Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass hoists expressions from branches to a common dominator. It uses
// GVN (global value numbering) to discover expressions computing the same
// values. The primary goals of code-hoisting are:
// 1. To reduce the code size.
// 2. In some cases reduce critical path (by exposing more ILP).
//
// The algorithm factors out the reachability of values such that multiple
// queries to find reachability of values are fast. This is based on finding the
// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
// are basically the dominance-frontiers in the inverse graph. So we introduce a
// data structure (CHI nodes) to keep track of values flowing out of a basic
// block. We only do this for values with multiple occurrences in the function
// as they are the potential hoistable candidates. This approach allows us to
// hoist instructions to a basic block with more than two successors, as well as
// deal with infinite loops in a trivial way.
//
// Limitations: This pass does not hoist fully redundant expressions because
// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
// and after gvn-pre because gvn-pre creates opportunities for more instructions
// to be hoisted.
//
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "gvn-hoist"

STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
STATISTIC(NumLoadsRemoved, "Number of loads removed");
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
STATISTIC(NumStoresRemoved, "Number of stores removed");
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
STATISTIC(NumCallsRemoved, "Number of calls removed");

static cl::opt<int>
    MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
                        cl::desc("Max number of instructions to hoist "
                                 "(default unlimited = -1)"));

static cl::opt<int> MaxNumberOfBBSInPath(
    "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
    cl::desc("Max number of basic blocks on the path between "
             "hoisting locations (default = 4, unlimited = -1)"));

static cl::opt<int> MaxDepthInBB(
    "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
    cl::desc("Hoist instructions from the beginning of the BB up to the "
             "maximum specified depth (default = 100, unlimited = -1)"));

static cl::opt<int>
    MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
                   cl::desc("Maximum length of dependent chains to hoist "
                            "(default = 10, unlimited = -1)"));

namespace llvm {

using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
using SmallVecInsn = SmallVector<Instruction *, 4>;
using SmallVecImplInsn = SmallVectorImpl<Instruction *>;

// Each element of a hoisting list contains the basic block where to hoist and
// a list of instructions to be hoisted.
using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;

using HoistingPointList = SmallVector<HoistingPointInfo, 4>;

// A map from a pair of VNs to all the instructions with those VNs.
using VNType = std::pair<unsigned, unsigned>;

using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;

// CHI keeps information about values flowing out of a basic block.  It is
// similar to PHI but in the inverse graph, and used for outgoing values on each
// edge. For conciseness, it is computed only for instructions with multiple
// occurrences in the CFG because they are the only hoistable candidates.
//     A (CHI[{V, B, I1}, {V, C, I2}]
//  /     \
// /       \
// B(I1)  C (I2)
// The Value number for both I1 and I2 is V, the CHI node will save the
// instruction as well as the edge where the value is flowing to.
struct CHIArg {
  VNType VN;

  // Edge destination (shows the direction of flow), may not be where the I is.
  BasicBlock *Dest;

  // The instruction (VN) which uses the values flowing out of CHI.
  Instruction *I;

  bool operator==(const CHIArg &A) { return VN == A.VN; }
  bool operator!=(const CHIArg &A) { return !(*this == A); }
};

using CHIIt = SmallVectorImpl<CHIArg>::iterator;
using CHIArgs = iterator_range<CHIIt>;
using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
using InValuesType =
    DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;

// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };

// Records all scalar instructions candidate for code hoisting.
class InsnInfo {
  VNtoInsns VNtoScalars;

public:
  // Inserts I and its value number in VNtoScalars.
  void insert(Instruction *I, GVN::ValueTable &VN) {
    // Scalar instruction.
    unsigned V = VN.lookupOrAdd(I);
    VNtoScalars[{V, InvalidVN}].push_back(I);
  }

  const VNtoInsns &getVNTable() const { return VNtoScalars; }
};

// Records all load instructions candidate for code hoisting.
class LoadInfo {
  VNtoInsns VNtoLoads;

public:
  // Insert Load and the value number of its memory address in VNtoLoads.
  void insert(LoadInst *Load, GVN::ValueTable &VN) {
    if (Load->isSimple()) {
      unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
      VNtoLoads[{V, InvalidVN}].push_back(Load);
    }
  }

  const VNtoInsns &getVNTable() const { return VNtoLoads; }
};

// Records all store instructions candidate for code hoisting.
class StoreInfo {
  VNtoInsns VNtoStores;

public:
  // Insert the Store and a hash number of the store address and the stored
  // value in VNtoStores.
  void insert(StoreInst *Store, GVN::ValueTable &VN) {
    if (!Store->isSimple())
      return;
    // Hash the store address and the stored value.
    Value *Ptr = Store->getPointerOperand();
    Value *Val = Store->getValueOperand();
    VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
  }

  const VNtoInsns &getVNTable() const { return VNtoStores; }
};

// Records all call instructions candidate for code hoisting.
class CallInfo {
  VNtoInsns VNtoCallsScalars;
  VNtoInsns VNtoCallsLoads;
  VNtoInsns VNtoCallsStores;

public:
  // Insert Call and its value numbering in one of the VNtoCalls* containers.
  void insert(CallInst *Call, GVN::ValueTable &VN) {
    // A call that doesNotAccessMemory is handled as a Scalar,
    // onlyReadsMemory will be handled as a Load instruction,
    // all other calls will be handled as stores.
    unsigned V = VN.lookupOrAdd(Call);
    auto Entry = std::make_pair(V, InvalidVN);

    if (Call->doesNotAccessMemory())
      VNtoCallsScalars[Entry].push_back(Call);
    else if (Call->onlyReadsMemory())
      VNtoCallsLoads[Entry].push_back(Call);
    else
      VNtoCallsStores[Entry].push_back(Call);
  }

  const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
  const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
  const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};

static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
  static const unsigned KnownIDs[] = {
      LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
      LLVMContext::MD_noalias,        LLVMContext::MD_range,
      LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
      LLVMContext::MD_invariant_group, LLVMContext::MD_access_group};
  combineMetadata(ReplInst, I, KnownIDs, true);
}

// This pass hoists common computations across branches sharing common
// dominator. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
  GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
           MemoryDependenceResults *MD, MemorySSA *MSSA)
      : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
        MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}

  bool run(Function &F) {
    NumFuncArgs = F.arg_size();
    VN.setDomTree(DT);
    VN.setAliasAnalysis(AA);
    VN.setMemDep(MD);
    bool Res = false;
    // Perform DFS Numbering of instructions.
    unsigned BBI = 0;
    for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
      DFSNumber[BB] = ++BBI;
      unsigned I = 0;
      for (auto &Inst : *BB)
        DFSNumber[&Inst] = ++I;
    }

    int ChainLength = 0;

    // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
    while (true) {
      if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
        return Res;

      auto HoistStat = hoistExpressions(F);
      if (HoistStat.first + HoistStat.second == 0)
        return Res;

      if (HoistStat.second > 0)
        // To address a limitation of the current GVN, we need to rerun the
        // hoisting after we hoisted loads or stores in order to be able to
        // hoist all scalars dependent on the hoisted ld/st.
        VN.clear();

      Res = true;
    }

    return Res;
  }

  // Copied from NewGVN.cpp
  // This function provides global ranking of operations so that we can place
  // them in a canonical order.  Note that rank alone is not necessarily enough
  // for a complete ordering, as constants all have the same rank.  However,
  // generally, we will simplify an operation with all constants so that it
  // doesn't matter what order they appear in.
  unsigned int rank(const Value *V) const {
    // Prefer constants to undef to anything else
    // Undef is a constant, have to check it first.
    // Prefer smaller constants to constantexprs
    if (isa<ConstantExpr>(V))
      return 2;
    if (isa<UndefValue>(V))
      return 1;
    if (isa<Constant>(V))
      return 0;
    else if (auto *A = dyn_cast<Argument>(V))
      return 3 + A->getArgNo();

    // Need to shift the instruction DFS by number of arguments + 3 to account
    // for the constant and argument ranking above.
    auto Result = DFSNumber.lookup(V);
    if (Result > 0)
      return 4 + NumFuncArgs + Result;
    // Unreachable or something else, just return a really large number.
    return ~0;
  }

private:
  GVN::ValueTable VN;
  DominatorTree *DT;
  PostDominatorTree *PDT;
  AliasAnalysis *AA;
  MemoryDependenceResults *MD;
  MemorySSA *MSSA;
  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
  DenseMap<const Value *, unsigned> DFSNumber;
  BBSideEffectsSet BBSideEffects;
  DenseSet<const BasicBlock *> HoistBarrier;
  SmallVector<BasicBlock *, 32> IDFBlocks;
  unsigned NumFuncArgs;
  const bool HoistingGeps = false;

  enum InsKind { Unknown, Scalar, Load, Store };

  // Return true when there are exception handling in BB.
  bool hasEH(const BasicBlock *BB) {
    auto It = BBSideEffects.find(BB);
    if (It != BBSideEffects.end())
      return It->second;

    if (BB->isEHPad() || BB->hasAddressTaken()) {
      BBSideEffects[BB] = true;
      return true;
    }

    if (BB->getTerminator()->mayThrow()) {
      BBSideEffects[BB] = true;
      return true;
    }

    BBSideEffects[BB] = false;
    return false;
  }

  // Return true when a successor of BB dominates A.
  bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
    for (const BasicBlock *Succ : successors(BB))
      if (DT->dominates(Succ, A))
        return true;

    return false;
  }

  // Return true when I1 appears before I2 in the instructions of BB.
  bool firstInBB(const Instruction *I1, const Instruction *I2) {
    assert(I1->getParent() == I2->getParent());
    unsigned I1DFS = DFSNumber.lookup(I1);
    unsigned I2DFS = DFSNumber.lookup(I2);
    assert(I1DFS && I2DFS);
    return I1DFS < I2DFS;
  }

  // Return true when there are memory uses of Def in BB.
  bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
                    const BasicBlock *BB) {
    const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
    if (!Acc)
      return false;

    Instruction *OldPt = Def->getMemoryInst();
    const BasicBlock *OldBB = OldPt->getParent();
    const BasicBlock *NewBB = NewPt->getParent();
    bool ReachedNewPt = false;

    for (const MemoryAccess &MA : *Acc)
      if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
        Instruction *Insn = MU->getMemoryInst();

        // Do not check whether MU aliases Def when MU occurs after OldPt.
        if (BB == OldBB && firstInBB(OldPt, Insn))
          break;

        // Do not check whether MU aliases Def when MU occurs before NewPt.
        if (BB == NewBB) {
          if (!ReachedNewPt) {
            if (firstInBB(Insn, NewPt))
              continue;
            ReachedNewPt = true;
          }
        }
        if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
          return true;
      }

    return false;
  }

  bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths) {
    // Stop walk once the limit is reached.
    if (NBBsOnAllPaths == 0)
      return true;

    // Impossible to hoist with exceptions on the path.
    if (hasEH(BB))
      return true;

    // No such instruction after HoistBarrier in a basic block was
    // selected for hoisting so instructions selected within basic block with
    // a hoist barrier can be hoisted.
    if ((BB != SrcBB) && HoistBarrier.count(BB))
      return true;

    return false;
  }

  // Return true when there are exception handling or loads of memory Def
  // between Def and NewPt.  This function is only called for stores: Def is
  // the MemoryDef of the store to be hoisted.

  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaces 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
                          int &NBBsOnAllPaths) {
    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = Def->getBlock();
    assert(DT->dominates(NewBB, OldBB) && "invalid path");
    assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
           "def does not dominate new hoisting point");

    // Walk all basic blocks reachable in depth-first iteration on the inverse
    // CFG from OldBB to NewBB. These blocks are all the blocks that may be
    // executed between the execution of NewBB and OldBB. Hoisting an expression
    // from OldBB into NewBB has to be safe on all execution paths.
    for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
      const BasicBlock *BB = *I;
      if (BB == NewBB) {
        // Stop traversal when reaching HoistPt.
        I.skipChildren();
        continue;
      }

      if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
        return true;

      // Check that we do not move a store past loads.
      if (hasMemoryUse(NewPt, Def, BB))
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when there are exception handling between HoistPt and BB.
  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaches 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths) {
    assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");

    // Walk all basic blocks reachable in depth-first iteration on
    // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
    // blocks that may be executed between the execution of NewHoistPt and
    // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
    // on all execution paths.
    for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
      const BasicBlock *BB = *I;
      if (BB == HoistPt) {
        // Stop traversal when reaching NewHoistPt.
        I.skipChildren();
        continue;
      }

      if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when it is safe to hoist a memory load or store U from OldPt
  // to NewPt.
  bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
                       MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
    // In place hoisting is safe.
    if (NewPt == OldPt)
      return true;

    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = OldPt->getParent();
    const BasicBlock *UBB = U->getBlock();

    // Check for dependences on the Memory SSA.
    MemoryAccess *D = U->getDefiningAccess();
    BasicBlock *DBB = D->getBlock();
    if (DT->properlyDominates(NewBB, DBB))
      // Cannot move the load or store to NewBB above its definition in DBB.
      return false;

    if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
      if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
        if (!firstInBB(UD->getMemoryInst(), NewPt))
          // Cannot move the load or store to NewPt above its definition in D.
          return false;

    // Check for unsafe hoistings due to side effects.
    if (K == InsKind::Store) {
      if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
        return false;
    } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
      return false;

    if (UBB == NewBB) {
      if (DT->properlyDominates(DBB, NewBB))
        return true;
      assert(UBB == DBB);
      assert(MSSA->locallyDominates(D, U));
    }

    // No side effects: it is safe to hoist.
    return true;
  }

  // Return true when it is safe to hoist scalar instructions from all blocks in
  // WL to HoistBB.
  bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
                         int &NBBsOnAllPaths) {
    return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
  }

  // In the inverse CFG, the dominance frontier of basic block (BB) is the
  // point where ANTIC needs to be computed for instructions which are going
  // to be hoisted. Since this point does not change during gvn-hoist,
  // we compute it only once (on demand).
  // The ides is inspired from:
  // "Partial Redundancy Elimination in SSA Form"
  // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
  // They use similar idea in the forward graph to find fully redundant and
  // partially redundant expressions, here it is used in the inverse graph to
  // find fully anticipable instructions at merge point (post-dominator in
  // the inverse CFG).
  // Returns the edge via which an instruction in BB will get the values from.

  // Returns true when the values are flowing out to each edge.
  bool valueAnticipable(CHIArgs C, Instruction *TI) const {
    if (TI->getNumSuccessors() > (unsigned)size(C))
      return false; // Not enough args in this CHI.

    for (auto CHI : C) {
      BasicBlock *Dest = CHI.Dest;
      // Find if all the edges have values flowing out of BB.
      bool Found = llvm::any_of(
          successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
      if (!Found)
        return false;
    }
    return true;
  }

  // Check if it is safe to hoist values tracked by CHI in the range
  // [Begin, End) and accumulate them in Safe.
  void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
                   SmallVectorImpl<CHIArg> &Safe) {
    int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
    for (auto CHI : C) {
      Instruction *Insn = CHI.I;
      if (!Insn) // No instruction was inserted in this CHI.
        continue;
      if (K == InsKind::Scalar) {
        if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
          Safe.push_back(CHI);
      } else {
        MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
        if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
          Safe.push_back(CHI);
      }
    }
  }

  using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;

  // Push all the VNs corresponding to BB into RenameStack.
  void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
                       RenameStackType &RenameStack) {
    auto it1 = ValueBBs.find(BB);
    if (it1 != ValueBBs.end()) {
      // Iterate in reverse order to keep lower ranked values on the top.
      for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
        // Get the value of instruction I
        LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
        RenameStack[VI.first].push_back(VI.second);
      }
    }
  }

  void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
                   RenameStackType &RenameStack) {
    // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
    for (auto Pred : predecessors(BB)) {
      auto P = CHIBBs.find(Pred);
      if (P == CHIBBs.end()) {
        continue;
      }
      LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
      // A CHI is found (BB -> Pred is an edge in the CFG)
      // Pop the stack until Top(V) = Ve.
      auto &VCHI = P->second;
      for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
        CHIArg &C = *It;
        if (!C.Dest) {
          auto si = RenameStack.find(C.VN);
          // The Basic Block where CHI is must dominate the value we want to
          // track in a CHI. In the PDom walk, there can be values in the
          // stack which are not control dependent e.g., nested loop.
          if (si != RenameStack.end() && si->second.size() &&
              DT->properlyDominates(Pred, si->second.back()->getParent())) {
            C.Dest = BB;                     // Assign the edge
            C.I = si->second.pop_back_val(); // Assign the argument
            LLVM_DEBUG(dbgs()
                       << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
                       << ", VN: " << C.VN.first << ", " << C.VN.second);
          }
          // Move to next CHI of a different value
          It = std::find_if(It, VCHI.end(),
                            [It](CHIArg &A) { return A != *It; });
        } else
          ++It;
      }
    }
  }

  // Walk the post-dominator tree top-down and use a stack for each value to
  // store the last value you see. When you hit a CHI from a given edge, the
  // value to use as the argument is at the top of the stack, add the value to
  // CHI and pop.
  void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
    auto Root = PDT->getNode(nullptr);
    if (!Root)
      return;
    // Depth first walk on PDom tree to fill the CHIargs at each PDF.
    RenameStackType RenameStack;
    for (auto Node : depth_first(Root)) {
      BasicBlock *BB = Node->getBlock();
      if (!BB)
        continue;

      // Collect all values in BB and push to stack.
      fillRenameStack(BB, ValueBBs, RenameStack);

      // Fill outgoing values in each CHI corresponding to BB.
      fillChiArgs(BB, CHIBBs, RenameStack);
    }
  }

  // Walk all the CHI-nodes to find ones which have a empty-entry and remove
  // them Then collect all the instructions which are safe to hoist and see if
  // they form a list of anticipable values. OutValues contains CHIs
  // corresponding to each basic block.
  void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
                               HoistingPointList &HPL) {
    auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };

    // CHIArgs now have the outgoing values, so check for anticipability and
    // accumulate hoistable candidates in HPL.
    for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
      BasicBlock *BB = A.first;
      SmallVectorImpl<CHIArg> &CHIs = A.second;
      // Vector of PHIs contains PHIs for different instructions.
      // Sort the args according to their VNs, such that identical
      // instructions are together.
      llvm::stable_sort(CHIs, cmpVN);
      auto TI = BB->getTerminator();
      auto B = CHIs.begin();
      // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
      auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
                                 [B](CHIArg &A) { return A != *B; });
      auto PrevIt = CHIs.begin();
      while (PrevIt != PHIIt) {
        // Collect values which satisfy safety checks.
        SmallVector<CHIArg, 2> Safe;
        // We check for safety first because there might be multiple values in
        // the same path, some of which are not safe to be hoisted, but overall
        // each edge has at least one value which can be hoisted, making the
        // value anticipable along that path.
        checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);

        // List of safe values should be anticipable at TI.
        if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
          HPL.push_back({BB, SmallVecInsn()});
          SmallVecInsn &V = HPL.back().second;
          for (auto B : Safe)
            V.push_back(B.I);
        }

        // Check other VNs
        PrevIt = PHIIt;
        PHIIt = std::find_if(PrevIt, CHIs.end(),
                             [PrevIt](CHIArg &A) { return A != *PrevIt; });
      }
    }
  }

  // Compute insertion points for each values which can be fully anticipated at
  // a dominator. HPL contains all such values.
  void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
                              InsKind K) {
    // Sort VNs based on their rankings
    std::vector<VNType> Ranks;
    for (const auto &Entry : Map) {
      Ranks.push_back(Entry.first);
    }

    // TODO: Remove fully-redundant expressions.
    // Get instruction from the Map, assume that all the Instructions
    // with same VNs have same rank (this is an approximation).
    llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
      return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
    });

    // - Sort VNs according to their rank, and start with lowest ranked VN
    // - Take a VN and for each instruction with same VN
    //   - Find the dominance frontier in the inverse graph (PDF)
    //   - Insert the chi-node at PDF
    // - Remove the chi-nodes with missing entries
    // - Remove values from CHI-nodes which do not truly flow out, e.g.,
    //   modified along the path.
    // - Collect the remaining values that are still anticipable
    SmallVector<BasicBlock *, 2> IDFBlocks;
    ReverseIDFCalculator IDFs(*PDT);
    OutValuesType OutValue;
    InValuesType InValue;
    for (const auto &R : Ranks) {
      const SmallVecInsn &V = Map.lookup(R);
      if (V.size() < 2)
        continue;
      const VNType &VN = R;
      SmallPtrSet<BasicBlock *, 2> VNBlocks;
      for (auto &I : V) {
        BasicBlock *BBI = I->getParent();
        if (!hasEH(BBI))
          VNBlocks.insert(BBI);
      }
      // Compute the Post Dominance Frontiers of each basic block
      // The dominance frontier of a live block X in the reverse
      // control graph is the set of blocks upon which X is control
      // dependent. The following sequence computes the set of blocks
      // which currently have dead terminators that are control
      // dependence sources of a block which is in NewLiveBlocks.
      IDFs.setDefiningBlocks(VNBlocks);
      IDFBlocks.clear();
      IDFs.calculate(IDFBlocks);

      // Make a map of BB vs instructions to be hoisted.
      for (unsigned i = 0; i < V.size(); ++i) {
        InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
      }
      // Insert empty CHI node for this VN. This is used to factor out
      // basic blocks where the ANTIC can potentially change.
      for (auto IDFB : IDFBlocks) {
        for (unsigned i = 0; i < V.size(); ++i) {
          CHIArg C = {VN, nullptr, nullptr};
           // Ignore spurious PDFs.
          if (DT->properlyDominates(IDFB, V[i]->getParent())) {
            OutValue[IDFB].push_back(C);
            LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
                              << ", for Insn: " << *V[i]);
          }
        }
      }
    }

    // Insert CHI args at each PDF to iterate on factored graph of
    // control dependence.
    insertCHI(InValue, OutValue);
    // Using the CHI args inserted at each PDF, find fully anticipable values.
    findHoistableCandidates(OutValue, K, HPL);
  }

  // Return true when all operands of Instr are available at insertion point
  // HoistPt. When limiting the number of hoisted expressions, one could hoist
  // a load without hoisting its access function. So before hoisting any
  // expression, make sure that all its operands are available at insert point.
  bool allOperandsAvailable(const Instruction *I,
                            const BasicBlock *HoistPt) const {
    for (const Use &Op : I->operands())
      if (const auto *Inst = dyn_cast<Instruction>(&Op))
        if (!DT->dominates(Inst->getParent(), HoistPt))
          return false;

    return true;
  }

  // Same as allOperandsAvailable with recursive check for GEP operands.
  bool allGepOperandsAvailable(const Instruction *I,
                               const BasicBlock *HoistPt) const {
    for (const Use &Op : I->operands())
      if (const auto *Inst = dyn_cast<Instruction>(&Op))
        if (!DT->dominates(Inst->getParent(), HoistPt)) {
          if (const GetElementPtrInst *GepOp =
                  dyn_cast<GetElementPtrInst>(Inst)) {
            if (!allGepOperandsAvailable(GepOp, HoistPt))
              return false;
            // Gep is available if all operands of GepOp are available.
          } else {
            // Gep is not available if it has operands other than GEPs that are
            // defined in blocks not dominating HoistPt.
            return false;
          }
        }
    return true;
  }

  // Make all operands of the GEP available.
  void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                         const SmallVecInsn &InstructionsToHoist,
                         Instruction *Gep) const {
    assert(allGepOperandsAvailable(Gep, HoistPt) &&
           "GEP operands not available");

    Instruction *ClonedGep = Gep->clone();
    for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
      if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
        // Check whether the operand is already available.
        if (DT->dominates(Op->getParent(), HoistPt))
          continue;

        // As a GEP can refer to other GEPs, recursively make all the operands
        // of this GEP available at HoistPt.
        if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
          makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
      }

    // Copy Gep and replace its uses in Repl with ClonedGep.
    ClonedGep->insertBefore(HoistPt->getTerminator());

    // Conservatively discard any optimization hints, they may differ on the
    // other paths.
    ClonedGep->dropUnknownNonDebugMetadata();

    // If we have optimization hints which agree with each other along different
    // paths, preserve them.
    for (const Instruction *OtherInst : InstructionsToHoist) {
      const GetElementPtrInst *OtherGep;
      if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
        OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
      else
        OtherGep = cast<GetElementPtrInst>(
            cast<StoreInst>(OtherInst)->getPointerOperand());
      ClonedGep->andIRFlags(OtherGep);
    }

    // Replace uses of Gep with ClonedGep in Repl.
    Repl->replaceUsesOfWith(Gep, ClonedGep);
  }

  void updateAlignment(Instruction *I, Instruction *Repl) {
    if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
      ReplacementLoad->setAlignment(
          std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
      ++NumLoadsRemoved;
    } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
      ReplacementStore->setAlignment(std::min(ReplacementStore->getAlign(),
                                              cast<StoreInst>(I)->getAlign()));
      ++NumStoresRemoved;
    } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
      ReplacementAlloca->setAlignment(std::max(
          ReplacementAlloca->getAlign(), cast<AllocaInst>(I)->getAlign()));
    } else if (isa<CallInst>(Repl)) {
      ++NumCallsRemoved;
    }
  }

  // Remove all the instructions in Candidates and replace their usage with Repl.
  // Returns the number of instructions removed.
  unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
                MemoryUseOrDef *NewMemAcc) {
    unsigned NR = 0;
    for (Instruction *I : Candidates) {
      if (I != Repl) {
        ++NR;
        updateAlignment(I, Repl);
        if (NewMemAcc) {
          // Update the uses of the old MSSA access with NewMemAcc.
          MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
          OldMA->replaceAllUsesWith(NewMemAcc);
          MSSAUpdater->removeMemoryAccess(OldMA);
        }

        Repl->andIRFlags(I);
        combineKnownMetadata(Repl, I);
        I->replaceAllUsesWith(Repl);
        // Also invalidate the Alias Analysis cache.
        MD->removeInstruction(I);
        I->eraseFromParent();
      }
    }
    return NR;
  }

  // Replace all Memory PHI usage with NewMemAcc.
  void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
    SmallPtrSet<MemoryPhi *, 4> UsePhis;
    for (User *U : NewMemAcc->users())
      if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
        UsePhis.insert(Phi);

    for (MemoryPhi *Phi : UsePhis) {
      auto In = Phi->incoming_values();
      if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
        Phi->replaceAllUsesWith(NewMemAcc);
        MSSAUpdater->removeMemoryAccess(Phi);
      }
    }
  }

  // Remove all other instructions and replace them with Repl.
  unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
                            BasicBlock *DestBB, bool MoveAccess) {
    MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
    if (MoveAccess && NewMemAcc) {
        // The definition of this ld/st will not change: ld/st hoisting is
        // legal when the ld/st is not moved past its current definition.
        MSSAUpdater->moveToPlace(NewMemAcc, DestBB,
                                 MemorySSA::BeforeTerminator);
    }

    // Replace all other instructions with Repl with memory access NewMemAcc.
    unsigned NR = rauw(Candidates, Repl, NewMemAcc);

    // Remove MemorySSA phi nodes with the same arguments.
    if (NewMemAcc)
      raMPHIuw(NewMemAcc);
    return NR;
  }

  // In the case Repl is a load or a store, we make all their GEPs
  // available: GEPs are not hoisted by default to avoid the address
  // computations to be hoisted without the associated load or store.
  bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                                const SmallVecInsn &InstructionsToHoist) const {
    // Check whether the GEP of a ld/st can be synthesized at HoistPt.
    GetElementPtrInst *Gep = nullptr;
    Instruction *Val = nullptr;
    if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
      Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
    } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
      Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
      Val = dyn_cast<Instruction>(St->getValueOperand());
      // Check that the stored value is available.
      if (Val) {
        if (isa<GetElementPtrInst>(Val)) {
          // Check whether we can compute the GEP at HoistPt.
          if (!allGepOperandsAvailable(Val, HoistPt))
            return false;
        } else if (!DT->dominates(Val->getParent(), HoistPt))
          return false;
      }
    }

    // Check whether we can compute the Gep at HoistPt.
    if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
      return false;

    makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);

    if (Val && isa<GetElementPtrInst>(Val))
      makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);

    return true;
  }

  std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
    unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
    for (const HoistingPointInfo &HP : HPL) {
      // Find out whether we already have one of the instructions in HoistPt,
      // in which case we do not have to move it.
      BasicBlock *DestBB = HP.first;
      const SmallVecInsn &InstructionsToHoist = HP.second;
      Instruction *Repl = nullptr;
      for (Instruction *I : InstructionsToHoist)
        if (I->getParent() == DestBB)
          // If there are two instructions in HoistPt to be hoisted in place:
          // update Repl to be the first one, such that we can rename the uses
          // of the second based on the first.
          if (!Repl || firstInBB(I, Repl))
            Repl = I;

      // Keep track of whether we moved the instruction so we know whether we
      // should move the MemoryAccess.
      bool MoveAccess = true;
      if (Repl) {
        // Repl is already in HoistPt: it remains in place.
        assert(allOperandsAvailable(Repl, DestBB) &&
               "instruction depends on operands that are not available");
        MoveAccess = false;
      } else {
        // When we do not find Repl in HoistPt, select the first in the list
        // and move it to HoistPt.
        Repl = InstructionsToHoist.front();

        // We can move Repl in HoistPt only when all operands are available.
        // The order in which hoistings are done may influence the availability
        // of operands.
        if (!allOperandsAvailable(Repl, DestBB)) {
          // When HoistingGeps there is nothing more we can do to make the
          // operands available: just continue.
          if (HoistingGeps)
            continue;

          // When not HoistingGeps we need to copy the GEPs.
          if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
            continue;
        }

        // Move the instruction at the end of HoistPt.
        Instruction *Last = DestBB->getTerminator();
        MD->removeInstruction(Repl);
        Repl->moveBefore(Last);

        DFSNumber[Repl] = DFSNumber[Last]++;
      }

      NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);

      if (isa<LoadInst>(Repl))
        ++NL;
      else if (isa<StoreInst>(Repl))
        ++NS;
      else if (isa<CallInst>(Repl))
        ++NC;
      else // Scalar
        ++NI;
    }

    if (MSSA && VerifyMemorySSA)
      MSSA->verifyMemorySSA();

    NumHoisted += NL + NS + NC + NI;
    NumRemoved += NR;
    NumLoadsHoisted += NL;
    NumStoresHoisted += NS;
    NumCallsHoisted += NC;
    return {NI, NL + NC + NS};
  }

  // Hoist all expressions. Returns Number of scalars hoisted
  // and number of non-scalars hoisted.
  std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
    InsnInfo II;
    LoadInfo LI;
    StoreInfo SI;
    CallInfo CI;
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
      int InstructionNb = 0;
      for (Instruction &I1 : *BB) {
        // If I1 cannot guarantee progress, subsequent instructions
        // in BB cannot be hoisted anyways.
        if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
          HoistBarrier.insert(BB);
          break;
        }
        // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
        // deeper may increase the register pressure and compilation time.
        if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
          break;

        // Do not value number terminator instructions.
        if (I1.isTerminator())
          break;

        if (auto *Load = dyn_cast<LoadInst>(&I1))
          LI.insert(Load, VN);
        else if (auto *Store = dyn_cast<StoreInst>(&I1))
          SI.insert(Store, VN);
        else if (auto *Call = dyn_cast<CallInst>(&I1)) {
          if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
            if (isa<DbgInfoIntrinsic>(Intr) ||
                Intr->getIntrinsicID() == Intrinsic::assume ||
                Intr->getIntrinsicID() == Intrinsic::sideeffect)
              continue;
          }
          if (Call->mayHaveSideEffects())
            break;

          if (Call->isConvergent())
            break;

          CI.insert(Call, VN);
        } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
          // Do not hoist scalars past calls that may write to memory because
          // that could result in spills later. geps are handled separately.
          // TODO: We can relax this for targets like AArch64 as they have more
          // registers than X86.
          II.insert(&I1, VN);
      }
    }

    HoistingPointList HPL;
    computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
    computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
    return hoist(HPL);
  }
};

class GVNHoistLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNHoistLegacyPass() : FunctionPass(ID) {
    initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
    auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();

    GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
  }
};

} // end namespace llvm

PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
  MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
  GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<MemorySSAAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char GVNHoistLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
                      "Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
                    "Early GVN Hoisting of Expressions", false, false)

FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }