//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
// with control-flow edges incident from outside the SCC. This pass converts a
// irreducible SCC into a natural loop by applying the following transformation:
//
// 1. Collect the set of headers H of the SCC.
// 2. Collect the set of predecessors P of these headers. These may be inside as
// well as outside the SCC.
// 3. Create block N and redirect every edge from set P to set H through N.
//
// This converts the SCC into a natural loop with N as the header: N is the only
// block with edges incident from outside the SCC, and all backedges in the SCC
// are incident on N, i.e., for every backedge, the head now dominates the tail.
//
// INPUT CFG: The blocks A and B form an irreducible loop with two headers.
//
// Entry
// / \
// v v
// A ----> B
// ^ /|
// `----' |
// v
// Exit
//
// OUTPUT CFG: Edges incident on A and B are now redirected through a
// new block N, forming a natural loop consisting of N, A and B.
//
// Entry
// |
// v
// .---> N <---.
// / / \ \
// | / \ |
// \ v v /
// `-- A B --'
// |
// v
// Exit
//
// The transformation is applied to every maximal SCC that is not already
// recognized as a loop. The pass operates on all maximal SCCs found in the
// function body outside of any loop, as well as those found inside each loop,
// including inside any newly created loops. This ensures that any SCC hidden
// inside a maximal SCC is also transformed.
//
// The actual transformation is handled by function CreateControlFlowHub, which
// takes a set of incoming blocks (the predecessors) and outgoing blocks (the
// headers). The function also moves every PHINode in an outgoing block to the
// hub. Since the hub dominates all the outgoing blocks, each such PHINode
// continues to dominate its uses. Since every header in an SCC has at least two
// predecessors, every value used in the header (or later) but defined in a
// predecessor (or earlier) is represented by a PHINode in a header. Hence the
// above handling of PHINodes is sufficient and no further processing is
// required to restore SSA.
//
// Limitation: The pass cannot handle switch statements and indirect
// branches. Both must be lowered to plain branches first.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "fix-irreducible"
using namespace llvm;
namespace {
struct FixIrreducible : public FunctionPass {
static char ID;
FixIrreducible() : FunctionPass(ID) {
initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreservedID(LowerSwitchID);
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char FixIrreducible::ID = 0;
FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
// When a new loop is created, existing children of the parent loop may now be
// fully inside the new loop. Reconnect these as children of the new loop.
static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
: LI.getTopLevelLoopsVector();
// The new loop cannot be its own child, and any candidate is a
// child iff its header is owned by the new loop. Move all the
// children to a new vector.
auto FirstChild = std::partition(
CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
return L == NewLoop || Blocks.count(L->getHeader()) == 0;
});
SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
CandidateLoops.erase(FirstChild, CandidateLoops.end());
for (auto II = ChildLoops.begin(), IE = ChildLoops.end(); II != IE; ++II) {
auto Child = *II;
LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
<< "\n");
// TODO: A child loop whose header is also a header in the current
// SCC gets destroyed since its backedges are removed. That may
// not be necessary if we can retain such backedges.
if (Headers.count(Child->getHeader())) {
for (auto BB : Child->blocks()) {
LI.changeLoopFor(BB, NewLoop);
LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
<< "\n");
}
LI.destroy(Child);
LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
continue;
}
Child->setParentLoop(nullptr);
NewLoop->addChildLoop(Child);
LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
}
}
// Given a set of blocks and headers in an irreducible SCC, convert it into a
// natural loop. Also insert this new loop at its appropriate place in the
// hierarchy of loops.
static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
Loop *ParentLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
#ifndef NDEBUG
// All headers are part of the SCC
for (auto H : Headers) {
assert(Blocks.count(H));
}
#endif
SetVector<BasicBlock *> Predecessors;
for (auto H : Headers) {
for (auto P : predecessors(H)) {
Predecessors.insert(P);
}
}
LLVM_DEBUG(
dbgs() << "Found predecessors:";
for (auto P : Predecessors) {
dbgs() << " " << P->getName();
}
dbgs() << "\n");
// Redirect all the backedges through a "hub" consisting of a series
// of guard blocks that manage the flow of control from the
// predecessors to the headers.
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// Create a new loop from the now-transformed cycle
auto NewLoop = LI.AllocateLoop();
if (ParentLoop) {
ParentLoop->addChildLoop(NewLoop);
} else {
LI.addTopLevelLoop(NewLoop);
}
// Add the guard blocks to the new loop. The first guard block is
// the head of all the backedges, and it is the first to be inserted
// in the loop. This ensures that it is recognized as the
// header. Since the new loop is already in LoopInfo, the new blocks
// are also propagated up the chain of parent loops.
for (auto G : GuardBlocks) {
LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
NewLoop->addBasicBlockToLoop(G, LI);
}
// Add the SCC blocks to the new loop.
for (auto BB : Blocks) {
NewLoop->addBlockEntry(BB);
if (LI.getLoopFor(BB) == ParentLoop) {
LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
<< "\n");
LI.changeLoopFor(BB, NewLoop);
} else {
LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
}
}
LLVM_DEBUG(dbgs() << "header for new loop: "
<< NewLoop->getHeader()->getName() << "\n");
reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
NewLoop->verifyLoop();
if (ParentLoop) {
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
}
namespace llvm {
// Enable the graph traits required for traversing a Loop body.
template <> struct GraphTraits<Loop> : LoopBodyTraits {};
} // namespace llvm
// Overloaded wrappers to go with the function template below.
static BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
}
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
}
// Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
template <class Graph>
static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
bool Changed = false;
for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
if (Scc->size() < 2)
continue;
SetVector<BasicBlock *> Blocks;
LLVM_DEBUG(dbgs() << "Found SCC:");
for (auto N : *Scc) {
auto BB = unwrapBlock(N);
LLVM_DEBUG(dbgs() << " " << BB->getName());
Blocks.insert(BB);
}
LLVM_DEBUG(dbgs() << "\n");
// Minor optimization: The SCC blocks are usually discovered in an order
// that is the opposite of the order in which these blocks appear as branch
// targets. This results in a lot of condition inversions in the control
// flow out of the new ControlFlowHub, which can be mitigated if the orders
// match. So we discover the headers using the reverse of the block order.
SetVector<BasicBlock *> Headers;
LLVM_DEBUG(dbgs() << "Found headers:");
for (auto BB : reverse(Blocks)) {
for (const auto P : predecessors(BB)) {
// Skip unreachable predecessors.
if (!DT.isReachableFromEntry(P))
continue;
if (!Blocks.count(P)) {
LLVM_DEBUG(dbgs() << " " << BB->getName());
Headers.insert(BB);
break;
}
}
}
LLVM_DEBUG(dbgs() << "\n");
if (Headers.size() == 1) {
assert(LI.isLoopHeader(Headers.front()));
LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
continue;
}
createNaturalLoop(LI, DT, G, Blocks, Headers);
Changed = true;
}
return Changed;
}
bool FixIrreducible::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
<< F.getName() << "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool Changed = false;
SmallVector<Loop *, 8> WorkList;
LLVM_DEBUG(dbgs() << "visiting top-level\n");
Changed |= makeReducible(LI, DT, &F);
// Any SCCs reduced are now already in the list of top-level loops, so simply
// add them all to the worklist.
for (auto L : LI) {
WorkList.push_back(L);
}
while (!WorkList.empty()) {
auto L = WorkList.back();
WorkList.pop_back();
LLVM_DEBUG(dbgs() << "visiting loop with header "
<< L->getHeader()->getName() << "\n");
Changed |= makeReducible(LI, DT, *L);
// Any SCCs reduced are now already in the list of child loops, so simply
// add them all to the worklist.
WorkList.append(L->begin(), L->end());
}
return Changed;
}