RegNo) {
    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
  }


  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    return (reg == X86::SPL || reg == X86::BPL ||
            reg == X86::SIL || reg == X86::DIL);
  }

  /// \returns true if this is a masked instruction.
  inline bool isKMasked(uint64_t TSFlags) {
    return (TSFlags & X86II::EVEX_K) != 0;
  }

  /// \returns true if this is a merge masked instruction.
  inline bool isKMergeMasked(uint64_t TSFlags) {
    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
  }
}

} // end namespace llvm;

#endif