Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * The basic framework for this code came from the reference
 * implementation for MD5.  That implementation is Copyright (C)
 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
 *
 * License to copy and use this software is granted provided that it
 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
 * Algorithm" in all material mentioning or referencing this software
 * or this function.
 *
 * License is also granted to make and use derivative works provided
 * that such works are identified as "derived from the RSA Data
 * Security, Inc. MD5 Message-Digest Algorithm" in all material
 * mentioning or referencing the derived work.
 *
 * RSA Data Security, Inc. makes no representations concerning either
 * the merchantability of this software or the suitability of this
 * software for any particular purpose. It is provided "as is"
 * without express or implied warranty of any kind.
 *
 * These notices must be retained in any copies of any part of this
 * documentation and/or software.
 *
 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
 * Not as fast as one would like -- further optimizations are encouraged
 * and appreciated.
 */

#include <sys/zfs_context.h>
#include <sha1/sha1.h>
#include <sha1/sha1_consts.h>

#ifdef _LITTLE_ENDIAN
#include <sys/byteorder.h>
#define	HAVE_HTONL
#endif

#define	_RESTRICT_KYWD

static void Encode(uint8_t *, const uint32_t *, size_t);

#if	defined(__sparc)

#define	SHA1_TRANSFORM(ctx, in) \
	SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
		(ctx)->state[3], (ctx)->state[4], (ctx), (in))

static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
	SHA1_CTX *, const uint8_t *);

#elif	defined(__amd64)

#define	SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
#define	SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
		(in), (num))

void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);

#else

#define	SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))

static void SHA1Transform(SHA1_CTX *, const uint8_t *);

#endif


static uint8_t PADDING[64] = { 0x80, /* all zeros */ };

/*
 * F, G, and H are the basic SHA1 functions.
 */
#define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
#define	G(b, c, d)	((b) ^ (c) ^ (d))
#define	H(b, c, d)	(((b) & (c)) | (((b)|(c)) & (d)))

/*
 * SHA1Init()
 *
 * purpose: initializes the sha1 context and begins and sha1 digest operation
 *   input: SHA1_CTX *	: the context to initializes.
 *  output: void
 */

void
SHA1Init(SHA1_CTX *ctx)
{
	ctx->count[0] = ctx->count[1] = 0;

	/*
	 * load magic initialization constants. Tell lint
	 * that these constants are unsigned by using U.
	 */

	ctx->state[0] = 0x67452301U;
	ctx->state[1] = 0xefcdab89U;
	ctx->state[2] = 0x98badcfeU;
	ctx->state[3] = 0x10325476U;
	ctx->state[4] = 0xc3d2e1f0U;
}

void
SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
{
	uint32_t i, buf_index, buf_len;
	const uint8_t *input = inptr;
#if defined(__amd64)
	uint32_t	block_count;
#endif	/* __amd64 */

	/* check for noop */
	if (input_len == 0)
		return;

	/* compute number of bytes mod 64 */
	buf_index = (ctx->count[1] >> 3) & 0x3F;

	/* update number of bits */
	if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
		ctx->count[0]++;

	ctx->count[0] += (input_len >> 29);

	buf_len = 64 - buf_index;

	/* transform as many times as possible */
	i = 0;
	if (input_len >= buf_len) {

		/*
		 * general optimization:
		 *
		 * only do initial bcopy() and SHA1Transform() if
		 * buf_index != 0.  if buf_index == 0, we're just
		 * wasting our time doing the bcopy() since there
		 * wasn't any data left over from a previous call to
		 * SHA1Update().
		 */

		if (buf_index) {
			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
			SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
			i = buf_len;
		}

#if !defined(__amd64)
		for (; i + 63 < input_len; i += 64)
			SHA1_TRANSFORM(ctx, &input[i]);
#else
		block_count = (input_len - i) >> 6;
		if (block_count > 0) {
			SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
			i += block_count << 6;
		}
#endif	/* !__amd64 */

		/*
		 * general optimization:
		 *
		 * if i and input_len are the same, return now instead
		 * of calling bcopy(), since the bcopy() in this case
		 * will be an expensive nop.
		 */

		if (input_len == i)
			return;

		buf_index = 0;
	}

	/* buffer remaining input */
	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}

/*
 * SHA1Final()
 *
 * purpose: ends an sha1 digest operation, finalizing the message digest and
 *          zeroing the context.
 *   input: uchar_t *	: A buffer to store the digest.
 *			: The function actually uses void* because many
 *			: callers pass things other than uchar_t here.
 *          SHA1_CTX *  : the context to finalize, save, and zero
 *  output: void
 */

void
SHA1Final(void *digest, SHA1_CTX *ctx)
{
	uint8_t		bitcount_be[sizeof (ctx->count)];
	uint32_t	index = (ctx->count[1] >> 3) & 0x3f;

	/* store bit count, big endian */
	Encode(bitcount_be, ctx->count, sizeof (bitcount_be));

	/* pad out to 56 mod 64 */
	SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);

	/* append length (before padding) */
	SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));

	/* store state in digest */
	Encode(digest, ctx->state, sizeof (ctx->state));

	/* zeroize sensitive information */
	bzero(ctx, sizeof (*ctx));
}


#if !defined(__amd64)

typedef uint32_t sha1word;

/*
 * sparc optimization:
 *
 * on the sparc, we can load big endian 32-bit data easily.  note that
 * special care must be taken to ensure the address is 32-bit aligned.
 * in the interest of speed, we don't check to make sure, since
 * careful programming can guarantee this for us.
 */

#if	defined(_ZFS_BIG_ENDIAN)
#define	LOAD_BIG_32(addr)	(*(uint32_t *)(addr))

#elif	defined(HAVE_HTONL)
#define	LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))

#else
#define	LOAD_BIG_32(addr)	BE_32(*((uint32_t *)(addr)))
#endif	/* _BIG_ENDIAN */

/*
 * SHA1Transform()
 */
#if	defined(W_ARRAY)
#define	W(n) w[n]
#else	/* !defined(W_ARRAY) */
#define	W(n) w_ ## n
#endif	/* !defined(W_ARRAY) */

/*
 * ROTATE_LEFT rotates x left n bits.
 */

#if	defined(__GNUC__) && defined(_LP64)
static __inline__ uint64_t
ROTATE_LEFT(uint64_t value, uint32_t n)
{
	uint32_t t32;

	t32 = (uint32_t)value;
	return ((t32 << n) | (t32 >> (32 - n)));
}

#else

#define	ROTATE_LEFT(x, n)	\
	(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))

#endif

#if	defined(__sparc)


/*
 * sparc register window optimization:
 *
 * `a', `b', `c', `d', and `e' are passed into SHA1Transform
 * explicitly since it increases the number of registers available to
 * the compiler.  under this scheme, these variables can be held in
 * %i0 - %i4, which leaves more local and out registers available.
 *
 * purpose: sha1 transformation -- updates the digest based on `block'
 *   input: uint32_t	: bytes  1 -  4 of the digest
 *          uint32_t	: bytes  5 -  8 of the digest
 *          uint32_t	: bytes  9 - 12 of the digest
 *          uint32_t	: bytes 12 - 16 of the digest
 *          uint32_t	: bytes 16 - 20 of the digest
 *          SHA1_CTX *	: the context to update
 *          uint8_t [64]: the block to use to update the digest
 *  output: void
 */


void
SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
    SHA1_CTX *ctx, const uint8_t blk[64])
{
	/*
	 * sparc optimization:
	 *
	 * while it is somewhat counter-intuitive, on sparc, it is
	 * more efficient to place all the constants used in this
	 * function in an array and load the values out of the array
	 * than to manually load the constants.  this is because
	 * setting a register to a 32-bit value takes two ops in most
	 * cases: a `sethi' and an `or', but loading a 32-bit value
	 * from memory only takes one `ld' (or `lduw' on v9).  while
	 * this increases memory usage, the compiler can find enough
	 * other things to do while waiting to keep the pipeline does
	 * not stall.  additionally, it is likely that many of these
	 * constants are cached so that later accesses do not even go
	 * out to the bus.
	 *
	 * this array is declared `static' to keep the compiler from
	 * having to bcopy() this array onto the stack frame of
	 * SHA1Transform() each time it is called -- which is
	 * unacceptably expensive.
	 *
	 * the `const' is to ensure that callers are good citizens and
	 * do not try to munge the array.  since these routines are
	 * going to be called from inside multithreaded kernelland,
	 * this is a good safety check. -- `sha1_consts' will end up in
	 * .rodata.
	 *
	 * unfortunately, loading from an array in this manner hurts
	 * performance under Intel.  So, there is a macro,
	 * SHA1_CONST(), used in SHA1Transform(), that either expands to
	 * a reference to this array, or to the actual constant,
	 * depending on what platform this code is compiled for.
	 */


	static const uint32_t sha1_consts[] = {
		SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
	};


	/*
	 * general optimization:
	 *
	 * use individual integers instead of using an array.  this is a
	 * win, although the amount it wins by seems to vary quite a bit.
	 */


	uint32_t	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
	uint32_t	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;


	/*
	 * sparc optimization:
	 *
	 * if `block' is already aligned on a 4-byte boundary, use
	 * LOAD_BIG_32() directly.  otherwise, bcopy() into a
	 * buffer that *is* aligned on a 4-byte boundary and then do
	 * the LOAD_BIG_32() on that buffer.  benchmarks have shown
	 * that using the bcopy() is better than loading the bytes
	 * individually and doing the endian-swap by hand.
	 *
	 * even though it's quite tempting to assign to do:
	 *
	 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
	 *
	 * and only have one set of LOAD_BIG_32()'s, the compiler
	 * *does not* like that, so please resist the urge.
	 */


	if ((uintptr_t)blk & 0x3) {		/* not 4-byte aligned? */
		bcopy(blk, ctx->buf_un.buf32,  sizeof (ctx->buf_un.buf32));
		w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
		w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
		w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
		w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
		w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
		w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
		w_9  = LOAD_BIG_32(ctx->buf_un.buf32 +  9);
		w_8  = LOAD_BIG_32(ctx->buf_un.buf32 +  8);
		w_7  = LOAD_BIG_32(ctx->buf_un.buf32 +  7);
		w_6  = LOAD_BIG_32(ctx->buf_un.buf32 +  6);
		w_5  = LOAD_BIG_32(ctx->buf_un.buf32 +  5);
		w_4  = LOAD_BIG_32(ctx->buf_un.buf32 +  4);
		w_3  = LOAD_BIG_32(ctx->buf_un.buf32 +  3);
		w_2  = LOAD_BIG_32(ctx->buf_un.buf32 +  2);
		w_1  = LOAD_BIG_32(ctx->buf_un.buf32 +  1);
		w_0  = LOAD_BIG_32(ctx->buf_un.buf32 +  0);
	} else {
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_15 = LOAD_BIG_32(blk + 60);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_14 = LOAD_BIG_32(blk + 56);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_13 = LOAD_BIG_32(blk + 52);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_12 = LOAD_BIG_32(blk + 48);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_11 = LOAD_BIG_32(blk + 44);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_10 = LOAD_BIG_32(blk + 40);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_9  = LOAD_BIG_32(blk + 36);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_8  = LOAD_BIG_32(blk + 32);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_7  = LOAD_BIG_32(blk + 28);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_6  = LOAD_BIG_32(blk + 24);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_5  = LOAD_BIG_32(blk + 20);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_4  = LOAD_BIG_32(blk + 16);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_3  = LOAD_BIG_32(blk + 12);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_2  = LOAD_BIG_32(blk +  8);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_1  = LOAD_BIG_32(blk +  4);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		w_0  = LOAD_BIG_32(blk +  0);
	}
#else	/* !defined(__sparc) */

void /* CSTYLED */
SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
{
	/* CSTYLED */
	sha1word a = ctx->state[0];
	sha1word b = ctx->state[1];
	sha1word c = ctx->state[2];
	sha1word d = ctx->state[3];
	sha1word e = ctx->state[4];

#if	defined(W_ARRAY)
	sha1word	w[16];
#else	/* !defined(W_ARRAY) */
	sha1word	w_0, w_1, w_2,  w_3,  w_4,  w_5,  w_6,  w_7;
	sha1word	w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
#endif	/* !defined(W_ARRAY) */

	W(0)  = LOAD_BIG_32((void *)(blk +  0));
	W(1)  = LOAD_BIG_32((void *)(blk +  4));
	W(2)  = LOAD_BIG_32((void *)(blk +  8));
	W(3)  = LOAD_BIG_32((void *)(blk + 12));
	W(4)  = LOAD_BIG_32((void *)(blk + 16));
	W(5)  = LOAD_BIG_32((void *)(blk + 20));
	W(6)  = LOAD_BIG_32((void *)(blk + 24));
	W(7)  = LOAD_BIG_32((void *)(blk + 28));
	W(8)  = LOAD_BIG_32((void *)(blk + 32));
	W(9)  = LOAD_BIG_32((void *)(blk + 36));
	W(10) = LOAD_BIG_32((void *)(blk + 40));
	W(11) = LOAD_BIG_32((void *)(blk + 44));
	W(12) = LOAD_BIG_32((void *)(blk + 48));
	W(13) = LOAD_BIG_32((void *)(blk + 52));
	W(14) = LOAD_BIG_32((void *)(blk + 56));
	W(15) = LOAD_BIG_32((void *)(blk + 60));

#endif /* !defined(__sparc) */

	/*
	 * general optimization:
	 *
	 * even though this approach is described in the standard as
	 * being slower algorithmically, it is 30-40% faster than the
	 * "faster" version under SPARC, because this version has more
	 * of the constraints specified at compile-time and uses fewer
	 * variables (and therefore has better register utilization)
	 * than its "speedier" brother.  (i've tried both, trust me)
	 *
	 * for either method given in the spec, there is an "assignment"
	 * phase where the following takes place:
	 *
	 *	tmp = (main_computation);
	 *	e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
	 *
	 * we can make the algorithm go faster by not doing this work,
	 * but just pretending that `d' is now `e', etc. this works
	 * really well and obviates the need for a temporary variable.
	 * however, we still explicitly perform the rotate action,
	 * since it is cheaper on SPARC to do it once than to have to
	 * do it over and over again.
	 */

	/* round 1 */
	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
	b = ROTATE_LEFT(b, 30);

	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
	a = ROTATE_LEFT(a, 30);

	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
	e = ROTATE_LEFT(e, 30);

	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
	d = ROTATE_LEFT(d, 30);

	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
	c = ROTATE_LEFT(c, 30);

	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
	b = ROTATE_LEFT(b, 30);

	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
	a = ROTATE_LEFT(a, 30);

	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
	e = ROTATE_LEFT(e, 30);

	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
	d = ROTATE_LEFT(d, 30);

	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
	c = ROTATE_LEFT(c, 30);

	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
	b = ROTATE_LEFT(b, 30);

	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
	a = ROTATE_LEFT(a, 30);

	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
	e = ROTATE_LEFT(e, 30);

	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
	d = ROTATE_LEFT(d, 30);

	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
	c = ROTATE_LEFT(c, 30);

	e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
	b = ROTATE_LEFT(b, 30);

	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 16 */
	d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
	a = ROTATE_LEFT(a, 30);

	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 17 */
	c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
	e = ROTATE_LEFT(e, 30);

	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 18 */
	b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
	d = ROTATE_LEFT(d, 30);

	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 19 */
	a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
	c = ROTATE_LEFT(c, 30);

	/* round 2 */
	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 20 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
	b = ROTATE_LEFT(b, 30);

	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 21 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
	a = ROTATE_LEFT(a, 30);

	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 22 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
	e = ROTATE_LEFT(e, 30);

	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 23 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
	d = ROTATE_LEFT(d, 30);

	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 24 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
	c = ROTATE_LEFT(c, 30);

	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 25 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
	b = ROTATE_LEFT(b, 30);

	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 26 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
	a = ROTATE_LEFT(a, 30);

	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 27 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
	e = ROTATE_LEFT(e, 30);

	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 28 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
	d = ROTATE_LEFT(d, 30);

	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 29 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
	c = ROTATE_LEFT(c, 30);

	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 30 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
	b = ROTATE_LEFT(b, 30);

	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 31 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
	a = ROTATE_LEFT(a, 30);

	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 32 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
	e = ROTATE_LEFT(e, 30);

	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 33 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
	d = ROTATE_LEFT(d, 30);

	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 34 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
	c = ROTATE_LEFT(c, 30);

	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 35 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
	b = ROTATE_LEFT(b, 30);

	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 36 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
	a = ROTATE_LEFT(a, 30);

	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 37 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
	e = ROTATE_LEFT(e, 30);

	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 38 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
	d = ROTATE_LEFT(d, 30);

	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 39 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
	c = ROTATE_LEFT(c, 30);

	/* round 3 */
	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 40 */
	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
	b = ROTATE_LEFT(b, 30);

	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 41 */
	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
	a = ROTATE_LEFT(a, 30);

	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 42 */
	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
	e = ROTATE_LEFT(e, 30);

	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 43 */
	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
	d = ROTATE_LEFT(d, 30);

	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 44 */
	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
	c = ROTATE_LEFT(c, 30);

	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 45 */
	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
	b = ROTATE_LEFT(b, 30);

	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 46 */
	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
	a = ROTATE_LEFT(a, 30);

	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 47 */
	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
	e = ROTATE_LEFT(e, 30);

	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 48 */
	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
	d = ROTATE_LEFT(d, 30);

	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 49 */
	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
	c = ROTATE_LEFT(c, 30);

	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 50 */
	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
	b = ROTATE_LEFT(b, 30);

	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 51 */
	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
	a = ROTATE_LEFT(a, 30);

	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 52 */
	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
	e = ROTATE_LEFT(e, 30);

	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 53 */
	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
	d = ROTATE_LEFT(d, 30);

	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 54 */
	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
	c = ROTATE_LEFT(c, 30);

	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 55 */
	e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
	b = ROTATE_LEFT(b, 30);

	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 56 */
	d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
	a = ROTATE_LEFT(a, 30);

	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 57 */
	c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
	e = ROTATE_LEFT(e, 30);

	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 58 */
	b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
	d = ROTATE_LEFT(d, 30);

	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 59 */
	a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
	c = ROTATE_LEFT(c, 30);

	/* round 4 */
	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 60 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
	b = ROTATE_LEFT(b, 30);

	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 61 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
	a = ROTATE_LEFT(a, 30);

	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 62 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
	e = ROTATE_LEFT(e, 30);

	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 63 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
	d = ROTATE_LEFT(d, 30);

	W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1);		/* 64 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
	c = ROTATE_LEFT(c, 30);

	W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1);		/* 65 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
	b = ROTATE_LEFT(b, 30);

	W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1);	/* 66 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
	a = ROTATE_LEFT(a, 30);

	W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1);		/* 67 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
	e = ROTATE_LEFT(e, 30);

	W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1);		/* 68 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
	d = ROTATE_LEFT(d, 30);

	W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1);		/* 69 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
	c = ROTATE_LEFT(c, 30);

	W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1);		/* 70 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
	b = ROTATE_LEFT(b, 30);

	W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1);		/* 71 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
	a = ROTATE_LEFT(a, 30);

	W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1);		/* 72 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
	e = ROTATE_LEFT(e, 30);

	W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1);		/* 73 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
	d = ROTATE_LEFT(d, 30);

	W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1);	/* 74 */
	a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
	c = ROTATE_LEFT(c, 30);

	W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1);	/* 75 */
	e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
	b = ROTATE_LEFT(b, 30);

	W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1);	/* 76 */
	d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
	a = ROTATE_LEFT(a, 30);

	W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1);	/* 77 */
	c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
	e = ROTATE_LEFT(e, 30);

	W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1);	/* 78 */
	b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
	d = ROTATE_LEFT(d, 30);

	W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1);	/* 79 */

	ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
	    SHA1_CONST(3);
	ctx->state[1] += b;
	ctx->state[2] += ROTATE_LEFT(c, 30);
	ctx->state[3] += d;
	ctx->state[4] += e;

	/* zeroize sensitive information */
	W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
	W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
}
#endif	/* !__amd64 */


/*
 * Encode()
 *
 * purpose: to convert a list of numbers from little endian to big endian
 *   input: uint8_t *	: place to store the converted big endian numbers
 *	    uint32_t *	: place to get numbers to convert from
 *          size_t	: the length of the input in bytes
 *  output: void
 */

static void
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
    size_t len)
{
	size_t		i, j;

#if defined(__sparc)
	if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
		for (i = 0, j = 0; j < len; i++, j += 4) {
			/* LINTED E_BAD_PTR_CAST_ALIGN */
			*((uint32_t *)(output + j)) = input[i];
		}
	} else {
#endif /* little endian -- will work on big endian, but slowly */

		for (i = 0, j = 0; j < len; i++, j += 4) {
			output[j]	= (input[i] >> 24) & 0xff;
			output[j + 1]	= (input[i] >> 16) & 0xff;
			output[j + 2]	= (input[i] >>  8) & 0xff;
			output[j + 3]	= input[i] & 0xff;
		}
#if defined(__sparc)
	}
#endif
}