/*-
* Copyright (c) 2020 Mellanox Technologies, Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <linux/xarray.h>
#include <vm/vm_pageout.h>
/*
* This function removes the element at the given index and returns
* the pointer to the removed element, if any.
*/
void *
__xa_erase(struct xarray *xa, uint32_t index)
{
XA_ASSERT_LOCKED(xa);
return (radix_tree_delete(&xa->root, index));
}
void *
xa_erase(struct xarray *xa, uint32_t index)
{
void *retval;
xa_lock(xa);
retval = __xa_erase(xa, index);
xa_unlock(xa);
return (retval);
}
/*
* This function returns the element pointer at the given index. A
* value of NULL is returned if the element does not exist.
*/
void *
xa_load(struct xarray *xa, uint32_t index)
{
void *retval;
xa_lock(xa);
retval = radix_tree_lookup(&xa->root, index);
xa_unlock(xa);
return (retval);
}
/*
* This is an internal function used to sleep until more memory
* becomes available.
*/
static void
xa_vm_wait_locked(struct xarray *xa)
{
xa_unlock(xa);
vm_wait(NULL);
xa_lock(xa);
}
/*
* This function iterates the xarray until it finds a free slot where
* it can insert the element pointer to by "ptr". It starts at the
* index pointed to by "pindex" and updates this value at return. The
* "mask" argument defines the maximum index allowed, inclusivly, and
* must be a power of two minus one value. The "gfp" argument
* basically tells if we can wait for more memory to become available
* or not. This function returns zero upon success or a negative error
* code on failure. A typical error code is -ENOMEM which means either
* the xarray is full, or there was not enough internal memory
* available to complete the radix tree insertion.
*/
int
__xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
{
int retval;
XA_ASSERT_LOCKED(xa);
/* mask cannot be zero */
MPASS(mask != 0);
/* mask can be any power of two value minus one */
MPASS((mask & (mask + 1)) == 0);
*pindex = 0;
retry:
retval = radix_tree_insert(&xa->root, *pindex, ptr);
switch (retval) {
case -EEXIST:
if (likely(*pindex != mask)) {
(*pindex)++;
goto retry;
}
retval = -ENOMEM;
break;
case -ENOMEM:
if (likely(gfp & M_WAITOK)) {
xa_vm_wait_locked(xa);
goto retry;
}
break;
default:
break;
}
return (retval);
}
int
xa_alloc(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask, gfp_t gfp)
{
int retval;
xa_lock(xa);
retval = __xa_alloc(xa, pindex, ptr, mask, gfp);
xa_unlock(xa);
return (retval);
}
/*
* This function works the same like the "xa_alloc" function, except
* it wraps the next index value to zero when there are no entries
* left at the end of the xarray searching for a free slot from the
* beginning of the array. If the xarray is full -ENOMEM is returned.
*/
int
__xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
uint32_t *pnext_index, gfp_t gfp)
{
int retval;
int timeout = 1;
XA_ASSERT_LOCKED(xa);
/* mask cannot be zero */
MPASS(mask != 0);
/* mask can be any power of two value minus one */
MPASS((mask & (mask + 1)) == 0);
*pnext_index = 0;
retry:
retval = radix_tree_insert(&xa->root, *pnext_index, ptr);
switch (retval) {
case -EEXIST:
if (unlikely(*pnext_index == mask) && !timeout--) {
retval = -ENOMEM;
break;
}
(*pnext_index)++;
(*pnext_index) &= mask;
goto retry;
case -ENOMEM:
if (likely(gfp & M_WAITOK)) {
xa_vm_wait_locked(xa);
goto retry;
}
break;
default:
break;
}
*pindex = *pnext_index;
return (retval);
}
int
xa_alloc_cyclic(struct xarray *xa, uint32_t *pindex, void *ptr, uint32_t mask,
uint32_t *pnext_index, gfp_t gfp)
{
int retval;
xa_lock(xa);
retval = __xa_alloc_cyclic(xa, pindex, ptr, mask, pnext_index, gfp);
xa_unlock(xa);
return (retval);
}
/*
* This function tries to insert an element at the given index. The
* "gfp" argument basically decides of this function can sleep or not
* trying to allocate internal memory for its radix tree. The
* function returns an error code upon failure. Typical error codes
* are element exists (-EEXIST) or out of memory (-ENOMEM).
*/
int
__xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
{
int retval;
XA_ASSERT_LOCKED(xa);
retry:
retval = radix_tree_insert(&xa->root, index, ptr);
switch (retval) {
case -ENOMEM:
if (likely(gfp & M_WAITOK)) {
xa_vm_wait_locked(xa);
goto retry;
}
break;
default:
break;
}
return (retval);
}
int
xa_insert(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
{
int retval;
xa_lock(xa);
retval = __xa_insert(xa, index, ptr, gfp);
xa_unlock(xa);
return (retval);
}
/*
* This function updates the element at the given index and returns a
* pointer to the old element. The "gfp" argument basically decides of
* this function can sleep or not trying to allocate internal memory
* for its radix tree. The function returns an XA_ERROR() pointer code
* upon failure. Code using this function must always check if the
* return value is an XA_ERROR() code before using the returned value.
*/
void *
__xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
{
int retval;
XA_ASSERT_LOCKED(xa);
retry:
retval = radix_tree_store(&xa->root, index, &ptr);
switch (retval) {
case 0:
break;
case -ENOMEM:
if (likely(gfp & M_WAITOK)) {
xa_vm_wait_locked(xa);
goto retry;
}
ptr = XA_ERROR(retval);
break;
default:
ptr = XA_ERROR(retval);
break;
}
return (ptr);
}
void *
xa_store(struct xarray *xa, uint32_t index, void *ptr, gfp_t gfp)
{
void *retval;
xa_lock(xa);
retval = __xa_store(xa, index, ptr, gfp);
xa_unlock(xa);
return (retval);
}
/*
* This function initialize an xarray structure.
*/
void
xa_init_flags(struct xarray *xa, uint32_t flags)
{
memset(xa, 0, sizeof(*xa));
mtx_init(&xa->mtx, "lkpi-xarray", NULL, MTX_DEF | MTX_RECURSE);
xa->root.gfp_mask = GFP_NOWAIT;
}
/*
* This function destroys an xarray structure and all its internal
* memory and locks.
*/
void
xa_destroy(struct xarray *xa)
{
struct radix_tree_iter iter;
void **ppslot;
radix_tree_for_each_slot(ppslot, &xa->root, &iter, 0)
radix_tree_iter_delete(&xa->root, &iter, ppslot);
mtx_destroy(&xa->mtx);
}
/*
* This function checks if an xarray is empty or not.
* It returns true if empty, else false.
*/
bool
__xa_empty(struct xarray *xa)
{
struct radix_tree_iter iter = {};
void **temp;
XA_ASSERT_LOCKED(xa);
return (!radix_tree_iter_find(&xa->root, &iter, &temp));
}
bool
xa_empty(struct xarray *xa)
{
bool retval;
xa_lock(xa);
retval = __xa_empty(xa);
xa_unlock(xa);
return (retval);
}
/*
* This function returns the next valid xarray entry based on the
* index given by "pindex". The valued pointed to by "pindex" is
* updated before return.
*/
void *
__xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
{
struct radix_tree_iter iter = { .index = *pindex };
void **ppslot;
void *retval;
bool found;
XA_ASSERT_LOCKED(xa);
if (not_first) {
/* advance to next index, if any */
iter.index++;
if (iter.index == 0)
return (NULL);
}
found = radix_tree_iter_find(&xa->root, &iter, &ppslot);
if (likely(found)) {
retval = *ppslot;
*pindex = iter.index;
} else {
retval = NULL;
}
return (retval);
}
void *
xa_next(struct xarray *xa, unsigned long *pindex, bool not_first)
{
void *retval;
xa_lock(xa);
retval = __xa_next(xa, pindex, not_first);
xa_unlock(xa);
return (retval);
}