/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2019 Joyent, Inc.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright (c) 2012 DEY Storage Systems, Inc. All rights reserved.
* Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
* Copyright (c) 2013 Martin Matuska. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright 2017-2018 RackTop Systems.
* Copyright (c) 2019 Datto Inc.
* Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>
*/
#include <ctype.h>
#include <errno.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <stddef.h>
#include <zone.h>
#include <fcntl.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <pwd.h>
#include <grp.h>
#include <stddef.h>
#include <ucred.h>
#ifdef HAVE_IDMAP
#include <idmap.h>
#include <aclutils.h>
#include <directory.h>
#endif /* HAVE_IDMAP */
#include <sys/dnode.h>
#include <sys/spa.h>
#include <sys/zap.h>
#include <sys/dsl_crypt.h>
#include <libzfs.h>
#include <libzutil.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "libzfs_impl.h"
#include "libzfs.h"
#include "zfs_deleg.h"
static int userquota_propname_decode(const char *propname, boolean_t zoned,
zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp);
/*
* Given a single type (not a mask of types), return the type in a human
* readable form.
*/
const char *
zfs_type_to_name(zfs_type_t type)
{
switch (type) {
case ZFS_TYPE_FILESYSTEM:
return (dgettext(TEXT_DOMAIN, "filesystem"));
case ZFS_TYPE_SNAPSHOT:
return (dgettext(TEXT_DOMAIN, "snapshot"));
case ZFS_TYPE_VOLUME:
return (dgettext(TEXT_DOMAIN, "volume"));
case ZFS_TYPE_POOL:
return (dgettext(TEXT_DOMAIN, "pool"));
case ZFS_TYPE_BOOKMARK:
return (dgettext(TEXT_DOMAIN, "bookmark"));
default:
assert(!"unhandled zfs_type_t");
}
return (NULL);
}
/*
* Validate a ZFS path. This is used even before trying to open the dataset, to
* provide a more meaningful error message. We call zfs_error_aux() to
* explain exactly why the name was not valid.
*/
int
zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type,
boolean_t modifying)
{
namecheck_err_t why;
char what;
if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshot delimiter '@' is not expected here"));
return (0);
}
if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing '@' delimiter in snapshot name"));
return (0);
}
if (!(type & ZFS_TYPE_BOOKMARK) && strchr(path, '#') != NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"bookmark delimiter '#' is not expected here"));
return (0);
}
if (type == ZFS_TYPE_BOOKMARK && strchr(path, '#') == NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing '#' delimiter in bookmark name"));
return (0);
}
if (modifying && strchr(path, '%') != NULL) {
if (hdl != NULL)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid character %c in name"), '%');
return (0);
}
if (entity_namecheck(path, &why, &what) != 0) {
if (hdl != NULL) {
switch (why) {
case NAME_ERR_TOOLONG:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"name is too long"));
break;
case NAME_ERR_LEADING_SLASH:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"leading slash in name"));
break;
case NAME_ERR_EMPTY_COMPONENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"empty component or misplaced '@'"
" or '#' delimiter in name"));
break;
case NAME_ERR_TRAILING_SLASH:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"trailing slash in name"));
break;
case NAME_ERR_INVALCHAR:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "invalid character "
"'%c' in name"), what);
break;
case NAME_ERR_MULTIPLE_DELIMITERS:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"multiple '@' and/or '#' delimiters in "
"name"));
break;
case NAME_ERR_NOLETTER:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool doesn't begin with a letter"));
break;
case NAME_ERR_RESERVED:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"name is reserved"));
break;
case NAME_ERR_DISKLIKE:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"reserved disk name"));
break;
case NAME_ERR_SELF_REF:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"self reference, '.' is found in name"));
break;
case NAME_ERR_PARENT_REF:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent reference, '..' is found in name"));
break;
default:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"(%d) not defined"), why);
break;
}
}
return (0);
}
return (-1);
}
int
zfs_name_valid(const char *name, zfs_type_t type)
{
if (type == ZFS_TYPE_POOL)
return (zpool_name_valid(NULL, B_FALSE, name));
return (zfs_validate_name(NULL, name, type, B_FALSE));
}
/*
* This function takes the raw DSL properties, and filters out the user-defined
* properties into a separate nvlist.
*/
static nvlist_t *
process_user_props(zfs_handle_t *zhp, nvlist_t *props)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvpair_t *elem;
nvlist_t *propval;
nvlist_t *nvl;
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
(void) no_memory(hdl);
return (NULL);
}
elem = NULL;
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
if (!zfs_prop_user(nvpair_name(elem)))
continue;
verify(nvpair_value_nvlist(elem, &propval) == 0);
if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) {
nvlist_free(nvl);
(void) no_memory(hdl);
return (NULL);
}
}
return (nvl);
}
static zpool_handle_t *
zpool_add_handle(zfs_handle_t *zhp, const char *pool_name)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zpool_handle_t *zph;
if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) {
if (hdl->libzfs_pool_handles != NULL)
zph->zpool_next = hdl->libzfs_pool_handles;
hdl->libzfs_pool_handles = zph;
}
return (zph);
}
static zpool_handle_t *
zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zpool_handle_t *zph = hdl->libzfs_pool_handles;
while ((zph != NULL) &&
(strncmp(pool_name, zpool_get_name(zph), len) != 0))
zph = zph->zpool_next;
return (zph);
}
/*
* Returns a handle to the pool that contains the provided dataset.
* If a handle to that pool already exists then that handle is returned.
* Otherwise, a new handle is created and added to the list of handles.
*/
static zpool_handle_t *
zpool_handle(zfs_handle_t *zhp)
{
char *pool_name;
int len;
zpool_handle_t *zph;
len = strcspn(zhp->zfs_name, "/@#") + 1;
pool_name = zfs_alloc(zhp->zfs_hdl, len);
(void) strlcpy(pool_name, zhp->zfs_name, len);
zph = zpool_find_handle(zhp, pool_name, len);
if (zph == NULL)
zph = zpool_add_handle(zhp, pool_name);
free(pool_name);
return (zph);
}
void
zpool_free_handles(libzfs_handle_t *hdl)
{
zpool_handle_t *next, *zph = hdl->libzfs_pool_handles;
while (zph != NULL) {
next = zph->zpool_next;
zpool_close(zph);
zph = next;
}
hdl->libzfs_pool_handles = NULL;
}
/*
* Utility function to gather stats (objset and zpl) for the given object.
*/
static int
get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
(void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name));
while (zfs_ioctl(hdl, ZFS_IOC_OBJSET_STATS, zc) != 0) {
if (errno == ENOMEM) {
if (zcmd_expand_dst_nvlist(hdl, zc) != 0) {
return (-1);
}
} else {
return (-1);
}
}
return (0);
}
/*
* Utility function to get the received properties of the given object.
*/
static int
get_recvd_props_ioctl(zfs_handle_t *zhp)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvlist_t *recvdprops;
zfs_cmd_t zc = {"\0"};
int err;
if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0)
return (-1);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
while (zfs_ioctl(hdl, ZFS_IOC_OBJSET_RECVD_PROPS, &zc) != 0) {
if (errno == ENOMEM) {
if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
return (-1);
}
} else {
zcmd_free_nvlists(&zc);
return (-1);
}
}
err = zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &recvdprops);
zcmd_free_nvlists(&zc);
if (err != 0)
return (-1);
nvlist_free(zhp->zfs_recvd_props);
zhp->zfs_recvd_props = recvdprops;
return (0);
}
static int
put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc)
{
nvlist_t *allprops, *userprops;
zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */
if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) {
return (-1);
}
/*
* XXX Why do we store the user props separately, in addition to
* storing them in zfs_props?
*/
if ((userprops = process_user_props(zhp, allprops)) == NULL) {
nvlist_free(allprops);
return (-1);
}
nvlist_free(zhp->zfs_props);
nvlist_free(zhp->zfs_user_props);
zhp->zfs_props = allprops;
zhp->zfs_user_props = userprops;
return (0);
}
static int
get_stats(zfs_handle_t *zhp)
{
int rc = 0;
zfs_cmd_t zc = {"\0"};
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
if (get_stats_ioctl(zhp, &zc) != 0)
rc = -1;
else if (put_stats_zhdl(zhp, &zc) != 0)
rc = -1;
zcmd_free_nvlists(&zc);
return (rc);
}
/*
* Refresh the properties currently stored in the handle.
*/
void
zfs_refresh_properties(zfs_handle_t *zhp)
{
(void) get_stats(zhp);
}
/*
* Makes a handle from the given dataset name. Used by zfs_open() and
* zfs_iter_* to create child handles on the fly.
*/
static int
make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc)
{
if (put_stats_zhdl(zhp, zc) != 0)
return (-1);
/*
* We've managed to open the dataset and gather statistics. Determine
* the high-level type.
*/
if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
zhp->zfs_head_type = ZFS_TYPE_VOLUME;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_OTHER)
return (-1);
else
abort();
if (zhp->zfs_dmustats.dds_is_snapshot)
zhp->zfs_type = ZFS_TYPE_SNAPSHOT;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL)
zhp->zfs_type = ZFS_TYPE_VOLUME;
else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS)
zhp->zfs_type = ZFS_TYPE_FILESYSTEM;
else
abort(); /* we should never see any other types */
if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL)
return (-1);
return (0);
}
zfs_handle_t *
make_dataset_handle(libzfs_handle_t *hdl, const char *path)
{
zfs_cmd_t zc = {"\0"};
zfs_handle_t *zhp = calloc(1, sizeof (zfs_handle_t));
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = hdl;
(void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name));
if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) {
free(zhp);
return (NULL);
}
if (get_stats_ioctl(zhp, &zc) == -1) {
zcmd_free_nvlists(&zc);
free(zhp);
return (NULL);
}
if (make_dataset_handle_common(zhp, &zc) == -1) {
free(zhp);
zhp = NULL;
}
zcmd_free_nvlists(&zc);
return (zhp);
}
zfs_handle_t *
make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc)
{
zfs_handle_t *zhp = calloc(1, sizeof (zfs_handle_t));
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = hdl;
(void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name));
if (make_dataset_handle_common(zhp, zc) == -1) {
free(zhp);
return (NULL);
}
return (zhp);
}
zfs_handle_t *
make_dataset_simple_handle_zc(zfs_handle_t *pzhp, zfs_cmd_t *zc)
{
zfs_handle_t *zhp = calloc(1, sizeof (zfs_handle_t));
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = pzhp->zfs_hdl;
(void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name));
zhp->zfs_head_type = pzhp->zfs_type;
zhp->zfs_type = ZFS_TYPE_SNAPSHOT;
zhp->zpool_hdl = zpool_handle(zhp);
return (zhp);
}
zfs_handle_t *
zfs_handle_dup(zfs_handle_t *zhp_orig)
{
zfs_handle_t *zhp = calloc(1, sizeof (zfs_handle_t));
if (zhp == NULL)
return (NULL);
zhp->zfs_hdl = zhp_orig->zfs_hdl;
zhp->zpool_hdl = zhp_orig->zpool_hdl;
(void) strlcpy(zhp->zfs_name, zhp_orig->zfs_name,
sizeof (zhp->zfs_name));
zhp->zfs_type = zhp_orig->zfs_type;
zhp->zfs_head_type = zhp_orig->zfs_head_type;
zhp->zfs_dmustats = zhp_orig->zfs_dmustats;
if (zhp_orig->zfs_props != NULL) {
if (nvlist_dup(zhp_orig->zfs_props, &zhp->zfs_props, 0) != 0) {
(void) no_memory(zhp->zfs_hdl);
zfs_close(zhp);
return (NULL);
}
}
if (zhp_orig->zfs_user_props != NULL) {
if (nvlist_dup(zhp_orig->zfs_user_props,
&zhp->zfs_user_props, 0) != 0) {
(void) no_memory(zhp->zfs_hdl);
zfs_close(zhp);
return (NULL);
}
}
if (zhp_orig->zfs_recvd_props != NULL) {
if (nvlist_dup(zhp_orig->zfs_recvd_props,
&zhp->zfs_recvd_props, 0)) {
(void) no_memory(zhp->zfs_hdl);
zfs_close(zhp);
return (NULL);
}
}
zhp->zfs_mntcheck = zhp_orig->zfs_mntcheck;
if (zhp_orig->zfs_mntopts != NULL) {
zhp->zfs_mntopts = zfs_strdup(zhp_orig->zfs_hdl,
zhp_orig->zfs_mntopts);
}
zhp->zfs_props_table = zhp_orig->zfs_props_table;
return (zhp);
}
boolean_t
zfs_bookmark_exists(const char *path)
{
nvlist_t *bmarks;
nvlist_t *props;
char fsname[ZFS_MAX_DATASET_NAME_LEN];
char *bmark_name;
char *pound;
int err;
boolean_t rv;
(void) strlcpy(fsname, path, sizeof (fsname));
pound = strchr(fsname, '#');
if (pound == NULL)
return (B_FALSE);
*pound = '\0';
bmark_name = pound + 1;
props = fnvlist_alloc();
err = lzc_get_bookmarks(fsname, props, &bmarks);
nvlist_free(props);
if (err != 0) {
nvlist_free(bmarks);
return (B_FALSE);
}
rv = nvlist_exists(bmarks, bmark_name);
nvlist_free(bmarks);
return (rv);
}
zfs_handle_t *
make_bookmark_handle(zfs_handle_t *parent, const char *path,
nvlist_t *bmark_props)
{
zfs_handle_t *zhp = calloc(1, sizeof (zfs_handle_t));
if (zhp == NULL)
return (NULL);
/* Fill in the name. */
zhp->zfs_hdl = parent->zfs_hdl;
(void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name));
/* Set the property lists. */
if (nvlist_dup(bmark_props, &zhp->zfs_props, 0) != 0) {
free(zhp);
return (NULL);
}
/* Set the types. */
zhp->zfs_head_type = parent->zfs_head_type;
zhp->zfs_type = ZFS_TYPE_BOOKMARK;
if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL) {
nvlist_free(zhp->zfs_props);
free(zhp);
return (NULL);
}
return (zhp);
}
struct zfs_open_bookmarks_cb_data {
const char *path;
zfs_handle_t *zhp;
};
static int
zfs_open_bookmarks_cb(zfs_handle_t *zhp, void *data)
{
struct zfs_open_bookmarks_cb_data *dp = data;
/*
* Is it the one we are looking for?
*/
if (strcmp(dp->path, zfs_get_name(zhp)) == 0) {
/*
* We found it. Save it and let the caller know we are done.
*/
dp->zhp = zhp;
return (EEXIST);
}
/*
* Not found. Close the handle and ask for another one.
*/
zfs_close(zhp);
return (0);
}
/*
* Opens the given snapshot, bookmark, filesystem, or volume. The 'types'
* argument is a mask of acceptable types. The function will print an
* appropriate error message and return NULL if it can't be opened.
*/
zfs_handle_t *
zfs_open(libzfs_handle_t *hdl, const char *path, int types)
{
zfs_handle_t *zhp;
char errbuf[1024];
char *bookp;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot open '%s'"), path);
/*
* Validate the name before we even try to open it.
*/
if (!zfs_validate_name(hdl, path, types, B_FALSE)) {
(void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf);
return (NULL);
}
/*
* Bookmarks needs to be handled separately.
*/
bookp = strchr(path, '#');
if (bookp == NULL) {
/*
* Try to get stats for the dataset, which will tell us if it
* exists.
*/
errno = 0;
if ((zhp = make_dataset_handle(hdl, path)) == NULL) {
(void) zfs_standard_error(hdl, errno, errbuf);
return (NULL);
}
} else {
char dsname[ZFS_MAX_DATASET_NAME_LEN];
zfs_handle_t *pzhp;
struct zfs_open_bookmarks_cb_data cb_data = {path, NULL};
/*
* We need to cut out '#' and everything after '#'
* to get the parent dataset name only.
*/
assert(bookp - path < sizeof (dsname));
(void) strncpy(dsname, path, bookp - path);
dsname[bookp - path] = '\0';
/*
* Create handle for the parent dataset.
*/
errno = 0;
if ((pzhp = make_dataset_handle(hdl, dsname)) == NULL) {
(void) zfs_standard_error(hdl, errno, errbuf);
return (NULL);
}
/*
* Iterate bookmarks to find the right one.
*/
errno = 0;
if ((zfs_iter_bookmarks(pzhp, zfs_open_bookmarks_cb,
&cb_data) == 0) && (cb_data.zhp == NULL)) {
(void) zfs_error(hdl, EZFS_NOENT, errbuf);
zfs_close(pzhp);
return (NULL);
}
if (cb_data.zhp == NULL) {
(void) zfs_standard_error(hdl, errno, errbuf);
zfs_close(pzhp);
return (NULL);
}
zhp = cb_data.zhp;
/*
* Cleanup.
*/
zfs_close(pzhp);
}
if (!(types & zhp->zfs_type)) {
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
zfs_close(zhp);
return (NULL);
}
return (zhp);
}
/*
* Release a ZFS handle. Nothing to do but free the associated memory.
*/
void
zfs_close(zfs_handle_t *zhp)
{
if (zhp->zfs_mntopts)
free(zhp->zfs_mntopts);
nvlist_free(zhp->zfs_props);
nvlist_free(zhp->zfs_user_props);
nvlist_free(zhp->zfs_recvd_props);
free(zhp);
}
typedef struct mnttab_node {
struct mnttab mtn_mt;
avl_node_t mtn_node;
} mnttab_node_t;
static int
libzfs_mnttab_cache_compare(const void *arg1, const void *arg2)
{
const mnttab_node_t *mtn1 = (const mnttab_node_t *)arg1;
const mnttab_node_t *mtn2 = (const mnttab_node_t *)arg2;
int rv;
rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special);
return (TREE_ISIGN(rv));
}
void
libzfs_mnttab_init(libzfs_handle_t *hdl)
{
pthread_mutex_init(&hdl->libzfs_mnttab_cache_lock, NULL);
assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0);
avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare,
sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node));
}
static int
libzfs_mnttab_update(libzfs_handle_t *hdl)
{
struct mnttab entry;
/* Reopen MNTTAB to prevent reading stale data from open file */
if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
return (ENOENT);
while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
mnttab_node_t *mtn;
avl_index_t where;
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special);
mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp);
mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype);
mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts);
/* Exclude duplicate mounts */
if (avl_find(&hdl->libzfs_mnttab_cache, mtn, &where) != NULL) {
free(mtn->mtn_mt.mnt_special);
free(mtn->mtn_mt.mnt_mountp);
free(mtn->mtn_mt.mnt_fstype);
free(mtn->mtn_mt.mnt_mntopts);
free(mtn);
continue;
}
avl_add(&hdl->libzfs_mnttab_cache, mtn);
}
return (0);
}
void
libzfs_mnttab_fini(libzfs_handle_t *hdl)
{
void *cookie = NULL;
mnttab_node_t *mtn;
while ((mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie))
!= NULL) {
free(mtn->mtn_mt.mnt_special);
free(mtn->mtn_mt.mnt_mountp);
free(mtn->mtn_mt.mnt_fstype);
free(mtn->mtn_mt.mnt_mntopts);
free(mtn);
}
avl_destroy(&hdl->libzfs_mnttab_cache);
(void) pthread_mutex_destroy(&hdl->libzfs_mnttab_cache_lock);
}
void
libzfs_mnttab_cache(libzfs_handle_t *hdl, boolean_t enable)
{
hdl->libzfs_mnttab_enable = enable;
}
int
libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname,
struct mnttab *entry)
{
mnttab_node_t find;
mnttab_node_t *mtn;
int ret = ENOENT;
if (!hdl->libzfs_mnttab_enable) {
struct mnttab srch = { 0 };
if (avl_numnodes(&hdl->libzfs_mnttab_cache))
libzfs_mnttab_fini(hdl);
/* Reopen MNTTAB to prevent reading stale data from open file */
if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
return (ENOENT);
srch.mnt_special = (char *)fsname;
srch.mnt_fstype = MNTTYPE_ZFS;
if (getmntany(hdl->libzfs_mnttab, entry, &srch) == 0)
return (0);
else
return (ENOENT);
}
pthread_mutex_lock(&hdl->libzfs_mnttab_cache_lock);
if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) {
int error;
if ((error = libzfs_mnttab_update(hdl)) != 0) {
pthread_mutex_unlock(&hdl->libzfs_mnttab_cache_lock);
return (error);
}
}
find.mtn_mt.mnt_special = (char *)fsname;
mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL);
if (mtn) {
*entry = mtn->mtn_mt;
ret = 0;
}
pthread_mutex_unlock(&hdl->libzfs_mnttab_cache_lock);
return (ret);
}
void
libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special,
const char *mountp, const char *mntopts)
{
mnttab_node_t *mtn;
pthread_mutex_lock(&hdl->libzfs_mnttab_cache_lock);
if (avl_numnodes(&hdl->libzfs_mnttab_cache) != 0) {
mtn = zfs_alloc(hdl, sizeof (mnttab_node_t));
mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special);
mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp);
mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS);
mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts);
/*
* Another thread may have already added this entry
* via libzfs_mnttab_update. If so we should skip it.
*/
if (avl_find(&hdl->libzfs_mnttab_cache, mtn, NULL) != NULL) {
free(mtn->mtn_mt.mnt_special);
free(mtn->mtn_mt.mnt_mountp);
free(mtn->mtn_mt.mnt_fstype);
free(mtn->mtn_mt.mnt_mntopts);
free(mtn);
} else {
avl_add(&hdl->libzfs_mnttab_cache, mtn);
}
}
pthread_mutex_unlock(&hdl->libzfs_mnttab_cache_lock);
}
void
libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname)
{
mnttab_node_t find;
mnttab_node_t *ret;
pthread_mutex_lock(&hdl->libzfs_mnttab_cache_lock);
find.mtn_mt.mnt_special = (char *)fsname;
if ((ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL))
!= NULL) {
avl_remove(&hdl->libzfs_mnttab_cache, ret);
free(ret->mtn_mt.mnt_special);
free(ret->mtn_mt.mnt_mountp);
free(ret->mtn_mt.mnt_fstype);
free(ret->mtn_mt.mnt_mntopts);
free(ret);
}
pthread_mutex_unlock(&hdl->libzfs_mnttab_cache_lock);
}
int
zfs_spa_version(zfs_handle_t *zhp, int *spa_version)
{
zpool_handle_t *zpool_handle = zhp->zpool_hdl;
if (zpool_handle == NULL)
return (-1);
*spa_version = zpool_get_prop_int(zpool_handle,
ZPOOL_PROP_VERSION, NULL);
return (0);
}
/*
* The choice of reservation property depends on the SPA version.
*/
static int
zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop)
{
int spa_version;
if (zfs_spa_version(zhp, &spa_version) < 0)
return (-1);
if (spa_version >= SPA_VERSION_REFRESERVATION)
*resv_prop = ZFS_PROP_REFRESERVATION;
else
*resv_prop = ZFS_PROP_RESERVATION;
return (0);
}
/*
* Given an nvlist of properties to set, validates that they are correct, and
* parses any numeric properties (index, boolean, etc) if they are specified as
* strings.
*/
nvlist_t *
zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl,
uint64_t zoned, zfs_handle_t *zhp, zpool_handle_t *zpool_hdl,
boolean_t key_params_ok, const char *errbuf)
{
nvpair_t *elem;
uint64_t intval;
char *strval;
zfs_prop_t prop;
nvlist_t *ret;
int chosen_normal = -1;
int chosen_utf = -1;
if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) {
(void) no_memory(hdl);
return (NULL);
}
/*
* Make sure this property is valid and applies to this type.
*/
elem = NULL;
while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) {
const char *propname = nvpair_name(elem);
prop = zfs_name_to_prop(propname);
if (prop == ZPROP_INVAL && zfs_prop_user(propname)) {
/*
* This is a user property: make sure it's a
* string, and that it's less than ZAP_MAXNAMELEN.
*/
if (nvpair_type(elem) != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"property name '%s' is too long"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
(void) nvpair_value_string(elem, &strval);
if (nvlist_add_string(ret, propname, strval) != 0) {
(void) no_memory(hdl);
goto error;
}
continue;
}
/*
* Currently, only user properties can be modified on
* snapshots.
*/
if (type == ZFS_TYPE_SNAPSHOT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"this property can not be modified for snapshots"));
(void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
goto error;
}
if (prop == ZPROP_INVAL && zfs_prop_userquota(propname)) {
zfs_userquota_prop_t uqtype;
char *newpropname = NULL;
char domain[128];
uint64_t rid;
uint64_t valary[3];
int rc;
if (userquota_propname_decode(propname, zoned,
&uqtype, domain, sizeof (domain), &rid) != 0) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"'%s' has an invalid user/group name"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
if (uqtype != ZFS_PROP_USERQUOTA &&
uqtype != ZFS_PROP_GROUPQUOTA &&
uqtype != ZFS_PROP_USEROBJQUOTA &&
uqtype != ZFS_PROP_GROUPOBJQUOTA &&
uqtype != ZFS_PROP_PROJECTQUOTA &&
uqtype != ZFS_PROP_PROJECTOBJQUOTA) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "'%s' is readonly"),
propname);
(void) zfs_error(hdl, EZFS_PROPREADONLY,
errbuf);
goto error;
}
if (nvpair_type(elem) == DATA_TYPE_STRING) {
(void) nvpair_value_string(elem, &strval);
if (strcmp(strval, "none") == 0) {
intval = 0;
} else if (zfs_nicestrtonum(hdl,
strval, &intval) != 0) {
(void) zfs_error(hdl,
EZFS_BADPROP, errbuf);
goto error;
}
} else if (nvpair_type(elem) ==
DATA_TYPE_UINT64) {
(void) nvpair_value_uint64(elem, &intval);
if (intval == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"use 'none' to disable "
"{user|group|project}quota"));
goto error;
}
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a number"), propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
/*
* Encode the prop name as
* userquota@<hex-rid>-domain, to make it easy
* for the kernel to decode.
*/
rc = asprintf(&newpropname, "%s%llx-%s",
zfs_userquota_prop_prefixes[uqtype],
(longlong_t)rid, domain);
if (rc == -1 || newpropname == NULL) {
(void) no_memory(hdl);
goto error;
}
valary[0] = uqtype;
valary[1] = rid;
valary[2] = intval;
if (nvlist_add_uint64_array(ret, newpropname,
valary, 3) != 0) {
free(newpropname);
(void) no_memory(hdl);
goto error;
}
free(newpropname);
continue;
} else if (prop == ZPROP_INVAL && zfs_prop_written(propname)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is readonly"),
propname);
(void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
goto error;
}
if (prop == ZPROP_INVAL) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), propname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
if (!zfs_prop_valid_for_type(prop, type, B_FALSE)) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "'%s' does not "
"apply to datasets of this type"), propname);
(void) zfs_error(hdl, EZFS_PROPTYPE, errbuf);
goto error;
}
if (zfs_prop_readonly(prop) &&
!(zfs_prop_setonce(prop) && zhp == NULL) &&
!(zfs_prop_encryption_key_param(prop) && key_params_ok)) {
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "'%s' is readonly"),
propname);
(void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf);
goto error;
}
if (zprop_parse_value(hdl, elem, prop, type, ret,
&strval, &intval, errbuf) != 0)
goto error;
/*
* Perform some additional checks for specific properties.
*/
switch (prop) {
case ZFS_PROP_VERSION:
{
int version;
if (zhp == NULL)
break;
version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
if (intval < version) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Can not downgrade; already at version %u"),
version);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
}
case ZFS_PROP_VOLBLOCKSIZE:
case ZFS_PROP_RECORDSIZE:
{
int maxbs = SPA_MAXBLOCKSIZE;
char buf[64];
if (zpool_hdl != NULL) {
maxbs = zpool_get_prop_int(zpool_hdl,
ZPOOL_PROP_MAXBLOCKSIZE, NULL);
}
/*
* The value must be a power of two between
* SPA_MINBLOCKSIZE and maxbs.
*/
if (intval < SPA_MINBLOCKSIZE ||
intval > maxbs || !ISP2(intval)) {
zfs_nicebytes(maxbs, buf, sizeof (buf));
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be power of 2 from 512B "
"to %s"), propname, buf);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
}
case ZFS_PROP_SPECIAL_SMALL_BLOCKS:
{
int maxbs = SPA_OLD_MAXBLOCKSIZE;
char buf[64];
if (zpool_hdl != NULL) {
char state[64] = "";
maxbs = zpool_get_prop_int(zpool_hdl,
ZPOOL_PROP_MAXBLOCKSIZE, NULL);
/*
* Issue a warning but do not fail so that
* tests for settable properties succeed.
*/
if (zpool_prop_get_feature(zpool_hdl,
"feature@allocation_classes", state,
sizeof (state)) != 0 ||
strcmp(state, ZFS_FEATURE_ACTIVE) != 0) {
(void) fprintf(stderr, gettext(
"%s: property requires a special "
"device in the pool\n"), propname);
}
}
if (intval != 0 &&
(intval < SPA_MINBLOCKSIZE ||
intval > maxbs || !ISP2(intval))) {
zfs_nicebytes(maxbs, buf, sizeof (buf));
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid '%s=%d' property: must be zero or "
"a power of 2 from 512B to %s"), propname,
intval, buf);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
}
case ZFS_PROP_MLSLABEL:
{
#ifdef HAVE_MLSLABEL
/*
* Verify the mlslabel string and convert to
* internal hex label string.
*/
m_label_t *new_sl;
char *hex = NULL; /* internal label string */
/* Default value is already OK. */
if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
break;
/* Verify the label can be converted to binary form */
if (((new_sl = m_label_alloc(MAC_LABEL)) == NULL) ||
(str_to_label(strval, &new_sl, MAC_LABEL,
L_NO_CORRECTION, NULL) == -1)) {
goto badlabel;
}
/* Now translate to hex internal label string */
if (label_to_str(new_sl, &hex, M_INTERNAL,
DEF_NAMES) != 0) {
if (hex)
free(hex);
goto badlabel;
}
m_label_free(new_sl);
/* If string is already in internal form, we're done. */
if (strcmp(strval, hex) == 0) {
free(hex);
break;
}
/* Replace the label string with the internal form. */
(void) nvlist_remove(ret, zfs_prop_to_name(prop),
DATA_TYPE_STRING);
verify(nvlist_add_string(ret, zfs_prop_to_name(prop),
hex) == 0);
free(hex);
break;
badlabel:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid mlslabel '%s'"), strval);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
m_label_free(new_sl); /* OK if null */
goto error;
#else
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"mlslabels are unsupported"));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
#endif /* HAVE_MLSLABEL */
}
case ZFS_PROP_MOUNTPOINT:
{
namecheck_err_t why;
if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0)
break;
if (mountpoint_namecheck(strval, &why)) {
switch (why) {
case NAME_ERR_LEADING_SLASH:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"'%s' must be an absolute path, "
"'none', or 'legacy'"), propname);
break;
case NAME_ERR_TOOLONG:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"component of '%s' is too long"),
propname);
break;
default:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN,
"(%d) not defined"),
why);
break;
}
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
}
/*FALLTHRU*/
case ZFS_PROP_SHARESMB:
case ZFS_PROP_SHARENFS:
/*
* For the mountpoint and sharenfs or sharesmb
* properties, check if it can be set in a
* global/non-global zone based on
* the zoned property value:
*
* global zone non-global zone
* --------------------------------------------------
* zoned=on mountpoint (no) mountpoint (yes)
* sharenfs (no) sharenfs (no)
* sharesmb (no) sharesmb (no)
*
* zoned=off mountpoint (yes) N/A
* sharenfs (yes)
* sharesmb (yes)
*/
if (zoned) {
if (getzoneid() == GLOBAL_ZONEID) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set on "
"dataset in a non-global zone"),
propname);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;
} else if (prop == ZFS_PROP_SHARENFS ||
prop == ZFS_PROP_SHARESMB) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set in "
"a non-global zone"), propname);
(void) zfs_error(hdl, EZFS_ZONED,
errbuf);
goto error;
}
} else if (getzoneid() != GLOBAL_ZONEID) {
/*
* If zoned property is 'off', this must be in
* a global zone. If not, something is wrong.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set while dataset "
"'zoned' property is set"), propname);
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
/*
* At this point, it is legitimate to set the
* property. Now we want to make sure that the
* property value is valid if it is sharenfs.
*/
if ((prop == ZFS_PROP_SHARENFS ||
prop == ZFS_PROP_SHARESMB) &&
strcmp(strval, "on") != 0 &&
strcmp(strval, "off") != 0) {
zfs_share_proto_t proto;
if (prop == ZFS_PROP_SHARESMB)
proto = PROTO_SMB;
else
proto = PROTO_NFS;
if (zfs_parse_options(strval, proto) != SA_OK) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be set to invalid "
"options"), propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
}
break;
case ZFS_PROP_KEYLOCATION:
if (!zfs_prop_valid_keylocation(strval, B_FALSE)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid keylocation"));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
if (zhp != NULL) {
uint64_t crypt =
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION);
if (crypt == ZIO_CRYPT_OFF &&
strcmp(strval, "none") != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"keylocation must be 'none' "
"for unencrypted datasets"));
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
} else if (crypt != ZIO_CRYPT_OFF &&
strcmp(strval, "none") == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"keylocation must not be 'none' "
"for encrypted datasets"));
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
}
break;
case ZFS_PROP_PBKDF2_ITERS:
if (intval < MIN_PBKDF2_ITERATIONS) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"minimum pbkdf2 iterations is %u"),
MIN_PBKDF2_ITERATIONS);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
break;
case ZFS_PROP_UTF8ONLY:
chosen_utf = (int)intval;
break;
case ZFS_PROP_NORMALIZE:
chosen_normal = (int)intval;
break;
default:
break;
}
/*
* For changes to existing volumes, we have some additional
* checks to enforce.
*/
if (type == ZFS_TYPE_VOLUME && zhp != NULL) {
uint64_t blocksize = zfs_prop_get_int(zhp,
ZFS_PROP_VOLBLOCKSIZE);
char buf[64];
switch (prop) {
case ZFS_PROP_VOLSIZE:
if (intval % blocksize != 0) {
zfs_nicebytes(blocksize, buf,
sizeof (buf));
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a multiple of "
"volume block size (%s)"),
propname, buf);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
if (intval == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' cannot be zero"),
propname);
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
break;
default:
break;
}
}
/* check encryption properties */
if (zhp != NULL) {
int64_t crypt = zfs_prop_get_int(zhp,
ZFS_PROP_ENCRYPTION);
switch (prop) {
case ZFS_PROP_COPIES:
if (crypt != ZIO_CRYPT_OFF && intval > 2) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encrypted datasets cannot have "
"3 copies"));
(void) zfs_error(hdl, EZFS_BADPROP,
errbuf);
goto error;
}
break;
default:
break;
}
}
}
/*
* If normalization was chosen, but no UTF8 choice was made,
* enforce rejection of non-UTF8 names.
*
* If normalization was chosen, but rejecting non-UTF8 names
* was explicitly not chosen, it is an error.
*/
if (chosen_normal > 0 && chosen_utf < 0) {
if (nvlist_add_uint64(ret,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) {
(void) no_memory(hdl);
goto error;
}
} else if (chosen_normal > 0 && chosen_utf == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be set 'on' if normalization chosen"),
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
return (ret);
error:
nvlist_free(ret);
return (NULL);
}
static int
zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl)
{
uint64_t old_volsize;
uint64_t new_volsize;
uint64_t old_reservation;
uint64_t new_reservation;
zfs_prop_t resv_prop;
nvlist_t *props;
zpool_handle_t *zph = zpool_handle(zhp);
/*
* If this is an existing volume, and someone is setting the volsize,
* make sure that it matches the reservation, or add it if necessary.
*/
old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
return (-1);
old_reservation = zfs_prop_get_int(zhp, resv_prop);
props = fnvlist_alloc();
fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE));
if ((zvol_volsize_to_reservation(zph, old_volsize, props) !=
old_reservation) || nvlist_exists(nvl,
zfs_prop_to_name(resv_prop))) {
fnvlist_free(props);
return (0);
}
if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&new_volsize) != 0) {
fnvlist_free(props);
return (-1);
}
new_reservation = zvol_volsize_to_reservation(zph, new_volsize, props);
fnvlist_free(props);
if (nvlist_add_uint64(nvl, zfs_prop_to_name(resv_prop),
new_reservation) != 0) {
(void) no_memory(zhp->zfs_hdl);
return (-1);
}
return (1);
}
/*
* Helper for 'zfs {set|clone} refreservation=auto'. Must be called after
* zfs_valid_proplist(), as it is what sets the UINT64_MAX sentinel value.
* Return codes must match zfs_add_synthetic_resv().
*/
static int
zfs_fix_auto_resv(zfs_handle_t *zhp, nvlist_t *nvl)
{
uint64_t volsize;
uint64_t resvsize;
zfs_prop_t prop;
nvlist_t *props;
if (!ZFS_IS_VOLUME(zhp)) {
return (0);
}
if (zfs_which_resv_prop(zhp, &prop) != 0) {
return (-1);
}
if (prop != ZFS_PROP_REFRESERVATION) {
return (0);
}
if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(prop), &resvsize) != 0) {
/* No value being set, so it can't be "auto" */
return (0);
}
if (resvsize != UINT64_MAX) {
/* Being set to a value other than "auto" */
return (0);
}
props = fnvlist_alloc();
fnvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE));
if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE),
&volsize) != 0) {
volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
}
resvsize = zvol_volsize_to_reservation(zpool_handle(zhp), volsize,
props);
fnvlist_free(props);
(void) nvlist_remove_all(nvl, zfs_prop_to_name(prop));
if (nvlist_add_uint64(nvl, zfs_prop_to_name(prop), resvsize) != 0) {
(void) no_memory(zhp->zfs_hdl);
return (-1);
}
return (1);
}
static boolean_t
zfs_is_namespace_prop(zfs_prop_t prop)
{
switch (prop) {
case ZFS_PROP_ATIME:
case ZFS_PROP_RELATIME:
case ZFS_PROP_DEVICES:
case ZFS_PROP_EXEC:
case ZFS_PROP_SETUID:
case ZFS_PROP_READONLY:
case ZFS_PROP_XATTR:
case ZFS_PROP_NBMAND:
return (B_TRUE);
default:
return (B_FALSE);
}
}
/*
* Given a property name and value, set the property for the given dataset.
*/
int
zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval)
{
int ret = -1;
char errbuf[1024];
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvlist_t *nvl = NULL;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot set property for '%s'"),
zhp->zfs_name);
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 ||
nvlist_add_string(nvl, propname, propval) != 0) {
(void) no_memory(hdl);
goto error;
}
ret = zfs_prop_set_list(zhp, nvl);
error:
nvlist_free(nvl);
return (ret);
}
/*
* Given an nvlist of property names and values, set the properties for the
* given dataset.
*/
int
zfs_prop_set_list(zfs_handle_t *zhp, nvlist_t *props)
{
zfs_cmd_t zc = {"\0"};
int ret = -1;
prop_changelist_t **cls = NULL;
int cl_idx;
char errbuf[1024];
libzfs_handle_t *hdl = zhp->zfs_hdl;
nvlist_t *nvl;
int nvl_len = 0;
int added_resv = 0;
zfs_prop_t prop = 0;
nvpair_t *elem;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot set property for '%s'"),
zhp->zfs_name);
if ((nvl = zfs_valid_proplist(hdl, zhp->zfs_type, props,
zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, zhp->zpool_hdl,
B_FALSE, errbuf)) == NULL)
goto error;
/*
* We have to check for any extra properties which need to be added
* before computing the length of the nvlist.
*/
for (elem = nvlist_next_nvpair(nvl, NULL);
elem != NULL;
elem = nvlist_next_nvpair(nvl, elem)) {
if (zfs_name_to_prop(nvpair_name(elem)) == ZFS_PROP_VOLSIZE &&
(added_resv = zfs_add_synthetic_resv(zhp, nvl)) == -1) {
goto error;
}
}
if (added_resv != 1 &&
(added_resv = zfs_fix_auto_resv(zhp, nvl)) == -1) {
goto error;
}
/*
* Check how many properties we're setting and allocate an array to
* store changelist pointers for postfix().
*/
for (elem = nvlist_next_nvpair(nvl, NULL);
elem != NULL;
elem = nvlist_next_nvpair(nvl, elem))
nvl_len++;
if ((cls = calloc(nvl_len, sizeof (prop_changelist_t *))) == NULL)
goto error;
cl_idx = 0;
for (elem = nvlist_next_nvpair(nvl, NULL);
elem != NULL;
elem = nvlist_next_nvpair(nvl, elem)) {
prop = zfs_name_to_prop(nvpair_name(elem));
assert(cl_idx < nvl_len);
/*
* We don't want to unmount & remount the dataset when changing
* its canmount property to 'on' or 'noauto'. We only use
* the changelist logic to unmount when setting canmount=off.
*/
if (prop != ZFS_PROP_CANMOUNT ||
(fnvpair_value_uint64(elem) == ZFS_CANMOUNT_OFF &&
zfs_is_mounted(zhp, NULL))) {
cls[cl_idx] = changelist_gather(zhp, prop, 0, 0);
if (cls[cl_idx] == NULL)
goto error;
}
if (prop == ZFS_PROP_MOUNTPOINT &&
changelist_haszonedchild(cls[cl_idx])) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
if (cls[cl_idx] != NULL &&
(ret = changelist_prefix(cls[cl_idx])) != 0)
goto error;
cl_idx++;
}
assert(cl_idx == nvl_len);
/*
* Execute the corresponding ioctl() to set this list of properties.
*/
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if ((ret = zcmd_write_src_nvlist(hdl, &zc, nvl)) != 0 ||
(ret = zcmd_alloc_dst_nvlist(hdl, &zc, 0)) != 0)
goto error;
ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);
if (ret != 0) {
if (zc.zc_nvlist_dst_filled == B_FALSE) {
(void) zfs_standard_error(hdl, errno, errbuf);
goto error;
}
/* Get the list of unset properties back and report them. */
nvlist_t *errorprops = NULL;
if (zcmd_read_dst_nvlist(hdl, &zc, &errorprops) != 0)
goto error;
for (nvpair_t *elem = nvlist_next_nvpair(errorprops, NULL);
elem != NULL;
elem = nvlist_next_nvpair(errorprops, elem)) {
prop = zfs_name_to_prop(nvpair_name(elem));
zfs_setprop_error(hdl, prop, errno, errbuf);
}
nvlist_free(errorprops);
if (added_resv && errno == ENOSPC) {
/* clean up the volsize property we tried to set */
uint64_t old_volsize = zfs_prop_get_int(zhp,
ZFS_PROP_VOLSIZE);
nvlist_free(nvl);
nvl = NULL;
zcmd_free_nvlists(&zc);
if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0)
goto error;
if (nvlist_add_uint64(nvl,
zfs_prop_to_name(ZFS_PROP_VOLSIZE),
old_volsize) != 0)
goto error;
if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0)
goto error;
(void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc);
}
} else {
for (cl_idx = 0; cl_idx < nvl_len; cl_idx++) {
if (cls[cl_idx] != NULL) {
int clp_err = changelist_postfix(cls[cl_idx]);
if (clp_err != 0)
ret = clp_err;
}
}
if (ret == 0) {
/*
* Refresh the statistics so the new property
* value is reflected.
*/
(void) get_stats(zhp);
/*
* Remount the filesystem to propagate the change
* if one of the options handled by the generic
* Linux namespace layer has been modified.
*/
if (zfs_is_namespace_prop(prop) &&
zfs_is_mounted(zhp, NULL))
ret = zfs_mount(zhp, MNTOPT_REMOUNT, 0);
}
}
error:
nvlist_free(nvl);
zcmd_free_nvlists(&zc);
if (cls != NULL) {
for (cl_idx = 0; cl_idx < nvl_len; cl_idx++) {
if (cls[cl_idx] != NULL)
changelist_free(cls[cl_idx]);
}
free(cls);
}
return (ret);
}
/*
* Given a property, inherit the value from the parent dataset, or if received
* is TRUE, revert to the received value, if any.
*/
int
zfs_prop_inherit(zfs_handle_t *zhp, const char *propname, boolean_t received)
{
zfs_cmd_t zc = {"\0"};
int ret;
prop_changelist_t *cl;
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
zfs_prop_t prop;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot inherit %s for '%s'"), propname, zhp->zfs_name);
zc.zc_cookie = received;
if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) {
/*
* For user properties, the amount of work we have to do is very
* small, so just do it here.
*/
if (!zfs_prop_user(propname)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0)
return (zfs_standard_error(hdl, errno, errbuf));
return (0);
}
/*
* Verify that this property is inheritable.
*/
if (zfs_prop_readonly(prop))
return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf));
if (!zfs_prop_inheritable(prop) && !received)
return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf));
/*
* Check to see if the value applies to this type
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type, B_FALSE))
return (zfs_error(hdl, EZFS_PROPTYPE, errbuf));
/*
* Normalize the name, to get rid of shorthand abbreviations.
*/
propname = zfs_prop_to_name(prop);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value));
if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID &&
zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is used in a non-global zone"));
return (zfs_error(hdl, EZFS_ZONED, errbuf));
}
/*
* Determine datasets which will be affected by this change, if any.
*/
if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL)
return (-1);
if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
ret = zfs_error(hdl, EZFS_ZONED, errbuf);
goto error;
}
if ((ret = changelist_prefix(cl)) != 0)
goto error;
if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) {
return (zfs_standard_error(hdl, errno, errbuf));
} else {
if ((ret = changelist_postfix(cl)) != 0)
goto error;
/*
* Refresh the statistics so the new property is reflected.
*/
(void) get_stats(zhp);
/*
* Remount the filesystem to propagate the change
* if one of the options handled by the generic
* Linux namespace layer has been modified.
*/
if (zfs_is_namespace_prop(prop) &&
zfs_is_mounted(zhp, NULL))
ret = zfs_mount(zhp, MNTOPT_REMOUNT, 0);
}
error:
changelist_free(cl);
return (ret);
}
/*
* True DSL properties are stored in an nvlist. The following two functions
* extract them appropriately.
*/
uint64_t
getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
{
nvlist_t *nv;
uint64_t value;
*source = NULL;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(prop), &nv) == 0) {
verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0);
(void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
} else {
verify(!zhp->zfs_props_table ||
zhp->zfs_props_table[prop] == B_TRUE);
value = zfs_prop_default_numeric(prop);
*source = "";
}
return (value);
}
static const char *
getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source)
{
nvlist_t *nv;
const char *value;
*source = NULL;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(prop), &nv) == 0) {
value = fnvlist_lookup_string(nv, ZPROP_VALUE);
(void) nvlist_lookup_string(nv, ZPROP_SOURCE, source);
} else {
verify(!zhp->zfs_props_table ||
zhp->zfs_props_table[prop] == B_TRUE);
value = zfs_prop_default_string(prop);
*source = "";
}
return (value);
}
static boolean_t
zfs_is_recvd_props_mode(zfs_handle_t *zhp)
{
return (zhp->zfs_props == zhp->zfs_recvd_props);
}
static void
zfs_set_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie)
{
*cookie = (uint64_t)(uintptr_t)zhp->zfs_props;
zhp->zfs_props = zhp->zfs_recvd_props;
}
static void
zfs_unset_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie)
{
zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie;
*cookie = 0;
}
/*
* Internal function for getting a numeric property. Both zfs_prop_get() and
* zfs_prop_get_int() are built using this interface.
*
* Certain properties can be overridden using 'mount -o'. In this case, scan
* the contents of the /proc/self/mounts entry, searching for the
* appropriate options. If they differ from the on-disk values, report the
* current values and mark the source "temporary".
*/
static int
get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src,
char **source, uint64_t *val)
{
zfs_cmd_t zc = {"\0"};
nvlist_t *zplprops = NULL;
struct mnttab mnt;
char *mntopt_on = NULL;
char *mntopt_off = NULL;
boolean_t received = zfs_is_recvd_props_mode(zhp);
*source = NULL;
/*
* If the property is being fetched for a snapshot, check whether
* the property is valid for the snapshot's head dataset type.
*/
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT &&
!zfs_prop_valid_for_type(prop, zhp->zfs_head_type, B_TRUE)) {
*val = zfs_prop_default_numeric(prop);
return (-1);
}
switch (prop) {
case ZFS_PROP_ATIME:
mntopt_on = MNTOPT_ATIME;
mntopt_off = MNTOPT_NOATIME;
break;
case ZFS_PROP_RELATIME:
mntopt_on = MNTOPT_RELATIME;
mntopt_off = MNTOPT_NORELATIME;
break;
case ZFS_PROP_DEVICES:
mntopt_on = MNTOPT_DEVICES;
mntopt_off = MNTOPT_NODEVICES;
break;
case ZFS_PROP_EXEC:
mntopt_on = MNTOPT_EXEC;
mntopt_off = MNTOPT_NOEXEC;
break;
case ZFS_PROP_READONLY:
mntopt_on = MNTOPT_RO;
mntopt_off = MNTOPT_RW;
break;
case ZFS_PROP_SETUID:
mntopt_on = MNTOPT_SETUID;
mntopt_off = MNTOPT_NOSETUID;
break;
case ZFS_PROP_XATTR:
mntopt_on = MNTOPT_XATTR;
mntopt_off = MNTOPT_NOXATTR;
break;
case ZFS_PROP_NBMAND:
mntopt_on = MNTOPT_NBMAND;
mntopt_off = MNTOPT_NONBMAND;
break;
default:
break;
}
/*
* Because looking up the mount options is potentially expensive
* (iterating over all of /proc/self/mounts), we defer its
* calculation until we're looking up a property which requires
* its presence.
*/
if (!zhp->zfs_mntcheck &&
(mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) {
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) {
zhp->zfs_mntopts = zfs_strdup(hdl,
entry.mnt_mntopts);
if (zhp->zfs_mntopts == NULL)
return (-1);
}
zhp->zfs_mntcheck = B_TRUE;
}
if (zhp->zfs_mntopts == NULL)
mnt.mnt_mntopts = "";
else
mnt.mnt_mntopts = zhp->zfs_mntopts;
switch (prop) {
case ZFS_PROP_ATIME:
case ZFS_PROP_RELATIME:
case ZFS_PROP_DEVICES:
case ZFS_PROP_EXEC:
case ZFS_PROP_READONLY:
case ZFS_PROP_SETUID:
#ifndef __FreeBSD__
case ZFS_PROP_XATTR:
#endif
case ZFS_PROP_NBMAND:
*val = getprop_uint64(zhp, prop, source);
if (received)
break;
if (hasmntopt(&mnt, mntopt_on) && !*val) {
*val = B_TRUE;
if (src)
*src = ZPROP_SRC_TEMPORARY;
} else if (hasmntopt(&mnt, mntopt_off) && *val) {
*val = B_FALSE;
if (src)
*src = ZPROP_SRC_TEMPORARY;
}
break;
case ZFS_PROP_CANMOUNT:
case ZFS_PROP_VOLSIZE:
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
case ZFS_PROP_FILESYSTEM_COUNT:
case ZFS_PROP_SNAPSHOT_COUNT:
*val = getprop_uint64(zhp, prop, source);
if (*source == NULL) {
/* not default, must be local */
*source = zhp->zfs_name;
}
break;
case ZFS_PROP_MOUNTED:
*val = (zhp->zfs_mntopts != NULL);
break;
case ZFS_PROP_NUMCLONES:
*val = zhp->zfs_dmustats.dds_num_clones;
break;
case ZFS_PROP_VERSION:
case ZFS_PROP_NORMALIZE:
case ZFS_PROP_UTF8ONLY:
case ZFS_PROP_CASE:
if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0)
return (-1);
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) {
zcmd_free_nvlists(&zc);
if (prop == ZFS_PROP_VERSION &&
zhp->zfs_type == ZFS_TYPE_VOLUME)
*val = zfs_prop_default_numeric(prop);
return (-1);
}
if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 ||
nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop),
val) != 0) {
zcmd_free_nvlists(&zc);
return (-1);
}
nvlist_free(zplprops);
zcmd_free_nvlists(&zc);
break;
case ZFS_PROP_INCONSISTENT:
*val = zhp->zfs_dmustats.dds_inconsistent;
break;
case ZFS_PROP_REDACTED:
*val = zhp->zfs_dmustats.dds_redacted;
break;
default:
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
case PROP_TYPE_INDEX:
*val = getprop_uint64(zhp, prop, source);
/*
* If we tried to use a default value for a
* readonly property, it means that it was not
* present. Note this only applies to "truly"
* readonly properties, not set-once properties
* like volblocksize.
*/
if (zfs_prop_readonly(prop) &&
!zfs_prop_setonce(prop) &&
*source != NULL && (*source)[0] == '\0') {
*source = NULL;
return (-1);
}
break;
case PROP_TYPE_STRING:
default:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"cannot get non-numeric property"));
return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP,
dgettext(TEXT_DOMAIN, "internal error")));
}
}
return (0);
}
/*
* Calculate the source type, given the raw source string.
*/
static void
get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source,
char *statbuf, size_t statlen)
{
if (statbuf == NULL ||
srctype == NULL || *srctype == ZPROP_SRC_TEMPORARY) {
return;
}
if (source == NULL) {
*srctype = ZPROP_SRC_NONE;
} else if (source[0] == '\0') {
*srctype = ZPROP_SRC_DEFAULT;
} else if (strstr(source, ZPROP_SOURCE_VAL_RECVD) != NULL) {
*srctype = ZPROP_SRC_RECEIVED;
} else {
if (strcmp(source, zhp->zfs_name) == 0) {
*srctype = ZPROP_SRC_LOCAL;
} else {
(void) strlcpy(statbuf, source, statlen);
*srctype = ZPROP_SRC_INHERITED;
}
}
}
int
zfs_prop_get_recvd(zfs_handle_t *zhp, const char *propname, char *propbuf,
size_t proplen, boolean_t literal)
{
zfs_prop_t prop;
int err = 0;
if (zhp->zfs_recvd_props == NULL)
if (get_recvd_props_ioctl(zhp) != 0)
return (-1);
prop = zfs_name_to_prop(propname);
if (prop != ZPROP_INVAL) {
uint64_t cookie;
if (!nvlist_exists(zhp->zfs_recvd_props, propname))
return (-1);
zfs_set_recvd_props_mode(zhp, &cookie);
err = zfs_prop_get(zhp, prop, propbuf, proplen,
NULL, NULL, 0, literal);
zfs_unset_recvd_props_mode(zhp, &cookie);
} else {
nvlist_t *propval;
char *recvdval;
if (nvlist_lookup_nvlist(zhp->zfs_recvd_props,
propname, &propval) != 0)
return (-1);
verify(nvlist_lookup_string(propval, ZPROP_VALUE,
&recvdval) == 0);
(void) strlcpy(propbuf, recvdval, proplen);
}
return (err == 0 ? 0 : -1);
}
static int
get_clones_string(zfs_handle_t *zhp, char *propbuf, size_t proplen)
{
nvlist_t *value;
nvpair_t *pair;
value = zfs_get_clones_nvl(zhp);
if (value == NULL)
return (-1);
propbuf[0] = '\0';
for (pair = nvlist_next_nvpair(value, NULL); pair != NULL;
pair = nvlist_next_nvpair(value, pair)) {
if (propbuf[0] != '\0')
(void) strlcat(propbuf, ",", proplen);
(void) strlcat(propbuf, nvpair_name(pair), proplen);
}
return (0);
}
struct get_clones_arg {
uint64_t numclones;
nvlist_t *value;
const char *origin;
char buf[ZFS_MAX_DATASET_NAME_LEN];
};
static int
get_clones_cb(zfs_handle_t *zhp, void *arg)
{
struct get_clones_arg *gca = arg;
if (gca->numclones == 0) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get(zhp, ZFS_PROP_ORIGIN, gca->buf, sizeof (gca->buf),
NULL, NULL, 0, B_TRUE) != 0)
goto out;
if (strcmp(gca->buf, gca->origin) == 0) {
fnvlist_add_boolean(gca->value, zfs_get_name(zhp));
gca->numclones--;
}
out:
(void) zfs_iter_children(zhp, get_clones_cb, gca);
zfs_close(zhp);
return (0);
}
nvlist_t *
zfs_get_clones_nvl(zfs_handle_t *zhp)
{
nvlist_t *nv, *value;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(ZFS_PROP_CLONES), &nv) != 0) {
struct get_clones_arg gca;
/*
* if this is a snapshot, then the kernel wasn't able
* to get the clones. Do it by slowly iterating.
*/
if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT)
return (NULL);
if (nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) != 0)
return (NULL);
if (nvlist_alloc(&value, NV_UNIQUE_NAME, 0) != 0) {
nvlist_free(nv);
return (NULL);
}
gca.numclones = zfs_prop_get_int(zhp, ZFS_PROP_NUMCLONES);
gca.value = value;
gca.origin = zhp->zfs_name;
if (gca.numclones != 0) {
zfs_handle_t *root;
char pool[ZFS_MAX_DATASET_NAME_LEN];
char *cp = pool;
/* get the pool name */
(void) strlcpy(pool, zhp->zfs_name, sizeof (pool));
(void) strsep(&cp, "/@");
root = zfs_open(zhp->zfs_hdl, pool,
ZFS_TYPE_FILESYSTEM);
if (root == NULL) {
nvlist_free(nv);
nvlist_free(value);
return (NULL);
}
(void) get_clones_cb(root, &gca);
}
if (gca.numclones != 0 ||
nvlist_add_nvlist(nv, ZPROP_VALUE, value) != 0 ||
nvlist_add_nvlist(zhp->zfs_props,
zfs_prop_to_name(ZFS_PROP_CLONES), nv) != 0) {
nvlist_free(nv);
nvlist_free(value);
return (NULL);
}
nvlist_free(nv);
nvlist_free(value);
verify(0 == nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(ZFS_PROP_CLONES), &nv));
}
verify(nvlist_lookup_nvlist(nv, ZPROP_VALUE, &value) == 0);
return (value);
}
static int
get_rsnaps_string(zfs_handle_t *zhp, char *propbuf, size_t proplen)
{
nvlist_t *value;
uint64_t *snaps;
uint_t nsnaps;
if (nvlist_lookup_nvlist(zhp->zfs_props,
zfs_prop_to_name(ZFS_PROP_REDACT_SNAPS), &value) != 0)
return (-1);
if (nvlist_lookup_uint64_array(value, ZPROP_VALUE, &snaps,
&nsnaps) != 0)
return (-1);
if (nsnaps == 0) {
/* There's no redaction snapshots; pass a special value back */
(void) snprintf(propbuf, proplen, "none");
return (0);
}
propbuf[0] = '\0';
for (int i = 0; i < nsnaps; i++) {
char buf[128];
if (propbuf[0] != '\0')
(void) strlcat(propbuf, ",", proplen);
(void) snprintf(buf, sizeof (buf), "%llu",
(u_longlong_t)snaps[i]);
(void) strlcat(propbuf, buf, proplen);
}
return (0);
}
/*
* Accepts a property and value and checks that the value
* matches the one found by the channel program. If they are
* not equal, print both of them.
*/
static void
zcp_check(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t intval,
const char *strval)
{
if (!zhp->zfs_hdl->libzfs_prop_debug)
return;
int error;
char *poolname = zhp->zpool_hdl->zpool_name;
const char *prop_name = zfs_prop_to_name(prop);
const char *program =
"args = ...\n"
"ds = args['dataset']\n"
"prop = args['property']\n"
"value, setpoint = zfs.get_prop(ds, prop)\n"
"return {value=value, setpoint=setpoint}\n";
nvlist_t *outnvl;
nvlist_t *retnvl;
nvlist_t *argnvl = fnvlist_alloc();
fnvlist_add_string(argnvl, "dataset", zhp->zfs_name);
fnvlist_add_string(argnvl, "property", zfs_prop_to_name(prop));
error = lzc_channel_program_nosync(poolname, program,
10 * 1000 * 1000, 10 * 1024 * 1024, argnvl, &outnvl);
if (error == 0) {
retnvl = fnvlist_lookup_nvlist(outnvl, "return");
if (zfs_prop_get_type(prop) == PROP_TYPE_NUMBER) {
int64_t ans;
error = nvlist_lookup_int64(retnvl, "value", &ans);
if (error != 0) {
(void) fprintf(stderr, "%s: zcp check error: "
"%u\n", prop_name, error);
return;
}
if (ans != intval) {
(void) fprintf(stderr, "%s: zfs found %llu, "
"but zcp found %llu\n", prop_name,
(u_longlong_t)intval, (u_longlong_t)ans);
}
} else {
char *str_ans;
error = nvlist_lookup_string(retnvl, "value", &str_ans);
if (error != 0) {
(void) fprintf(stderr, "%s: zcp check error: "
"%u\n", prop_name, error);
return;
}
if (strcmp(strval, str_ans) != 0) {
(void) fprintf(stderr,
"%s: zfs found '%s', but zcp found '%s'\n",
prop_name, strval, str_ans);
}
}
} else {
(void) fprintf(stderr, "%s: zcp check failed, channel program "
"error: %u\n", prop_name, error);
}
nvlist_free(argnvl);
nvlist_free(outnvl);
}
/*
* Retrieve a property from the given object. If 'literal' is specified, then
* numbers are left as exact values. Otherwise, numbers are converted to a
* human-readable form.
*
* Returns 0 on success, or -1 on error.
*/
int
zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen,
zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal)
{
char *source = NULL;
uint64_t val;
const char *str;
const char *strval;
boolean_t received = zfs_is_recvd_props_mode(zhp);
/*
* Check to see if this property applies to our object
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type, B_FALSE))
return (-1);
if (received && zfs_prop_readonly(prop))
return (-1);
if (src)
*src = ZPROP_SRC_NONE;
switch (prop) {
case ZFS_PROP_CREATION:
/*
* 'creation' is a time_t stored in the statistics. We convert
* this into a string unless 'literal' is specified.
*/
{
val = getprop_uint64(zhp, prop, &source);
time_t time = (time_t)val;
struct tm t;
if (literal ||
localtime_r(&time, &t) == NULL ||
strftime(propbuf, proplen, "%a %b %e %k:%M %Y",
&t) == 0)
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
}
zcp_check(zhp, prop, val, NULL);
break;
case ZFS_PROP_MOUNTPOINT:
/*
* Getting the precise mountpoint can be tricky.
*
* - for 'none' or 'legacy', return those values.
* - for inherited mountpoints, we want to take everything
* after our ancestor and append it to the inherited value.
*
* If the pool has an alternate root, we want to prepend that
* root to any values we return.
*/
str = getprop_string(zhp, prop, &source);
if (str[0] == '/') {
char buf[MAXPATHLEN];
char *root = buf;
const char *relpath;
/*
* If we inherit the mountpoint, even from a dataset
* with a received value, the source will be the path of
* the dataset we inherit from. If source is
* ZPROP_SOURCE_VAL_RECVD, the received value is not
* inherited.
*/
if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) {
relpath = "";
} else {
relpath = zhp->zfs_name + strlen(source);
if (relpath[0] == '/')
relpath++;
}
if ((zpool_get_prop(zhp->zpool_hdl,
ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL,
B_FALSE)) || (strcmp(root, "-") == 0))
root[0] = '\0';
/*
* Special case an alternate root of '/'. This will
* avoid having multiple leading slashes in the
* mountpoint path.
*/
if (strcmp(root, "/") == 0)
root++;
/*
* If the mountpoint is '/' then skip over this
* if we are obtaining either an alternate root or
* an inherited mountpoint.
*/
if (str[1] == '\0' && (root[0] != '\0' ||
relpath[0] != '\0'))
str++;
if (relpath[0] == '\0')
(void) snprintf(propbuf, proplen, "%s%s",
root, str);
else
(void) snprintf(propbuf, proplen, "%s%s%s%s",
root, str, relpath[0] == '@' ? "" : "/",
relpath);
} else {
/* 'legacy' or 'none' */
(void) strlcpy(propbuf, str, proplen);
}
zcp_check(zhp, prop, 0, propbuf);
break;
case ZFS_PROP_ORIGIN:
str = getprop_string(zhp, prop, &source);
if (str == NULL)
return (-1);
(void) strlcpy(propbuf, str, proplen);
zcp_check(zhp, prop, 0, str);
break;
case ZFS_PROP_REDACT_SNAPS:
if (get_rsnaps_string(zhp, propbuf, proplen) != 0)
return (-1);
break;
case ZFS_PROP_CLONES:
if (get_clones_string(zhp, propbuf, proplen) != 0)
return (-1);
break;
case ZFS_PROP_QUOTA:
case ZFS_PROP_REFQUOTA:
case ZFS_PROP_RESERVATION:
case ZFS_PROP_REFRESERVATION:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
/*
* If quota or reservation is 0, we translate this into 'none'
* (unless literal is set), and indicate that it's the default
* value. Otherwise, we print the number nicely and indicate
* that its set locally.
*/
if (val == 0) {
if (literal)
(void) strlcpy(propbuf, "0", proplen);
else
(void) strlcpy(propbuf, "none", proplen);
} else {
if (literal)
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
else
zfs_nicebytes(val, propbuf, proplen);
}
zcp_check(zhp, prop, val, NULL);
break;
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
case ZFS_PROP_FILESYSTEM_COUNT:
case ZFS_PROP_SNAPSHOT_COUNT:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
/*
* If limit is UINT64_MAX, we translate this into 'none' (unless
* literal is set), and indicate that it's the default value.
* Otherwise, we print the number nicely and indicate that it's
* set locally.
*/
if (literal) {
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
} else if (val == UINT64_MAX) {
(void) strlcpy(propbuf, "none", proplen);
} else {
zfs_nicenum(val, propbuf, proplen);
}
zcp_check(zhp, prop, val, NULL);
break;
case ZFS_PROP_REFRATIO:
case ZFS_PROP_COMPRESSRATIO:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
if (literal)
(void) snprintf(propbuf, proplen, "%llu.%02llu",
(u_longlong_t)(val / 100),
(u_longlong_t)(val % 100));
else
(void) snprintf(propbuf, proplen, "%llu.%02llux",
(u_longlong_t)(val / 100),
(u_longlong_t)(val % 100));
zcp_check(zhp, prop, val, NULL);
break;
case ZFS_PROP_TYPE:
switch (zhp->zfs_type) {
case ZFS_TYPE_FILESYSTEM:
str = "filesystem";
break;
case ZFS_TYPE_VOLUME:
str = "volume";
break;
case ZFS_TYPE_SNAPSHOT:
str = "snapshot";
break;
case ZFS_TYPE_BOOKMARK:
str = "bookmark";
break;
default:
abort();
}
(void) snprintf(propbuf, proplen, "%s", str);
zcp_check(zhp, prop, 0, propbuf);
break;
case ZFS_PROP_MOUNTED:
/*
* The 'mounted' property is a pseudo-property that described
* whether the filesystem is currently mounted. Even though
* it's a boolean value, the typical values of "on" and "off"
* don't make sense, so we translate to "yes" and "no".
*/
if (get_numeric_property(zhp, ZFS_PROP_MOUNTED,
src, &source, &val) != 0)
return (-1);
if (val)
(void) strlcpy(propbuf, "yes", proplen);
else
(void) strlcpy(propbuf, "no", proplen);
break;
case ZFS_PROP_NAME:
/*
* The 'name' property is a pseudo-property derived from the
* dataset name. It is presented as a real property to simplify
* consumers.
*/
(void) strlcpy(propbuf, zhp->zfs_name, proplen);
zcp_check(zhp, prop, 0, propbuf);
break;
case ZFS_PROP_MLSLABEL:
{
#ifdef HAVE_MLSLABEL
m_label_t *new_sl = NULL;
char *ascii = NULL; /* human readable label */
(void) strlcpy(propbuf,
getprop_string(zhp, prop, &source), proplen);
if (literal || (strcasecmp(propbuf,
ZFS_MLSLABEL_DEFAULT) == 0))
break;
/*
* Try to translate the internal hex string to
* human-readable output. If there are any
* problems just use the hex string.
*/
if (str_to_label(propbuf, &new_sl, MAC_LABEL,
L_NO_CORRECTION, NULL) == -1) {
m_label_free(new_sl);
break;
}
if (label_to_str(new_sl, &ascii, M_LABEL,
DEF_NAMES) != 0) {
if (ascii)
free(ascii);
m_label_free(new_sl);
break;
}
m_label_free(new_sl);
(void) strlcpy(propbuf, ascii, proplen);
free(ascii);
#else
(void) strlcpy(propbuf,
getprop_string(zhp, prop, &source), proplen);
#endif /* HAVE_MLSLABEL */
}
break;
case ZFS_PROP_GUID:
case ZFS_PROP_CREATETXG:
case ZFS_PROP_OBJSETID:
case ZFS_PROP_PBKDF2_ITERS:
/*
* These properties are stored as numbers, but they are
* identifiers or counters.
* We don't want them to be pretty printed, because pretty
* printing truncates their values making them useless.
*/
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
(void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val);
zcp_check(zhp, prop, val, NULL);
break;
case ZFS_PROP_REFERENCED:
case ZFS_PROP_AVAILABLE:
case ZFS_PROP_USED:
case ZFS_PROP_USEDSNAP:
case ZFS_PROP_USEDDS:
case ZFS_PROP_USEDREFRESERV:
case ZFS_PROP_USEDCHILD:
if (get_numeric_property(zhp, prop, src, &source, &val) != 0)
return (-1);
if (literal) {
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
} else {
zfs_nicebytes(val, propbuf, proplen);
}
zcp_check(zhp, prop, val, NULL);
break;
default:
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
if (get_numeric_property(zhp, prop, src,
&source, &val) != 0) {
return (-1);
}
if (literal) {
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)val);
} else {
zfs_nicenum(val, propbuf, proplen);
}
zcp_check(zhp, prop, val, NULL);
break;
case PROP_TYPE_STRING:
str = getprop_string(zhp, prop, &source);
if (str == NULL)
return (-1);
(void) strlcpy(propbuf, str, proplen);
zcp_check(zhp, prop, 0, str);
break;
case PROP_TYPE_INDEX:
if (get_numeric_property(zhp, prop, src,
&source, &val) != 0)
return (-1);
if (zfs_prop_index_to_string(prop, val, &strval) != 0)
return (-1);
(void) strlcpy(propbuf, strval, proplen);
zcp_check(zhp, prop, 0, strval);
break;
default:
abort();
}
}
get_source(zhp, src, source, statbuf, statlen);
return (0);
}
/*
* Utility function to get the given numeric property. Does no validation that
* the given property is the appropriate type; should only be used with
* hard-coded property types.
*/
uint64_t
zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop)
{
char *source;
uint64_t val = 0;
(void) get_numeric_property(zhp, prop, NULL, &source, &val);
return (val);
}
static int
zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val)
{
char buf[64];
(void) snprintf(buf, sizeof (buf), "%llu", (longlong_t)val);
return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf));
}
/*
* Similar to zfs_prop_get(), but returns the value as an integer.
*/
int
zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value,
zprop_source_t *src, char *statbuf, size_t statlen)
{
char *source;
/*
* Check to see if this property applies to our object
*/
if (!zfs_prop_valid_for_type(prop, zhp->zfs_type, B_FALSE)) {
return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE,
dgettext(TEXT_DOMAIN, "cannot get property '%s'"),
zfs_prop_to_name(prop)));
}
if (src)
*src = ZPROP_SRC_NONE;
if (get_numeric_property(zhp, prop, src, &source, value) != 0)
return (-1);
get_source(zhp, src, source, statbuf, statlen);
return (0);
}
#ifdef HAVE_IDMAP
static int
idmap_id_to_numeric_domain_rid(uid_t id, boolean_t isuser,
char **domainp, idmap_rid_t *ridp)
{
idmap_get_handle_t *get_hdl = NULL;
idmap_stat status;
int err = EINVAL;
if (idmap_get_create(&get_hdl) != IDMAP_SUCCESS)
goto out;
if (isuser) {
err = idmap_get_sidbyuid(get_hdl, id,
IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status);
} else {
err = idmap_get_sidbygid(get_hdl, id,
IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status);
}
if (err == IDMAP_SUCCESS &&
idmap_get_mappings(get_hdl) == IDMAP_SUCCESS &&
status == IDMAP_SUCCESS)
err = 0;
else
err = EINVAL;
out:
if (get_hdl)
idmap_get_destroy(get_hdl);
return (err);
}
#endif /* HAVE_IDMAP */
/*
* convert the propname into parameters needed by kernel
* Eg: userquota@ahrens -> ZFS_PROP_USERQUOTA, "", 126829
* Eg: userused@matt@domain -> ZFS_PROP_USERUSED, "S-1-123-456", 789
* Eg: groupquota@staff -> ZFS_PROP_GROUPQUOTA, "", 1234
* Eg: groupused@staff -> ZFS_PROP_GROUPUSED, "", 1234
* Eg: projectquota@123 -> ZFS_PROP_PROJECTQUOTA, "", 123
* Eg: projectused@789 -> ZFS_PROP_PROJECTUSED, "", 789
*/
static int
userquota_propname_decode(const char *propname, boolean_t zoned,
zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp)
{
zfs_userquota_prop_t type;
char *cp;
boolean_t isuser;
boolean_t isgroup;
boolean_t isproject;
struct passwd *pw;
struct group *gr;
domain[0] = '\0';
/* Figure out the property type ({user|group|project}{quota|space}) */
for (type = 0; type < ZFS_NUM_USERQUOTA_PROPS; type++) {
if (strncmp(propname, zfs_userquota_prop_prefixes[type],
strlen(zfs_userquota_prop_prefixes[type])) == 0)
break;
}
if (type == ZFS_NUM_USERQUOTA_PROPS)
return (EINVAL);
*typep = type;
isuser = (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_USERUSED ||
type == ZFS_PROP_USEROBJQUOTA ||
type == ZFS_PROP_USEROBJUSED);
isgroup = (type == ZFS_PROP_GROUPQUOTA || type == ZFS_PROP_GROUPUSED ||
type == ZFS_PROP_GROUPOBJQUOTA ||
type == ZFS_PROP_GROUPOBJUSED);
isproject = (type == ZFS_PROP_PROJECTQUOTA ||
type == ZFS_PROP_PROJECTUSED || type == ZFS_PROP_PROJECTOBJQUOTA ||
type == ZFS_PROP_PROJECTOBJUSED);
cp = strchr(propname, '@') + 1;
if (isuser && (pw = getpwnam(cp)) != NULL) {
if (zoned && getzoneid() == GLOBAL_ZONEID)
return (ENOENT);
*ridp = pw->pw_uid;
} else if (isgroup && (gr = getgrnam(cp)) != NULL) {
if (zoned && getzoneid() == GLOBAL_ZONEID)
return (ENOENT);
*ridp = gr->gr_gid;
} else if (!isproject && strchr(cp, '@')) {
#ifdef HAVE_IDMAP
/*
* It's a SID name (eg "user@domain") that needs to be
* turned into S-1-domainID-RID.
*/
directory_error_t e;
char *numericsid = NULL;
char *end;
if (zoned && getzoneid() == GLOBAL_ZONEID)
return (ENOENT);
if (isuser) {
e = directory_sid_from_user_name(NULL,
cp, &numericsid);
} else {
e = directory_sid_from_group_name(NULL,
cp, &numericsid);
}
if (e != NULL) {
directory_error_free(e);
return (ENOENT);
}
if (numericsid == NULL)
return (ENOENT);
cp = numericsid;
(void) strlcpy(domain, cp, domainlen);
cp = strrchr(domain, '-');
*cp = '\0';
cp++;
errno = 0;
*ridp = strtoull(cp, &end, 10);
free(numericsid);
if (errno != 0 || *end != '\0')
return (EINVAL);
#else
return (ENOSYS);
#endif /* HAVE_IDMAP */
} else {
/* It's a user/group/project ID (eg "12345"). */
uid_t id;
char *end;
id = strtoul(cp, &end, 10);
if (*end != '\0')
return (EINVAL);
if (id > MAXUID && !isproject) {
#ifdef HAVE_IDMAP
/* It's an ephemeral ID. */
idmap_rid_t rid;
char *mapdomain;
if (idmap_id_to_numeric_domain_rid(id, isuser,
&mapdomain, &rid) != 0)
return (ENOENT);
(void) strlcpy(domain, mapdomain, domainlen);
*ridp = rid;
#else
return (ENOSYS);
#endif /* HAVE_IDMAP */
} else {
*ridp = id;
}
}
return (0);
}
static int
zfs_prop_get_userquota_common(zfs_handle_t *zhp, const char *propname,
uint64_t *propvalue, zfs_userquota_prop_t *typep)
{
int err;
zfs_cmd_t zc = {"\0"};
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
err = userquota_propname_decode(propname,
zfs_prop_get_int(zhp, ZFS_PROP_ZONED),
typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid);
zc.zc_objset_type = *typep;
if (err)
return (err);
err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_USERSPACE_ONE, &zc);
if (err)
return (err);
*propvalue = zc.zc_cookie;
return (0);
}
int
zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname,
uint64_t *propvalue)
{
zfs_userquota_prop_t type;
return (zfs_prop_get_userquota_common(zhp, propname, propvalue,
&type));
}
int
zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname,
char *propbuf, int proplen, boolean_t literal)
{
int err;
uint64_t propvalue;
zfs_userquota_prop_t type;
err = zfs_prop_get_userquota_common(zhp, propname, &propvalue,
&type);
if (err)
return (err);
if (literal) {
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)propvalue);
} else if (propvalue == 0 &&
(type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA ||
type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA ||
type == ZFS_PROP_PROJECTQUOTA ||
type == ZFS_PROP_PROJECTOBJQUOTA)) {
(void) strlcpy(propbuf, "none", proplen);
} else if (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA ||
type == ZFS_PROP_USERUSED || type == ZFS_PROP_GROUPUSED ||
type == ZFS_PROP_PROJECTUSED || type == ZFS_PROP_PROJECTQUOTA) {
zfs_nicebytes(propvalue, propbuf, proplen);
} else {
zfs_nicenum(propvalue, propbuf, proplen);
}
return (0);
}
/*
* propname must start with "written@" or "written#".
*/
int
zfs_prop_get_written_int(zfs_handle_t *zhp, const char *propname,
uint64_t *propvalue)
{
int err;
zfs_cmd_t zc = {"\0"};
const char *snapname;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
assert(zfs_prop_written(propname));
snapname = propname + strlen("written@");
if (strchr(snapname, '@') != NULL || strchr(snapname, '#') != NULL) {
/* full snapshot or bookmark name specified */
(void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
} else {
/* snapname is the short name, append it to zhp's fsname */
char *cp;
(void) strlcpy(zc.zc_value, zhp->zfs_name,
sizeof (zc.zc_value));
cp = strchr(zc.zc_value, '@');
if (cp != NULL)
*cp = '\0';
(void) strlcat(zc.zc_value, snapname - 1, sizeof (zc.zc_value));
}
err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SPACE_WRITTEN, &zc);
if (err)
return (err);
*propvalue = zc.zc_cookie;
return (0);
}
int
zfs_prop_get_written(zfs_handle_t *zhp, const char *propname,
char *propbuf, int proplen, boolean_t literal)
{
int err;
uint64_t propvalue;
err = zfs_prop_get_written_int(zhp, propname, &propvalue);
if (err)
return (err);
if (literal) {
(void) snprintf(propbuf, proplen, "%llu",
(u_longlong_t)propvalue);
} else {
zfs_nicebytes(propvalue, propbuf, proplen);
}
return (0);
}
/*
* Returns the name of the given zfs handle.
*/
const char *
zfs_get_name(const zfs_handle_t *zhp)
{
return (zhp->zfs_name);
}
/*
* Returns the name of the parent pool for the given zfs handle.
*/
const char *
zfs_get_pool_name(const zfs_handle_t *zhp)
{
return (zhp->zpool_hdl->zpool_name);
}
/*
* Returns the type of the given zfs handle.
*/
zfs_type_t
zfs_get_type(const zfs_handle_t *zhp)
{
return (zhp->zfs_type);
}
/*
* Is one dataset name a child dataset of another?
*
* Needs to handle these cases:
* Dataset 1 "a/foo" "a/foo" "a/foo" "a/foo"
* Dataset 2 "a/fo" "a/foobar" "a/bar/baz" "a/foo/bar"
* Descendant? No. No. No. Yes.
*/
static boolean_t
is_descendant(const char *ds1, const char *ds2)
{
size_t d1len = strlen(ds1);
/* ds2 can't be a descendant if it's smaller */
if (strlen(ds2) < d1len)
return (B_FALSE);
/* otherwise, compare strings and verify that there's a '/' char */
return (ds2[d1len] == '/' && (strncmp(ds1, ds2, d1len) == 0));
}
/*
* Given a complete name, return just the portion that refers to the parent.
* Will return -1 if there is no parent (path is just the name of the
* pool).
*/
static int
parent_name(const char *path, char *buf, size_t buflen)
{
char *slashp;
(void) strlcpy(buf, path, buflen);
if ((slashp = strrchr(buf, '/')) == NULL)
return (-1);
*slashp = '\0';
return (0);
}
int
zfs_parent_name(zfs_handle_t *zhp, char *buf, size_t buflen)
{
return (parent_name(zfs_get_name(zhp), buf, buflen));
}
/*
* If accept_ancestor is false, then check to make sure that the given path has
* a parent, and that it exists. If accept_ancestor is true, then find the
* closest existing ancestor for the given path. In prefixlen return the
* length of already existing prefix of the given path. We also fetch the
* 'zoned' property, which is used to validate property settings when creating
* new datasets.
*/
static int
check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned,
boolean_t accept_ancestor, int *prefixlen)
{
zfs_cmd_t zc = {"\0"};
char parent[ZFS_MAX_DATASET_NAME_LEN];
char *slash;
zfs_handle_t *zhp;
char errbuf[1024];
uint64_t is_zoned;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot create '%s'"), path);
/* get parent, and check to see if this is just a pool */
if (parent_name(path, parent, sizeof (parent)) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing dataset name"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
/* check to see if the pool exists */
if ((slash = strchr(parent, '/')) == NULL)
slash = parent + strlen(parent);
(void) strncpy(zc.zc_name, parent, slash - parent);
zc.zc_name[slash - parent] = '\0';
if (zfs_ioctl(hdl, ZFS_IOC_OBJSET_STATS, &zc) != 0 &&
errno == ENOENT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such pool '%s'"), zc.zc_name);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
/* check to see if the parent dataset exists */
while ((zhp = make_dataset_handle(hdl, parent)) == NULL) {
if (errno == ENOENT && accept_ancestor) {
/*
* Go deeper to find an ancestor, give up on top level.
*/
if (parent_name(parent, parent, sizeof (parent)) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such pool '%s'"), zc.zc_name);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
}
} else if (errno == ENOENT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent does not exist"));
return (zfs_error(hdl, EZFS_NOENT, errbuf));
} else
return (zfs_standard_error(hdl, errno, errbuf));
}
is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
if (zoned != NULL)
*zoned = is_zoned;
/* we are in a non-global zone, but parent is in the global zone */
if (getzoneid() != GLOBAL_ZONEID && !is_zoned) {
(void) zfs_standard_error(hdl, EPERM, errbuf);
zfs_close(zhp);
return (-1);
}
/* make sure parent is a filesystem */
if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"parent is not a filesystem"));
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
zfs_close(zhp);
return (-1);
}
zfs_close(zhp);
if (prefixlen != NULL)
*prefixlen = strlen(parent);
return (0);
}
/*
* Finds whether the dataset of the given type(s) exists.
*/
boolean_t
zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types)
{
zfs_handle_t *zhp;
if (!zfs_validate_name(hdl, path, types, B_FALSE))
return (B_FALSE);
/*
* Try to get stats for the dataset, which will tell us if it exists.
*/
if ((zhp = make_dataset_handle(hdl, path)) != NULL) {
int ds_type = zhp->zfs_type;
zfs_close(zhp);
if (types & ds_type)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Given a path to 'target', create all the ancestors between
* the prefixlen portion of the path, and the target itself.
* Fail if the initial prefixlen-ancestor does not already exist.
*/
int
create_parents(libzfs_handle_t *hdl, char *target, int prefixlen)
{
zfs_handle_t *h;
char *cp;
const char *opname;
/* make sure prefix exists */
cp = target + prefixlen;
if (*cp != '/') {
assert(strchr(cp, '/') == NULL);
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
} else {
*cp = '\0';
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
*cp = '/';
}
if (h == NULL)
return (-1);
zfs_close(h);
/*
* Attempt to create, mount, and share any ancestor filesystems,
* up to the prefixlen-long one.
*/
for (cp = target + prefixlen + 1;
(cp = strchr(cp, '/')) != NULL; *cp = '/', cp++) {
*cp = '\0';
h = make_dataset_handle(hdl, target);
if (h) {
/* it already exists, nothing to do here */
zfs_close(h);
continue;
}
if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM,
NULL) != 0) {
opname = dgettext(TEXT_DOMAIN, "create");
goto ancestorerr;
}
h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM);
if (h == NULL) {
opname = dgettext(TEXT_DOMAIN, "open");
goto ancestorerr;
}
if (zfs_mount(h, NULL, 0) != 0) {
opname = dgettext(TEXT_DOMAIN, "mount");
goto ancestorerr;
}
if (zfs_share(h) != 0) {
opname = dgettext(TEXT_DOMAIN, "share");
goto ancestorerr;
}
zfs_close(h);
}
zfs_commit_all_shares();
return (0);
ancestorerr:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to %s ancestor '%s'"), opname, target);
return (-1);
}
/*
* Creates non-existing ancestors of the given path.
*/
int
zfs_create_ancestors(libzfs_handle_t *hdl, const char *path)
{
int prefix;
char *path_copy;
char errbuf[1024];
int rc = 0;
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create '%s'"), path);
/*
* Check that we are not passing the nesting limit
* before we start creating any ancestors.
*/
if (dataset_nestcheck(path) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"maximum name nesting depth exceeded"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0)
return (-1);
if ((path_copy = strdup(path)) != NULL) {
rc = create_parents(hdl, path_copy, prefix);
free(path_copy);
}
if (path_copy == NULL || rc != 0)
return (-1);
return (0);
}
/*
* Create a new filesystem or volume.
*/
int
zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type,
nvlist_t *props)
{
int ret;
uint64_t size = 0;
uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
uint64_t zoned;
enum lzc_dataset_type ost;
zpool_handle_t *zpool_handle;
uint8_t *wkeydata = NULL;
uint_t wkeylen = 0;
char errbuf[1024];
char parent[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create '%s'"), path);
/* validate the path, taking care to note the extended error message */
if (!zfs_validate_name(hdl, path, type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
if (dataset_nestcheck(path) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"maximum name nesting depth exceeded"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
/* validate parents exist */
if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0)
return (-1);
/*
* The failure modes when creating a dataset of a different type over
* one that already exists is a little strange. In particular, if you
* try to create a dataset on top of an existing dataset, the ioctl()
* will return ENOENT, not EEXIST. To prevent this from happening, we
* first try to see if the dataset exists.
*/
if (zfs_dataset_exists(hdl, path, ZFS_TYPE_DATASET)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset already exists"));
return (zfs_error(hdl, EZFS_EXISTS, errbuf));
}
if (type == ZFS_TYPE_VOLUME)
ost = LZC_DATSET_TYPE_ZVOL;
else
ost = LZC_DATSET_TYPE_ZFS;
/* open zpool handle for prop validation */
char pool_path[ZFS_MAX_DATASET_NAME_LEN];
(void) strlcpy(pool_path, path, sizeof (pool_path));
/* truncate pool_path at first slash */
char *p = strchr(pool_path, '/');
if (p != NULL)
*p = '\0';
if ((zpool_handle = zpool_open(hdl, pool_path)) == NULL)
return (-1);
if (props && (props = zfs_valid_proplist(hdl, type, props,
zoned, NULL, zpool_handle, B_TRUE, errbuf)) == 0) {
zpool_close(zpool_handle);
return (-1);
}
zpool_close(zpool_handle);
if (type == ZFS_TYPE_VOLUME) {
/*
* If we are creating a volume, the size and block size must
* satisfy a few restraints. First, the blocksize must be a
* valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the
* volsize must be a multiple of the block size, and cannot be
* zero.
*/
if (props == NULL || nvlist_lookup_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing volume size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
if ((ret = nvlist_lookup_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&blocksize)) != 0) {
if (ret == ENOENT) {
blocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
} else {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"missing volume block size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
}
if (size == 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"volume size cannot be zero"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
if (size % blocksize != 0) {
nvlist_free(props);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"volume size must be a multiple of volume block "
"size"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
}
}
(void) parent_name(path, parent, sizeof (parent));
if (zfs_crypto_create(hdl, parent, props, NULL, B_TRUE,
&wkeydata, &wkeylen) != 0) {
nvlist_free(props);
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
}
/* create the dataset */
ret = lzc_create(path, ost, props, wkeydata, wkeylen);
nvlist_free(props);
if (wkeydata != NULL)
free(wkeydata);
/* check for failure */
if (ret != 0) {
switch (errno) {
case ENOENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such parent '%s'"), parent);
return (zfs_error(hdl, EZFS_NOENT, errbuf));
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded to set this "
"property or value"));
return (zfs_error(hdl, EZFS_BADVERSION, errbuf));
case EACCES:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encryption root's key is not loaded "
"or provided"));
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
case ERANGE:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property value(s) specified"));
return (zfs_error(hdl, EZFS_BADPROP, errbuf));
#ifdef _ILP32
case EOVERFLOW:
/*
* This platform can't address a volume this big.
*/
if (type == ZFS_TYPE_VOLUME)
return (zfs_error(hdl, EZFS_VOLTOOBIG,
errbuf));
#endif
/* FALLTHROUGH */
default:
return (zfs_standard_error(hdl, errno, errbuf));
}
}
return (0);
}
/*
* Destroys the given dataset. The caller must make sure that the filesystem
* isn't mounted, and that there are no active dependents. If the file system
* does not exist this function does nothing.
*/
int
zfs_destroy(zfs_handle_t *zhp, boolean_t defer)
{
int error;
if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT && defer)
return (EINVAL);
if (zhp->zfs_type == ZFS_TYPE_BOOKMARK) {
nvlist_t *nv = fnvlist_alloc();
fnvlist_add_boolean(nv, zhp->zfs_name);
error = lzc_destroy_bookmarks(nv, NULL);
fnvlist_free(nv);
if (error != 0) {
return (zfs_standard_error_fmt(zhp->zfs_hdl, error,
dgettext(TEXT_DOMAIN, "cannot destroy '%s'"),
zhp->zfs_name));
}
return (0);
}
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
nvlist_t *nv = fnvlist_alloc();
fnvlist_add_boolean(nv, zhp->zfs_name);
error = lzc_destroy_snaps(nv, defer, NULL);
fnvlist_free(nv);
} else {
error = lzc_destroy(zhp->zfs_name);
}
if (error != 0 && error != ENOENT) {
return (zfs_standard_error_fmt(zhp->zfs_hdl, errno,
dgettext(TEXT_DOMAIN, "cannot destroy '%s'"),
zhp->zfs_name));
}
remove_mountpoint(zhp);
return (0);
}
struct destroydata {
nvlist_t *nvl;
const char *snapname;
};
static int
zfs_check_snap_cb(zfs_handle_t *zhp, void *arg)
{
struct destroydata *dd = arg;
char name[ZFS_MAX_DATASET_NAME_LEN];
int rv = 0;
if (snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name,
dd->snapname) >= sizeof (name))
return (EINVAL);
if (lzc_exists(name))
verify(nvlist_add_boolean(dd->nvl, name) == 0);
rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, dd);
zfs_close(zhp);
return (rv);
}
/*
* Destroys all snapshots with the given name in zhp & descendants.
*/
int
zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname, boolean_t defer)
{
int ret;
struct destroydata dd = { 0 };
dd.snapname = snapname;
verify(nvlist_alloc(&dd.nvl, NV_UNIQUE_NAME, 0) == 0);
(void) zfs_check_snap_cb(zfs_handle_dup(zhp), &dd);
if (nvlist_empty(dd.nvl)) {
ret = zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT,
dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"),
zhp->zfs_name, snapname);
} else {
ret = zfs_destroy_snaps_nvl(zhp->zfs_hdl, dd.nvl, defer);
}
nvlist_free(dd.nvl);
return (ret);
}
/*
* Destroys all the snapshots named in the nvlist.
*/
int
zfs_destroy_snaps_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, boolean_t defer)
{
int ret;
nvlist_t *errlist = NULL;
nvpair_t *pair;
ret = lzc_destroy_snaps(snaps, defer, &errlist);
if (ret == 0) {
nvlist_free(errlist);
return (0);
}
if (nvlist_empty(errlist)) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot destroy snapshots"));
ret = zfs_standard_error(hdl, ret, errbuf);
}
for (pair = nvlist_next_nvpair(errlist, NULL);
pair != NULL; pair = nvlist_next_nvpair(errlist, pair)) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot destroy snapshot %s"),
nvpair_name(pair));
switch (fnvpair_value_int32(pair)) {
case EEXIST:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "snapshot is cloned"));
ret = zfs_error(hdl, EZFS_EXISTS, errbuf);
break;
default:
ret = zfs_standard_error(hdl, errno, errbuf);
break;
}
}
nvlist_free(errlist);
return (ret);
}
/*
* Clones the given dataset. The target must be of the same type as the source.
*/
int
zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props)
{
char parent[ZFS_MAX_DATASET_NAME_LEN];
int ret;
char errbuf[1024];
libzfs_handle_t *hdl = zhp->zfs_hdl;
uint64_t zoned;
assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create '%s'"), target);
/* validate the target/clone name */
if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
/* validate parents exist */
if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0)
return (-1);
(void) parent_name(target, parent, sizeof (parent));
/* do the clone */
if (props) {
zfs_type_t type;
if (ZFS_IS_VOLUME(zhp)) {
type = ZFS_TYPE_VOLUME;
} else {
type = ZFS_TYPE_FILESYSTEM;
}
if ((props = zfs_valid_proplist(hdl, type, props, zoned,
zhp, zhp->zpool_hdl, B_TRUE, errbuf)) == NULL)
return (-1);
if (zfs_fix_auto_resv(zhp, props) == -1) {
nvlist_free(props);
return (-1);
}
}
if (zfs_crypto_clone_check(hdl, zhp, parent, props) != 0) {
nvlist_free(props);
return (zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf));
}
ret = lzc_clone(target, zhp->zfs_name, props);
nvlist_free(props);
if (ret != 0) {
switch (errno) {
case ENOENT:
/*
* The parent doesn't exist. We should have caught this
* above, but there may a race condition that has since
* destroyed the parent.
*
* At this point, we don't know whether it's the source
* that doesn't exist anymore, or whether the target
* dataset doesn't exist.
*/
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"no such parent '%s'"), parent);
return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf));
case EXDEV:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"source and target pools differ"));
return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET,
errbuf));
default:
return (zfs_standard_error(zhp->zfs_hdl, errno,
errbuf));
}
}
return (ret);
}
/*
* Promotes the given clone fs to be the clone parent.
*/
int
zfs_promote(zfs_handle_t *zhp)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
char snapname[ZFS_MAX_DATASET_NAME_LEN];
int ret;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot promote '%s'"), zhp->zfs_name);
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshots can not be promoted"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
if (zhp->zfs_dmustats.dds_origin[0] == '\0') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"not a cloned filesystem"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
if (!zfs_validate_name(hdl, zhp->zfs_name, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
ret = lzc_promote(zhp->zfs_name, snapname, sizeof (snapname));
if (ret != 0) {
switch (ret) {
case EACCES:
/*
* Promoting encrypted dataset outside its
* encryption root.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"cannot promote dataset outside its "
"encryption root"));
return (zfs_error(hdl, EZFS_EXISTS, errbuf));
case EEXIST:
/* There is a conflicting snapshot name. */
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"conflicting snapshot '%s' from parent '%s'"),
snapname, zhp->zfs_dmustats.dds_origin);
return (zfs_error(hdl, EZFS_EXISTS, errbuf));
default:
return (zfs_standard_error(hdl, ret, errbuf));
}
}
return (ret);
}
typedef struct snapdata {
nvlist_t *sd_nvl;
const char *sd_snapname;
} snapdata_t;
static int
zfs_snapshot_cb(zfs_handle_t *zhp, void *arg)
{
snapdata_t *sd = arg;
char name[ZFS_MAX_DATASET_NAME_LEN];
int rv = 0;
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) == 0) {
if (snprintf(name, sizeof (name), "%s@%s", zfs_get_name(zhp),
sd->sd_snapname) >= sizeof (name))
return (EINVAL);
fnvlist_add_boolean(sd->sd_nvl, name);
rv = zfs_iter_filesystems(zhp, zfs_snapshot_cb, sd);
}
zfs_close(zhp);
return (rv);
}
/*
* Creates snapshots. The keys in the snaps nvlist are the snapshots to be
* created.
*/
int
zfs_snapshot_nvl(libzfs_handle_t *hdl, nvlist_t *snaps, nvlist_t *props)
{
int ret;
char errbuf[1024];
nvpair_t *elem;
nvlist_t *errors;
zpool_handle_t *zpool_hdl;
char pool[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot create snapshots "));
elem = NULL;
while ((elem = nvlist_next_nvpair(snaps, elem)) != NULL) {
const char *snapname = nvpair_name(elem);
/* validate the target name */
if (!zfs_validate_name(hdl, snapname, ZFS_TYPE_SNAPSHOT,
B_TRUE)) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot create snapshot '%s'"), snapname);
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
}
/*
* get pool handle for prop validation. assumes all snaps are in the
* same pool, as does lzc_snapshot (below).
*/
elem = nvlist_next_nvpair(snaps, NULL);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
zpool_hdl = zpool_open(hdl, pool);
if (zpool_hdl == NULL)
return (-1);
if (props != NULL &&
(props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT,
props, B_FALSE, NULL, zpool_hdl, B_FALSE, errbuf)) == NULL) {
zpool_close(zpool_hdl);
return (-1);
}
zpool_close(zpool_hdl);
ret = lzc_snapshot(snaps, props, &errors);
if (ret != 0) {
boolean_t printed = B_FALSE;
for (elem = nvlist_next_nvpair(errors, NULL);
elem != NULL;
elem = nvlist_next_nvpair(errors, elem)) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot create snapshot '%s'"), nvpair_name(elem));
(void) zfs_standard_error(hdl,
fnvpair_value_int32(elem), errbuf);
printed = B_TRUE;
}
if (!printed) {
switch (ret) {
case EXDEV:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"multiple snapshots of same "
"fs not allowed"));
(void) zfs_error(hdl, EZFS_EXISTS, errbuf);
break;
default:
(void) zfs_standard_error(hdl, ret, errbuf);
}
}
}
nvlist_free(props);
nvlist_free(errors);
return (ret);
}
int
zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive,
nvlist_t *props)
{
int ret;
snapdata_t sd = { 0 };
char fsname[ZFS_MAX_DATASET_NAME_LEN];
char *cp;
zfs_handle_t *zhp;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot snapshot %s"), path);
if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
(void) strlcpy(fsname, path, sizeof (fsname));
cp = strchr(fsname, '@');
*cp = '\0';
sd.sd_snapname = cp + 1;
if ((zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_VOLUME)) == NULL) {
return (-1);
}
verify(nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) == 0);
if (recursive) {
(void) zfs_snapshot_cb(zfs_handle_dup(zhp), &sd);
} else {
fnvlist_add_boolean(sd.sd_nvl, path);
}
ret = zfs_snapshot_nvl(hdl, sd.sd_nvl, props);
nvlist_free(sd.sd_nvl);
zfs_close(zhp);
return (ret);
}
/*
* Destroy any more recent snapshots. We invoke this callback on any dependents
* of the snapshot first. If the 'cb_dependent' member is non-zero, then this
* is a dependent and we should just destroy it without checking the transaction
* group.
*/
typedef struct rollback_data {
const char *cb_target; /* the snapshot */
uint64_t cb_create; /* creation time reference */
boolean_t cb_error;
boolean_t cb_force;
} rollback_data_t;
static int
rollback_destroy_dependent(zfs_handle_t *zhp, void *data)
{
rollback_data_t *cbp = data;
prop_changelist_t *clp;
/* We must destroy this clone; first unmount it */
clp = changelist_gather(zhp, ZFS_PROP_NAME, 0,
cbp->cb_force ? MS_FORCE: 0);
if (clp == NULL || changelist_prefix(clp) != 0) {
cbp->cb_error = B_TRUE;
zfs_close(zhp);
return (0);
}
if (zfs_destroy(zhp, B_FALSE) != 0)
cbp->cb_error = B_TRUE;
else
changelist_remove(clp, zhp->zfs_name);
(void) changelist_postfix(clp);
changelist_free(clp);
zfs_close(zhp);
return (0);
}
static int
rollback_destroy(zfs_handle_t *zhp, void *data)
{
rollback_data_t *cbp = data;
if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) {
cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE,
rollback_destroy_dependent, cbp);
cbp->cb_error |= zfs_destroy(zhp, B_FALSE);
}
zfs_close(zhp);
return (0);
}
/*
* Given a dataset, rollback to a specific snapshot, discarding any
* data changes since then and making it the active dataset.
*
* Any snapshots and bookmarks more recent than the target are
* destroyed, along with their dependents (i.e. clones).
*/
int
zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force)
{
rollback_data_t cb = { 0 };
int err;
boolean_t restore_resv = 0;
uint64_t old_volsize = 0, new_volsize;
zfs_prop_t resv_prop = { 0 };
uint64_t min_txg = 0;
assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM ||
zhp->zfs_type == ZFS_TYPE_VOLUME);
/*
* Destroy all recent snapshots and their dependents.
*/
cb.cb_force = force;
cb.cb_target = snap->zfs_name;
cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
if (cb.cb_create > 0)
min_txg = cb.cb_create;
(void) zfs_iter_snapshots(zhp, B_FALSE, rollback_destroy, &cb,
min_txg, 0);
(void) zfs_iter_bookmarks(zhp, rollback_destroy, &cb);
if (cb.cb_error)
return (-1);
/*
* Now that we have verified that the snapshot is the latest,
* rollback to the given snapshot.
*/
if (zhp->zfs_type == ZFS_TYPE_VOLUME) {
if (zfs_which_resv_prop(zhp, &resv_prop) < 0)
return (-1);
old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
restore_resv =
(old_volsize == zfs_prop_get_int(zhp, resv_prop));
}
/*
* Pass both the filesystem and the wanted snapshot names,
* we would get an error back if the snapshot is destroyed or
* a new snapshot is created before this request is processed.
*/
err = lzc_rollback_to(zhp->zfs_name, snap->zfs_name);
if (err != 0) {
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot rollback '%s'"),
zhp->zfs_name);
switch (err) {
case EEXIST:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"there is a snapshot or bookmark more recent "
"than '%s'"), snap->zfs_name);
(void) zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf);
break;
case ESRCH:
zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
"'%s' is not found among snapshots of '%s'"),
snap->zfs_name, zhp->zfs_name);
(void) zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf);
break;
case EINVAL:
(void) zfs_error(zhp->zfs_hdl, EZFS_BADTYPE, errbuf);
break;
default:
(void) zfs_standard_error(zhp->zfs_hdl, err, errbuf);
}
return (err);
}
/*
* For volumes, if the pre-rollback volsize matched the pre-
* rollback reservation and the volsize has changed then set
* the reservation property to the post-rollback volsize.
* Make a new handle since the rollback closed the dataset.
*/
if ((zhp->zfs_type == ZFS_TYPE_VOLUME) &&
(zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) {
if (restore_resv) {
new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE);
if (old_volsize != new_volsize)
err = zfs_prop_set_int(zhp, resv_prop,
new_volsize);
}
zfs_close(zhp);
}
return (err);
}
/*
* Renames the given dataset.
*/
int
zfs_rename(zfs_handle_t *zhp, const char *target, renameflags_t flags)
{
int ret = 0;
zfs_cmd_t zc = {"\0"};
char *delim;
prop_changelist_t *cl = NULL;
char parent[ZFS_MAX_DATASET_NAME_LEN];
char property[ZFS_MAXPROPLEN];
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
/* if we have the same exact name, just return success */
if (strcmp(zhp->zfs_name, target) == 0)
return (0);
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot rename to '%s'"), target);
/* make sure source name is valid */
if (!zfs_validate_name(hdl, zhp->zfs_name, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
/*
* Make sure the target name is valid
*/
if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) {
if ((strchr(target, '@') == NULL) ||
*target == '@') {
/*
* Snapshot target name is abbreviated,
* reconstruct full dataset name
*/
(void) strlcpy(parent, zhp->zfs_name,
sizeof (parent));
delim = strchr(parent, '@');
if (strchr(target, '@') == NULL)
*(++delim) = '\0';
else
*delim = '\0';
(void) strlcat(parent, target, sizeof (parent));
target = parent;
} else {
/*
* Make sure we're renaming within the same dataset.
*/
delim = strchr(target, '@');
if (strncmp(zhp->zfs_name, target, delim - target)
!= 0 || zhp->zfs_name[delim - target] != '@') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"snapshots must be part of same "
"dataset"));
return (zfs_error(hdl, EZFS_CROSSTARGET,
errbuf));
}
}
if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
} else {
if (flags.recursive) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"recursive rename must be a snapshot"));
return (zfs_error(hdl, EZFS_BADTYPE, errbuf));
}
if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE))
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
/* validate parents */
if (check_parents(hdl, target, NULL, B_FALSE, NULL) != 0)
return (-1);
/* make sure we're in the same pool */
verify((delim = strchr(target, '/')) != NULL);
if (strncmp(zhp->zfs_name, target, delim - target) != 0 ||
zhp->zfs_name[delim - target] != '/') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"datasets must be within same pool"));
return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf));
}
/* new name cannot be a child of the current dataset name */
if (is_descendant(zhp->zfs_name, target)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"New dataset name cannot be a descendant of "
"current dataset name"));
return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf));
}
}
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name);
if (getzoneid() == GLOBAL_ZONEID &&
zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is used in a non-global zone"));
return (zfs_error(hdl, EZFS_ZONED, errbuf));
}
/*
* Avoid unmounting file systems with mountpoint property set to
* 'legacy' or 'none' even if -u option is not given.
*/
if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM &&
!flags.recursive && !flags.nounmount &&
zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, property,
sizeof (property), NULL, NULL, 0, B_FALSE) == 0 &&
(strcmp(property, "legacy") == 0 ||
strcmp(property, "none") == 0)) {
flags.nounmount = B_TRUE;
}
if (flags.recursive) {
char *parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name);
if (parentname == NULL) {
ret = -1;
goto error;
}
delim = strchr(parentname, '@');
*delim = '\0';
zfs_handle_t *zhrp = zfs_open(zhp->zfs_hdl, parentname,
ZFS_TYPE_DATASET);
free(parentname);
if (zhrp == NULL) {
ret = -1;
goto error;
}
zfs_close(zhrp);
} else if (zhp->zfs_type != ZFS_TYPE_SNAPSHOT) {
if ((cl = changelist_gather(zhp, ZFS_PROP_NAME,
flags.nounmount ? CL_GATHER_DONT_UNMOUNT :
CL_GATHER_ITER_MOUNTED,
flags.forceunmount ? MS_FORCE : 0)) == NULL)
return (-1);
if (changelist_haszonedchild(cl)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"child dataset with inherited mountpoint is used "
"in a non-global zone"));
(void) zfs_error(hdl, EZFS_ZONED, errbuf);
ret = -1;
goto error;
}
if ((ret = changelist_prefix(cl)) != 0)
goto error;
}
if (ZFS_IS_VOLUME(zhp))
zc.zc_objset_type = DMU_OST_ZVOL;
else
zc.zc_objset_type = DMU_OST_ZFS;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value));
zc.zc_cookie = !!flags.recursive;
zc.zc_cookie |= (!!flags.nounmount) << 1;
if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) {
/*
* if it was recursive, the one that actually failed will
* be in zc.zc_name
*/
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot rename '%s'"), zc.zc_name);
if (flags.recursive && errno == EEXIST) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"a child dataset already has a snapshot "
"with the new name"));
(void) zfs_error(hdl, EZFS_EXISTS, errbuf);
} else if (errno == EACCES) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"cannot move encrypted child outside of "
"its encryption root"));
(void) zfs_error(hdl, EZFS_CRYPTOFAILED, errbuf);
} else {
(void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf);
}
/*
* On failure, we still want to remount any filesystems that
* were previously mounted, so we don't alter the system state.
*/
if (cl != NULL)
(void) changelist_postfix(cl);
} else {
if (cl != NULL) {
changelist_rename(cl, zfs_get_name(zhp), target);
ret = changelist_postfix(cl);
}
}
error:
if (cl != NULL) {
changelist_free(cl);
}
return (ret);
}
nvlist_t *
zfs_get_all_props(zfs_handle_t *zhp)
{
return (zhp->zfs_props);
}
nvlist_t *
zfs_get_recvd_props(zfs_handle_t *zhp)
{
if (zhp->zfs_recvd_props == NULL)
if (get_recvd_props_ioctl(zhp) != 0)
return (NULL);
return (zhp->zfs_recvd_props);
}
nvlist_t *
zfs_get_user_props(zfs_handle_t *zhp)
{
return (zhp->zfs_user_props);
}
/*
* This function is used by 'zfs list' to determine the exact set of columns to
* display, and their maximum widths. This does two main things:
*
* - If this is a list of all properties, then expand the list to include
* all native properties, and set a flag so that for each dataset we look
* for new unique user properties and add them to the list.
*
* - For non fixed-width properties, keep track of the maximum width seen
* so that we can size the column appropriately. If the user has
* requested received property values, we also need to compute the width
* of the RECEIVED column.
*/
int
zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received,
boolean_t literal)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
zprop_list_t *entry;
zprop_list_t **last, **start;
nvlist_t *userprops, *propval;
nvpair_t *elem;
char *strval;
char buf[ZFS_MAXPROPLEN];
if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0)
return (-1);
userprops = zfs_get_user_props(zhp);
entry = *plp;
if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) {
/*
* Go through and add any user properties as necessary. We
* start by incrementing our list pointer to the first
* non-native property.
*/
start = plp;
while (*start != NULL) {
if ((*start)->pl_prop == ZPROP_INVAL)
break;
start = &(*start)->pl_next;
}
elem = NULL;
while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) {
/*
* See if we've already found this property in our list.
*/
for (last = start; *last != NULL;
last = &(*last)->pl_next) {
if (strcmp((*last)->pl_user_prop,
nvpair_name(elem)) == 0)
break;
}
if (*last == NULL) {
if ((entry = zfs_alloc(hdl,
sizeof (zprop_list_t))) == NULL ||
((entry->pl_user_prop = zfs_strdup(hdl,
nvpair_name(elem)))) == NULL) {
free(entry);
return (-1);
}
entry->pl_prop = ZPROP_INVAL;
entry->pl_width = strlen(nvpair_name(elem));
entry->pl_all = B_TRUE;
*last = entry;
}
}
}
/*
* Now go through and check the width of any non-fixed columns
*/
for (entry = *plp; entry != NULL; entry = entry->pl_next) {
if (entry->pl_fixed && !literal)
continue;
if (entry->pl_prop != ZPROP_INVAL) {
if (zfs_prop_get(zhp, entry->pl_prop,
buf, sizeof (buf), NULL, NULL, 0, literal) == 0) {
if (strlen(buf) > entry->pl_width)
entry->pl_width = strlen(buf);
}
if (received && zfs_prop_get_recvd(zhp,
zfs_prop_to_name(entry->pl_prop),
buf, sizeof (buf), literal) == 0)
if (strlen(buf) > entry->pl_recvd_width)
entry->pl_recvd_width = strlen(buf);
} else {
if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop,
&propval) == 0) {
verify(nvlist_lookup_string(propval,
ZPROP_VALUE, &strval) == 0);
if (strlen(strval) > entry->pl_width)
entry->pl_width = strlen(strval);
}
if (received && zfs_prop_get_recvd(zhp,
entry->pl_user_prop,
buf, sizeof (buf), literal) == 0)
if (strlen(buf) > entry->pl_recvd_width)
entry->pl_recvd_width = strlen(buf);
}
}
return (0);
}
void
zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props)
{
nvpair_t *curr;
nvpair_t *next;
/*
* Keep a reference to the props-table against which we prune the
* properties.
*/
zhp->zfs_props_table = props;
curr = nvlist_next_nvpair(zhp->zfs_props, NULL);
while (curr) {
zfs_prop_t zfs_prop = zfs_name_to_prop(nvpair_name(curr));
next = nvlist_next_nvpair(zhp->zfs_props, curr);
/*
* User properties will result in ZPROP_INVAL, and since we
* only know how to prune standard ZFS properties, we always
* leave these in the list. This can also happen if we
* encounter an unknown DSL property (when running older
* software, for example).
*/
if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE)
(void) nvlist_remove(zhp->zfs_props,
nvpair_name(curr), nvpair_type(curr));
curr = next;
}
}
static int
zfs_smb_acl_mgmt(libzfs_handle_t *hdl, char *dataset, char *path,
zfs_smb_acl_op_t cmd, char *resource1, char *resource2)
{
zfs_cmd_t zc = {"\0"};
nvlist_t *nvlist = NULL;
int error;
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
(void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value));
zc.zc_cookie = (uint64_t)cmd;
if (cmd == ZFS_SMB_ACL_RENAME) {
if (nvlist_alloc(&nvlist, NV_UNIQUE_NAME, 0) != 0) {
(void) no_memory(hdl);
return (0);
}
}
switch (cmd) {
case ZFS_SMB_ACL_ADD:
case ZFS_SMB_ACL_REMOVE:
(void) strlcpy(zc.zc_string, resource1, sizeof (zc.zc_string));
break;
case ZFS_SMB_ACL_RENAME:
if (nvlist_add_string(nvlist, ZFS_SMB_ACL_SRC,
resource1) != 0) {
(void) no_memory(hdl);
return (-1);
}
if (nvlist_add_string(nvlist, ZFS_SMB_ACL_TARGET,
resource2) != 0) {
(void) no_memory(hdl);
return (-1);
}
if (zcmd_write_src_nvlist(hdl, &zc, nvlist) != 0) {
nvlist_free(nvlist);
return (-1);
}
break;
case ZFS_SMB_ACL_PURGE:
break;
default:
return (-1);
}
error = ioctl(hdl->libzfs_fd, ZFS_IOC_SMB_ACL, &zc);
nvlist_free(nvlist);
return (error);
}
int
zfs_smb_acl_add(libzfs_handle_t *hdl, char *dataset,
char *path, char *resource)
{
return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_ADD,
resource, NULL));
}
int
zfs_smb_acl_remove(libzfs_handle_t *hdl, char *dataset,
char *path, char *resource)
{
return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_REMOVE,
resource, NULL));
}
int
zfs_smb_acl_purge(libzfs_handle_t *hdl, char *dataset, char *path)
{
return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_PURGE,
NULL, NULL));
}
int
zfs_smb_acl_rename(libzfs_handle_t *hdl, char *dataset, char *path,
char *oldname, char *newname)
{
return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_RENAME,
oldname, newname));
}
int
zfs_userspace(zfs_handle_t *zhp, zfs_userquota_prop_t type,
zfs_userspace_cb_t func, void *arg)
{
zfs_cmd_t zc = {"\0"};
zfs_useracct_t buf[100];
libzfs_handle_t *hdl = zhp->zfs_hdl;
int ret;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
zc.zc_objset_type = type;
zc.zc_nvlist_dst = (uintptr_t)buf;
for (;;) {
zfs_useracct_t *zua = buf;
zc.zc_nvlist_dst_size = sizeof (buf);
if (zfs_ioctl(hdl, ZFS_IOC_USERSPACE_MANY, &zc) != 0) {
char errbuf[1024];
if ((errno == ENOTSUP &&
(type == ZFS_PROP_USEROBJUSED ||
type == ZFS_PROP_GROUPOBJUSED ||
type == ZFS_PROP_USEROBJQUOTA ||
type == ZFS_PROP_GROUPOBJQUOTA ||
type == ZFS_PROP_PROJECTOBJUSED ||
type == ZFS_PROP_PROJECTOBJQUOTA ||
type == ZFS_PROP_PROJECTUSED ||
type == ZFS_PROP_PROJECTQUOTA)))
break;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot get used/quota for %s"), zc.zc_name);
return (zfs_standard_error_fmt(hdl, errno, errbuf));
}
if (zc.zc_nvlist_dst_size == 0)
break;
while (zc.zc_nvlist_dst_size > 0) {
if ((ret = func(arg, zua->zu_domain, zua->zu_rid,
zua->zu_space)) != 0)
return (ret);
zua++;
zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t);
}
}
return (0);
}
struct holdarg {
nvlist_t *nvl;
const char *snapname;
const char *tag;
boolean_t recursive;
int error;
};
static int
zfs_hold_one(zfs_handle_t *zhp, void *arg)
{
struct holdarg *ha = arg;
char name[ZFS_MAX_DATASET_NAME_LEN];
int rv = 0;
if (snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name,
ha->snapname) >= sizeof (name))
return (EINVAL);
if (lzc_exists(name))
fnvlist_add_string(ha->nvl, name, ha->tag);
if (ha->recursive)
rv = zfs_iter_filesystems(zhp, zfs_hold_one, ha);
zfs_close(zhp);
return (rv);
}
int
zfs_hold(zfs_handle_t *zhp, const char *snapname, const char *tag,
boolean_t recursive, int cleanup_fd)
{
int ret;
struct holdarg ha;
ha.nvl = fnvlist_alloc();
ha.snapname = snapname;
ha.tag = tag;
ha.recursive = recursive;
(void) zfs_hold_one(zfs_handle_dup(zhp), &ha);
if (nvlist_empty(ha.nvl)) {
char errbuf[1024];
fnvlist_free(ha.nvl);
ret = ENOENT;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot hold snapshot '%s@%s'"),
zhp->zfs_name, snapname);
(void) zfs_standard_error(zhp->zfs_hdl, ret, errbuf);
return (ret);
}
ret = zfs_hold_nvl(zhp, cleanup_fd, ha.nvl);
fnvlist_free(ha.nvl);
return (ret);
}
int
zfs_hold_nvl(zfs_handle_t *zhp, int cleanup_fd, nvlist_t *holds)
{
int ret;
nvlist_t *errors;
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
nvpair_t *elem;
errors = NULL;
ret = lzc_hold(holds, cleanup_fd, &errors);
if (ret == 0) {
/* There may be errors even in the success case. */
fnvlist_free(errors);
return (0);
}
if (nvlist_empty(errors)) {
/* no hold-specific errors */
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot hold"));
switch (ret) {
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded"));
(void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case EINVAL:
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
default:
(void) zfs_standard_error(hdl, ret, errbuf);
}
}
for (elem = nvlist_next_nvpair(errors, NULL);
elem != NULL;
elem = nvlist_next_nvpair(errors, elem)) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot hold snapshot '%s'"), nvpair_name(elem));
switch (fnvpair_value_int32(elem)) {
case E2BIG:
/*
* Temporary tags wind up having the ds object id
* prepended. So even if we passed the length check
* above, it's still possible for the tag to wind
* up being slightly too long.
*/
(void) zfs_error(hdl, EZFS_TAGTOOLONG, errbuf);
break;
case EINVAL:
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
case EEXIST:
(void) zfs_error(hdl, EZFS_REFTAG_HOLD, errbuf);
break;
default:
(void) zfs_standard_error(hdl,
fnvpair_value_int32(elem), errbuf);
}
}
fnvlist_free(errors);
return (ret);
}
static int
zfs_release_one(zfs_handle_t *zhp, void *arg)
{
struct holdarg *ha = arg;
char name[ZFS_MAX_DATASET_NAME_LEN];
int rv = 0;
nvlist_t *existing_holds;
if (snprintf(name, sizeof (name), "%s@%s", zhp->zfs_name,
ha->snapname) >= sizeof (name)) {
ha->error = EINVAL;
rv = EINVAL;
}
if (lzc_get_holds(name, &existing_holds) != 0) {
ha->error = ENOENT;
} else if (!nvlist_exists(existing_holds, ha->tag)) {
ha->error = ESRCH;
} else {
nvlist_t *torelease = fnvlist_alloc();
fnvlist_add_boolean(torelease, ha->tag);
fnvlist_add_nvlist(ha->nvl, name, torelease);
fnvlist_free(torelease);
}
if (ha->recursive)
rv = zfs_iter_filesystems(zhp, zfs_release_one, ha);
zfs_close(zhp);
return (rv);
}
int
zfs_release(zfs_handle_t *zhp, const char *snapname, const char *tag,
boolean_t recursive)
{
int ret;
struct holdarg ha;
nvlist_t *errors = NULL;
nvpair_t *elem;
libzfs_handle_t *hdl = zhp->zfs_hdl;
char errbuf[1024];
ha.nvl = fnvlist_alloc();
ha.snapname = snapname;
ha.tag = tag;
ha.recursive = recursive;
ha.error = 0;
(void) zfs_release_one(zfs_handle_dup(zhp), &ha);
if (nvlist_empty(ha.nvl)) {
fnvlist_free(ha.nvl);
ret = ha.error;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot release hold from snapshot '%s@%s'"),
zhp->zfs_name, snapname);
if (ret == ESRCH) {
(void) zfs_error(hdl, EZFS_REFTAG_RELE, errbuf);
} else {
(void) zfs_standard_error(hdl, ret, errbuf);
}
return (ret);
}
ret = lzc_release(ha.nvl, &errors);
fnvlist_free(ha.nvl);
if (ret == 0) {
/* There may be errors even in the success case. */
fnvlist_free(errors);
return (0);
}
if (nvlist_empty(errors)) {
/* no hold-specific errors */
(void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN,
"cannot release"));
switch (errno) {
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded"));
(void) zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
default:
(void) zfs_standard_error_fmt(hdl, errno, errbuf);
}
}
for (elem = nvlist_next_nvpair(errors, NULL);
elem != NULL;
elem = nvlist_next_nvpair(errors, elem)) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot release hold from snapshot '%s'"),
nvpair_name(elem));
switch (fnvpair_value_int32(elem)) {
case ESRCH:
(void) zfs_error(hdl, EZFS_REFTAG_RELE, errbuf);
break;
case EINVAL:
(void) zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
default:
(void) zfs_standard_error_fmt(hdl,
fnvpair_value_int32(elem), errbuf);
}
}
fnvlist_free(errors);
return (ret);
}
int
zfs_get_fsacl(zfs_handle_t *zhp, nvlist_t **nvl)
{
zfs_cmd_t zc = {"\0"};
libzfs_handle_t *hdl = zhp->zfs_hdl;
int nvsz = 2048;
void *nvbuf;
int err = 0;
char errbuf[1024];
assert(zhp->zfs_type == ZFS_TYPE_VOLUME ||
zhp->zfs_type == ZFS_TYPE_FILESYSTEM);
tryagain:
nvbuf = malloc(nvsz);
if (nvbuf == NULL) {
err = (zfs_error(hdl, EZFS_NOMEM, strerror(errno)));
goto out;
}
zc.zc_nvlist_dst_size = nvsz;
zc.zc_nvlist_dst = (uintptr_t)nvbuf;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zfs_ioctl(hdl, ZFS_IOC_GET_FSACL, &zc) != 0) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot get permissions on '%s'"),
zc.zc_name);
switch (errno) {
case ENOMEM:
free(nvbuf);
nvsz = zc.zc_nvlist_dst_size;
goto tryagain;
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded"));
err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case EINVAL:
err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
case ENOENT:
err = zfs_error(hdl, EZFS_NOENT, errbuf);
break;
default:
err = zfs_standard_error_fmt(hdl, errno, errbuf);
break;
}
} else {
/* success */
int rc = nvlist_unpack(nvbuf, zc.zc_nvlist_dst_size, nvl, 0);
if (rc) {
(void) snprintf(errbuf, sizeof (errbuf), dgettext(
TEXT_DOMAIN, "cannot get permissions on '%s'"),
zc.zc_name);
err = zfs_standard_error_fmt(hdl, rc, errbuf);
}
}
free(nvbuf);
out:
return (err);
}
int
zfs_set_fsacl(zfs_handle_t *zhp, boolean_t un, nvlist_t *nvl)
{
zfs_cmd_t zc = {"\0"};
libzfs_handle_t *hdl = zhp->zfs_hdl;
char *nvbuf;
char errbuf[1024];
size_t nvsz;
int err;
assert(zhp->zfs_type == ZFS_TYPE_VOLUME ||
zhp->zfs_type == ZFS_TYPE_FILESYSTEM);
err = nvlist_size(nvl, &nvsz, NV_ENCODE_NATIVE);
assert(err == 0);
nvbuf = malloc(nvsz);
err = nvlist_pack(nvl, &nvbuf, &nvsz, NV_ENCODE_NATIVE, 0);
assert(err == 0);
zc.zc_nvlist_src_size = nvsz;
zc.zc_nvlist_src = (uintptr_t)nvbuf;
zc.zc_perm_action = un;
(void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name));
if (zfs_ioctl(hdl, ZFS_IOC_SET_FSACL, &zc) != 0) {
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot set permissions on '%s'"),
zc.zc_name);
switch (errno) {
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded"));
err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case EINVAL:
err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
case ENOENT:
err = zfs_error(hdl, EZFS_NOENT, errbuf);
break;
default:
err = zfs_standard_error_fmt(hdl, errno, errbuf);
break;
}
}
free(nvbuf);
return (err);
}
int
zfs_get_holds(zfs_handle_t *zhp, nvlist_t **nvl)
{
int err;
char errbuf[1024];
err = lzc_get_holds(zhp->zfs_name, nvl);
if (err != 0) {
libzfs_handle_t *hdl = zhp->zfs_hdl;
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN, "cannot get holds for '%s'"),
zhp->zfs_name);
switch (err) {
case ENOTSUP:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool must be upgraded"));
err = zfs_error(hdl, EZFS_BADVERSION, errbuf);
break;
case EINVAL:
err = zfs_error(hdl, EZFS_BADTYPE, errbuf);
break;
case ENOENT:
err = zfs_error(hdl, EZFS_NOENT, errbuf);
break;
default:
err = zfs_standard_error_fmt(hdl, errno, errbuf);
break;
}
}
return (err);
}
/*
* The theory of raidz space accounting
*
* The "referenced" property of RAIDZ vdevs is scaled such that a 128KB block
* will "reference" 128KB, even though it allocates more than that, to store the
* parity information (and perhaps skip sectors). This concept of the
* "referenced" (and other DMU space accounting) being lower than the allocated
* space by a constant factor is called "raidz deflation."
*
* As mentioned above, the constant factor for raidz deflation assumes a 128KB
* block size. However, zvols typically have a much smaller block size (default
* 8KB). These smaller blocks may require proportionally much more parity
* information (and perhaps skip sectors). In this case, the change to the
* "referenced" property may be much more than the logical block size.
*
* Suppose a raidz vdev has 5 disks with ashift=12. A 128k block may be written
* as follows.
*
* +-------+-------+-------+-------+-------+
* | disk1 | disk2 | disk3 | disk4 | disk5 |
* +-------+-------+-------+-------+-------+
* | P0 | D0 | D8 | D16 | D24 |
* | P1 | D1 | D9 | D17 | D25 |
* | P2 | D2 | D10 | D18 | D26 |
* | P3 | D3 | D11 | D19 | D27 |
* | P4 | D4 | D12 | D20 | D28 |
* | P5 | D5 | D13 | D21 | D29 |
* | P6 | D6 | D14 | D22 | D30 |
* | P7 | D7 | D15 | D23 | D31 |
* +-------+-------+-------+-------+-------+
*
* Above, notice that 160k was allocated: 8 x 4k parity sectors + 32 x 4k data
* sectors. The dataset's referenced will increase by 128k and the pool's
* allocated and free properties will be adjusted by 160k.
*
* A 4k block written to the same raidz vdev will require two 4k sectors. The
* blank cells represent unallocated space.
*
* +-------+-------+-------+-------+-------+
* | disk1 | disk2 | disk3 | disk4 | disk5 |
* +-------+-------+-------+-------+-------+
* | P0 | D0 | | | |
* +-------+-------+-------+-------+-------+
*
* Above, notice that the 4k block required one sector for parity and another
* for data. vdev_raidz_asize() will return 8k and as such the pool's allocated
* and free properties will be adjusted by 8k. The dataset will not be charged
* 8k. Rather, it will be charged a value that is scaled according to the
* overhead of the 128k block on the same vdev. This 8k allocation will be
* charged 8k * 128k / 160k. 128k is from SPA_OLD_MAXBLOCKSIZE and 160k is as
* calculated in the 128k block example above.
*
* Every raidz allocation is sized to be a multiple of nparity+1 sectors. That
* is, every raidz1 allocation will be a multiple of 2 sectors, raidz2
* allocations are a multiple of 3 sectors, and raidz3 allocations are a
* multiple of of 4 sectors. When a block does not fill the required number of
* sectors, skip blocks (sectors) are used.
*
* An 8k block being written to a raidz vdev may be written as follows:
*
* +-------+-------+-------+-------+-------+
* | disk1 | disk2 | disk3 | disk4 | disk5 |
* +-------+-------+-------+-------+-------+
* | P0 | D0 | D1 | S0 | |
* +-------+-------+-------+-------+-------+
*
* In order to maintain the nparity+1 allocation size, a skip block (S0) was
* added. For this 8k block, the pool's allocated and free properties are
* adjusted by 16k and the dataset's referenced is increased by 16k * 128k /
* 160k. Again, 128k is from SPA_OLD_MAXBLOCKSIZE and 160k is as calculated in
* the 128k block example above.
*
* Compression may lead to a variety of block sizes being written for the same
* volume or file. There is no clear way to reserve just the amount of space
* that will be required, so the worst case (no compression) is assumed.
* Note that metadata blocks will typically be compressed, so the reservation
* size returned by zvol_volsize_to_reservation() will generally be slightly
* larger than the maximum that the volume can reference.
*/
/*
* Derived from function of same name in module/zfs/vdev_raidz.c. Returns the
* amount of space (in bytes) that will be allocated for the specified block
* size. Note that the "referenced" space accounted will be less than this, but
* not necessarily equal to "blksize", due to RAIDZ deflation.
*/
static uint64_t
vdev_raidz_asize(uint64_t ndisks, uint64_t nparity, uint64_t ashift,
uint64_t blksize)
{
uint64_t asize, ndata;
ASSERT3U(ndisks, >, nparity);
ndata = ndisks - nparity;
asize = ((blksize - 1) >> ashift) + 1;
asize += nparity * ((asize + ndata - 1) / ndata);
asize = roundup(asize, nparity + 1) << ashift;
return (asize);
}
/*
* Determine how much space will be allocated if it lands on the most space-
* inefficient top-level vdev. Returns the size in bytes required to store one
* copy of the volume data. See theory comment above.
*/
static uint64_t
volsize_from_vdevs(zpool_handle_t *zhp, uint64_t nblocks, uint64_t blksize)
{
nvlist_t *config, *tree, **vdevs;
uint_t nvdevs, v;
uint64_t ret = 0;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) != 0 ||
nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
&vdevs, &nvdevs) != 0) {
return (nblocks * blksize);
}
for (v = 0; v < nvdevs; v++) {
char *type;
uint64_t nparity, ashift, asize, tsize;
nvlist_t **disks;
uint_t ndisks;
uint64_t volsize;
if (nvlist_lookup_string(vdevs[v], ZPOOL_CONFIG_TYPE,
&type) != 0 || strcmp(type, VDEV_TYPE_RAIDZ) != 0 ||
nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_NPARITY,
&nparity) != 0 ||
nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_ASHIFT,
&ashift) != 0 ||
nvlist_lookup_nvlist_array(vdevs[v], ZPOOL_CONFIG_CHILDREN,
&disks, &ndisks) != 0) {
continue;
}
/* allocation size for the "typical" 128k block */
tsize = vdev_raidz_asize(ndisks, nparity, ashift,
SPA_OLD_MAXBLOCKSIZE);
/* allocation size for the blksize block */
asize = vdev_raidz_asize(ndisks, nparity, ashift, blksize);
/*
* Scale this size down as a ratio of 128k / tsize. See theory
* statement above.
*/
volsize = nblocks * asize * SPA_OLD_MAXBLOCKSIZE / tsize;
if (volsize > ret) {
ret = volsize;
}
}
if (ret == 0) {
ret = nblocks * blksize;
}
return (ret);
}
/*
* Convert the zvol's volume size to an appropriate reservation. See theory
* comment above.
*
* Note: If this routine is updated, it is necessary to update the ZFS test
* suite's shell version in reservation.shlib.
*/
uint64_t
zvol_volsize_to_reservation(zpool_handle_t *zph, uint64_t volsize,
nvlist_t *props)
{
uint64_t numdb;
uint64_t nblocks, volblocksize;
int ncopies;
char *strval;
if (nvlist_lookup_string(props,
zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0)
ncopies = atoi(strval);
else
ncopies = 1;
if (nvlist_lookup_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize) != 0)
volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
nblocks = volsize / volblocksize;
/*
* Metadata defaults to using 128k blocks, not volblocksize blocks. For
* this reason, only the data blocks are scaled based on vdev config.
*/
volsize = volsize_from_vdevs(zph, nblocks, volblocksize);
/* start with metadnode L0-L6 */
numdb = 7;
/* calculate number of indirects */
while (nblocks > 1) {
nblocks += DNODES_PER_LEVEL - 1;
nblocks /= DNODES_PER_LEVEL;
numdb += nblocks;
}
numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1);
volsize *= ncopies;
/*
* this is exactly DN_MAX_INDBLKSHIFT when metadata isn't
* compressed, but in practice they compress down to about
* 1100 bytes
*/
numdb *= 1ULL << DN_MAX_INDBLKSHIFT;
volsize += numdb;
return (volsize);
}
/*
* Wait for the given activity and return the status of the wait (whether or not
* any waiting was done) in the 'waited' parameter. Non-existent fses are
* reported via the 'missing' parameter, rather than by printing an error
* message. This is convenient when this function is called in a loop over a
* long period of time (as it is, for example, by zfs's wait cmd). In that
* scenario, a fs being exported or destroyed should be considered a normal
* event, so we don't want to print an error when we find that the fs doesn't
* exist.
*/
int
zfs_wait_status(zfs_handle_t *zhp, zfs_wait_activity_t activity,
boolean_t *missing, boolean_t *waited)
{
int error = lzc_wait_fs(zhp->zfs_name, activity, waited);
*missing = (error == ENOENT);
if (*missing)
return (0);
if (error != 0) {
(void) zfs_standard_error_fmt(zhp->zfs_hdl, error,
dgettext(TEXT_DOMAIN, "error waiting in fs '%s'"),
zhp->zfs_name);
}
return (error);
}