Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
/*
 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

/* zstd_decompress_block :
 * this module takes care of decompressing _compressed_ block */

/*-*******************************************************
*  Dependencies
*********************************************************/
#include <string.h>      /* memcpy, memmove, memset */
#include "../common/compiler.h"    /* prefetch */
#include "../common/cpu.h"         /* bmi2 */
#include "../common/mem.h"         /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "../common/fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "../common/huf.h"
#include "../common/zstd_internal.h"
#include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
#include "zstd_ddict.h"  /* ZSTD_DDictDictContent */
#include "zstd_decompress_block.h"

/*_*******************************************************
*  Macros
**********************************************************/

/* These two optional macros force the use one way or another of the two
 * ZSTD_decompressSequences implementations. You can't force in both directions
 * at the same time.
 */
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
#endif


/*_*******************************************************
*  Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }


/*-*************************************************************
 *   Block decoding
 ***************************************************************/

/*! ZSTD_getcBlockSize() :
 *  Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
                          blockProperties_t* bpPtr)
{
    RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");

    {   U32 const cBlockHeader = MEM_readLE24(src);
        U32 const cSize = cBlockHeader >> 3;
        bpPtr->lastBlock = cBlockHeader & 1;
        bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
        bpPtr->origSize = cSize;   /* only useful for RLE */
        if (bpPtr->blockType == bt_rle) return 1;
        RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
        return cSize;
    }
}


/* Hidden declaration for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
                          const void* src, size_t srcSize);
/*! ZSTD_decodeLiteralsBlock() :
 * @return : nb of bytes read from src (< srcSize )
 *  note : symbol not declared but exposed for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
                          const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
{
    DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
    RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");

    {   const BYTE* const istart = (const BYTE*) src;
        symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);

        switch(litEncType)
        {
        case set_repeat:
            DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
            RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
            /* fall-through */

        case set_compressed:
            RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
            {   size_t lhSize, litSize, litCSize;
                U32 singleStream=0;
                U32 const lhlCode = (istart[0] >> 2) & 3;
                U32 const lhc = MEM_readLE32(istart);
                size_t hufSuccess;
                switch(lhlCode)
                {
                case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    /* 2 - 2 - 10 - 10 */
                    singleStream = !lhlCode;
                    lhSize = 3;
                    litSize  = (lhc >> 4) & 0x3FF;
                    litCSize = (lhc >> 14) & 0x3FF;
                    break;
                case 2:
                    /* 2 - 2 - 14 - 14 */
                    lhSize = 4;
                    litSize  = (lhc >> 4) & 0x3FFF;
                    litCSize = lhc >> 18;
                    break;
                case 3:
                    /* 2 - 2 - 18 - 18 */
                    lhSize = 5;
                    litSize  = (lhc >> 4) & 0x3FFFF;
                    litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
                    break;
                }
                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
                RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");

                /* prefetch huffman table if cold */
                if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
                    PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
                }

                if (litEncType==set_repeat) {
                    if (singleStream) {
                        hufSuccess = HUF_decompress1X_usingDTable_bmi2(
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
                            dctx->HUFptr, dctx->bmi2);
                    } else {
                        hufSuccess = HUF_decompress4X_usingDTable_bmi2(
                            dctx->litBuffer, litSize, istart+lhSize, litCSize,
                            dctx->HUFptr, dctx->bmi2);
                    }
                } else {
                    if (singleStream) {
#if defined(HUF_FORCE_DECOMPRESS_X2)
                        hufSuccess = HUF_decompress1X_DCtx_wksp(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace));
#else
                        hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace), dctx->bmi2);
#endif
                    } else {
                        hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2(
                            dctx->entropy.hufTable, dctx->litBuffer, litSize,
                            istart+lhSize, litCSize, dctx->workspace,
                            sizeof(dctx->workspace), dctx->bmi2);
                    }
                }

                RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");

                dctx->litPtr = dctx->litBuffer;
                dctx->litSize = litSize;
                dctx->litEntropy = 1;
                if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
                memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
                return litCSize + lhSize;
            }

        case set_basic:
            {   size_t litSize, lhSize;
                U32 const lhlCode = ((istart[0]) >> 2) & 3;
                switch(lhlCode)
                {
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    lhSize = 1;
                    litSize = istart[0] >> 3;
                    break;
                case 1:
                    lhSize = 2;
                    litSize = MEM_readLE16(istart) >> 4;
                    break;
                case 3:
                    lhSize = 3;
                    litSize = MEM_readLE24(istart) >> 4;
                    break;
                }

                if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
                    RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
                    memcpy(dctx->litBuffer, istart+lhSize, litSize);
                    dctx->litPtr = dctx->litBuffer;
                    dctx->litSize = litSize;
                    memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
                    return lhSize+litSize;
                }
                /* direct reference into compressed stream */
                dctx->litPtr = istart+lhSize;
                dctx->litSize = litSize;
                return lhSize+litSize;
            }

        case set_rle:
            {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
                size_t litSize, lhSize;
                switch(lhlCode)
                {
                case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
                    lhSize = 1;
                    litSize = istart[0] >> 3;
                    break;
                case 1:
                    lhSize = 2;
                    litSize = MEM_readLE16(istart) >> 4;
                    break;
                case 3:
                    lhSize = 3;
                    litSize = MEM_readLE24(istart) >> 4;
                    RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4");
                    break;
                }
                RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
                memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
                dctx->litPtr = dctx->litBuffer;
                dctx->litSize = litSize;
                return lhSize+1;
            }
        default:
            RETURN_ERROR(corruption_detected, "impossible");
        }
    }
}

/* Default FSE distribution tables.
 * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
 * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions
 * They were generated programmatically with following method :
 * - start from default distributions, present in /lib/common/zstd_internal.h
 * - generate tables normally, using ZSTD_buildFSETable()
 * - printout the content of tables
 * - pretify output, report below, test with fuzzer to ensure it's correct */

/* Default FSE distribution table for Literal Lengths */
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
     {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
     /* nextState, nbAddBits, nbBits, baseVal */
     {  0,  0,  4,    0},  { 16,  0,  4,    0},
     { 32,  0,  5,    1},  {  0,  0,  5,    3},
     {  0,  0,  5,    4},  {  0,  0,  5,    6},
     {  0,  0,  5,    7},  {  0,  0,  5,    9},
     {  0,  0,  5,   10},  {  0,  0,  5,   12},
     {  0,  0,  6,   14},  {  0,  1,  5,   16},
     {  0,  1,  5,   20},  {  0,  1,  5,   22},
     {  0,  2,  5,   28},  {  0,  3,  5,   32},
     {  0,  4,  5,   48},  { 32,  6,  5,   64},
     {  0,  7,  5,  128},  {  0,  8,  6,  256},
     {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
     { 32,  0,  4,    0},  {  0,  0,  4,    1},
     {  0,  0,  5,    2},  { 32,  0,  5,    4},
     {  0,  0,  5,    5},  { 32,  0,  5,    7},
     {  0,  0,  5,    8},  { 32,  0,  5,   10},
     {  0,  0,  5,   11},  {  0,  0,  6,   13},
     { 32,  1,  5,   16},  {  0,  1,  5,   18},
     { 32,  1,  5,   22},  {  0,  2,  5,   24},
     { 32,  3,  5,   32},  {  0,  3,  5,   40},
     {  0,  6,  4,   64},  { 16,  6,  4,   64},
     { 32,  7,  5,  128},  {  0,  9,  6,  512},
     {  0, 11,  6, 2048},  { 48,  0,  4,    0},
     { 16,  0,  4,    1},  { 32,  0,  5,    2},
     { 32,  0,  5,    3},  { 32,  0,  5,    5},
     { 32,  0,  5,    6},  { 32,  0,  5,    8},
     { 32,  0,  5,    9},  { 32,  0,  5,   11},
     { 32,  0,  5,   12},  {  0,  0,  6,   15},
     { 32,  1,  5,   18},  { 32,  1,  5,   20},
     { 32,  2,  5,   24},  { 32,  2,  5,   28},
     { 32,  3,  5,   40},  { 32,  4,  5,   48},
     {  0, 16,  6,65536},  {  0, 15,  6,32768},
     {  0, 14,  6,16384},  {  0, 13,  6, 8192},
};   /* LL_defaultDTable */

/* Default FSE distribution table for Offset Codes */
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
    {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
    /* nextState, nbAddBits, nbBits, baseVal */
    {  0,  0,  5,    0},     {  0,  6,  4,   61},
    {  0,  9,  5,  509},     {  0, 15,  5,32765},
    {  0, 21,  5,2097149},   {  0,  3,  5,    5},
    {  0,  7,  4,  125},     {  0, 12,  5, 4093},
    {  0, 18,  5,262141},    {  0, 23,  5,8388605},
    {  0,  5,  5,   29},     {  0,  8,  4,  253},
    {  0, 14,  5,16381},     {  0, 20,  5,1048573},
    {  0,  2,  5,    1},     { 16,  7,  4,  125},
    {  0, 11,  5, 2045},     {  0, 17,  5,131069},
    {  0, 22,  5,4194301},   {  0,  4,  5,   13},
    { 16,  8,  4,  253},     {  0, 13,  5, 8189},
    {  0, 19,  5,524285},    {  0,  1,  5,    1},
    { 16,  6,  4,   61},     {  0, 10,  5, 1021},
    {  0, 16,  5,65533},     {  0, 28,  5,268435453},
    {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
    {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
};   /* OF_defaultDTable */


/* Default FSE distribution table for Match Lengths */
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
    {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
    /* nextState, nbAddBits, nbBits, baseVal */
    {  0,  0,  6,    3},  {  0,  0,  4,    4},
    { 32,  0,  5,    5},  {  0,  0,  5,    6},
    {  0,  0,  5,    8},  {  0,  0,  5,    9},
    {  0,  0,  5,   11},  {  0,  0,  6,   13},
    {  0,  0,  6,   16},  {  0,  0,  6,   19},
    {  0,  0,  6,   22},  {  0,  0,  6,   25},
    {  0,  0,  6,   28},  {  0,  0,  6,   31},
    {  0,  0,  6,   34},  {  0,  1,  6,   37},
    {  0,  1,  6,   41},  {  0,  2,  6,   47},
    {  0,  3,  6,   59},  {  0,  4,  6,   83},
    {  0,  7,  6,  131},  {  0,  9,  6,  515},
    { 16,  0,  4,    4},  {  0,  0,  4,    5},
    { 32,  0,  5,    6},  {  0,  0,  5,    7},
    { 32,  0,  5,    9},  {  0,  0,  5,   10},
    {  0,  0,  6,   12},  {  0,  0,  6,   15},
    {  0,  0,  6,   18},  {  0,  0,  6,   21},
    {  0,  0,  6,   24},  {  0,  0,  6,   27},
    {  0,  0,  6,   30},  {  0,  0,  6,   33},
    {  0,  1,  6,   35},  {  0,  1,  6,   39},
    {  0,  2,  6,   43},  {  0,  3,  6,   51},
    {  0,  4,  6,   67},  {  0,  5,  6,   99},
    {  0,  8,  6,  259},  { 32,  0,  4,    4},
    { 48,  0,  4,    4},  { 16,  0,  4,    5},
    { 32,  0,  5,    7},  { 32,  0,  5,    8},
    { 32,  0,  5,   10},  { 32,  0,  5,   11},
    {  0,  0,  6,   14},  {  0,  0,  6,   17},
    {  0,  0,  6,   20},  {  0,  0,  6,   23},
    {  0,  0,  6,   26},  {  0,  0,  6,   29},
    {  0,  0,  6,   32},  {  0, 16,  6,65539},
    {  0, 15,  6,32771},  {  0, 14,  6,16387},
    {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
    {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
};   /* ML_defaultDTable */


static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
{
    void* ptr = dt;
    ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
    ZSTD_seqSymbol* const cell = dt + 1;

    DTableH->tableLog = 0;
    DTableH->fastMode = 0;

    cell->nbBits = 0;
    cell->nextState = 0;
    assert(nbAddBits < 255);
    cell->nbAdditionalBits = (BYTE)nbAddBits;
    cell->baseValue = baseValue;
}


/* ZSTD_buildFSETable() :
 * generate FSE decoding table for one symbol (ll, ml or off)
 * cannot fail if input is valid =>
 * all inputs are presumed validated at this stage */
void
ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
            const short* normalizedCounter, unsigned maxSymbolValue,
            const U32* baseValue, const U32* nbAdditionalBits,
            unsigned tableLog)
{
    ZSTD_seqSymbol* const tableDecode = dt+1;
    U16 symbolNext[MaxSeq+1];

    U32 const maxSV1 = maxSymbolValue + 1;
    U32 const tableSize = 1 << tableLog;
    U32 highThreshold = tableSize-1;

    /* Sanity Checks */
    assert(maxSymbolValue <= MaxSeq);
    assert(tableLog <= MaxFSELog);

    /* Init, lay down lowprob symbols */
    {   ZSTD_seqSymbol_header DTableH;
        DTableH.tableLog = tableLog;
        DTableH.fastMode = 1;
        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
            U32 s;
            for (s=0; s<maxSV1; s++) {
                if (normalizedCounter[s]==-1) {
                    tableDecode[highThreshold--].baseValue = s;
                    symbolNext[s] = 1;
                } else {
                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
                    assert(normalizedCounter[s]>=0);
                    symbolNext[s] = (U16)normalizedCounter[s];
        }   }   }
        memcpy(dt, &DTableH, sizeof(DTableH));
    }

    /* Spread symbols */
    {   U32 const tableMask = tableSize-1;
        U32 const step = FSE_TABLESTEP(tableSize);
        U32 s, position = 0;
        for (s=0; s<maxSV1; s++) {
            int i;
            for (i=0; i<normalizedCounter[s]; i++) {
                tableDecode[position].baseValue = s;
                position = (position + step) & tableMask;
                while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
        }   }
        assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
    }

    /* Build Decoding table */
    {   U32 u;
        for (u=0; u<tableSize; u++) {
            U32 const symbol = tableDecode[u].baseValue;
            U32 const nextState = symbolNext[symbol]++;
            tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
            tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
            assert(nbAdditionalBits[symbol] < 255);
            tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
            tableDecode[u].baseValue = baseValue[symbol];
    }   }
}


/*! ZSTD_buildSeqTable() :
 * @return : nb bytes read from src,
 *           or an error code if it fails */
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
                                 symbolEncodingType_e type, unsigned max, U32 maxLog,
                                 const void* src, size_t srcSize,
                                 const U32* baseValue, const U32* nbAdditionalBits,
                                 const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
                                 int ddictIsCold, int nbSeq)
{
    switch(type)
    {
    case set_rle :
        RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
        RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
        {   U32 const symbol = *(const BYTE*)src;
            U32 const baseline = baseValue[symbol];
            U32 const nbBits = nbAdditionalBits[symbol];
            ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
        }
        *DTablePtr = DTableSpace;
        return 1;
    case set_basic :
        *DTablePtr = defaultTable;
        return 0;
    case set_repeat:
        RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
        /* prefetch FSE table if used */
        if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
            const void* const pStart = *DTablePtr;
            size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
            PREFETCH_AREA(pStart, pSize);
        }
        return 0;
    case set_compressed :
        {   unsigned tableLog;
            S16 norm[MaxSeq+1];
            size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
            RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
            RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
            ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
            *DTablePtr = DTableSpace;
            return headerSize;
        }
    default :
        assert(0);
        RETURN_ERROR(GENERIC, "impossible");
    }
}

size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
                             const void* src, size_t srcSize)
{
    const BYTE* const istart = (const BYTE* const)src;
    const BYTE* const iend = istart + srcSize;
    const BYTE* ip = istart;
    int nbSeq;
    DEBUGLOG(5, "ZSTD_decodeSeqHeaders");

    /* check */
    RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");

    /* SeqHead */
    nbSeq = *ip++;
    if (!nbSeq) {
        *nbSeqPtr=0;
        RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
        return 1;
    }
    if (nbSeq > 0x7F) {
        if (nbSeq == 0xFF) {
            RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
            nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
        } else {
            RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
            nbSeq = ((nbSeq-0x80)<<8) + *ip++;
        }
    }
    *nbSeqPtr = nbSeq;

    /* FSE table descriptors */
    RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
    {   symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
        symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
        symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
        ip++;

        /* Build DTables */
        {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
                                                      LLtype, MaxLL, LLFSELog,
                                                      ip, iend-ip,
                                                      LL_base, LL_bits,
                                                      LL_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq);
            RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += llhSize;
        }

        {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
                                                      OFtype, MaxOff, OffFSELog,
                                                      ip, iend-ip,
                                                      OF_base, OF_bits,
                                                      OF_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq);
            RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += ofhSize;
        }

        {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
                                                      MLtype, MaxML, MLFSELog,
                                                      ip, iend-ip,
                                                      ML_base, ML_bits,
                                                      ML_defaultDTable, dctx->fseEntropy,
                                                      dctx->ddictIsCold, nbSeq);
            RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
            ip += mlhSize;
        }
    }

    return ip-istart;
}


typedef struct {
    size_t litLength;
    size_t matchLength;
    size_t offset;
    const BYTE* match;
} seq_t;

typedef struct {
    size_t state;
    const ZSTD_seqSymbol* table;
} ZSTD_fseState;

typedef struct {
    BIT_DStream_t DStream;
    ZSTD_fseState stateLL;
    ZSTD_fseState stateOffb;
    ZSTD_fseState stateML;
    size_t prevOffset[ZSTD_REP_NUM];
    const BYTE* prefixStart;
    const BYTE* dictEnd;
    size_t pos;
} seqState_t;

/*! ZSTD_overlapCopy8() :
 *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
 *  If the offset is < 8 then the offset is spread to at least 8 bytes.
 *
 *  Precondition: *ip <= *op
 *  Postcondition: *op - *op >= 8
 */
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
    assert(*ip <= *op);
    if (offset < 8) {
        /* close range match, overlap */
        static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
        static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
        int const sub2 = dec64table[offset];
        (*op)[0] = (*ip)[0];
        (*op)[1] = (*ip)[1];
        (*op)[2] = (*ip)[2];
        (*op)[3] = (*ip)[3];
        *ip += dec32table[offset];
        ZSTD_copy4(*op+4, *ip);
        *ip -= sub2;
    } else {
        ZSTD_copy8(*op, *ip);
    }
    *ip += 8;
    *op += 8;
    assert(*op - *ip >= 8);
}

/*! ZSTD_safecopy() :
 *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
 *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
 *  This function is only called in the uncommon case where the sequence is near the end of the block. It
 *  should be fast for a single long sequence, but can be slow for several short sequences.
 *
 *  @param ovtype controls the overlap detection
 *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
 *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
 *           The src buffer must be before the dst buffer.
 */
static void ZSTD_safecopy(BYTE* op, BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
    ptrdiff_t const diff = op - ip;
    BYTE* const oend = op + length;

    assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
           (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));

    if (length < 8) {
        /* Handle short lengths. */
        while (op < oend) *op++ = *ip++;
        return;
    }
    if (ovtype == ZSTD_overlap_src_before_dst) {
        /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
        assert(length >= 8);
        ZSTD_overlapCopy8(&op, &ip, diff);
        assert(op - ip >= 8);
        assert(op <= oend);
    }

    if (oend <= oend_w) {
        /* No risk of overwrite. */
        ZSTD_wildcopy(op, ip, length, ovtype);
        return;
    }
    if (op <= oend_w) {
        /* Wildcopy until we get close to the end. */
        assert(oend > oend_w);
        ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
        ip += oend_w - op;
        op = oend_w;
    }
    /* Handle the leftovers. */
    while (op < oend) *op++ = *ip++;
}

/* ZSTD_execSequenceEnd():
 * This version handles cases that are near the end of the output buffer. It requires
 * more careful checks to make sure there is no overflow. By separating out these hard
 * and unlikely cases, we can speed up the common cases.
 *
 * NOTE: This function needs to be fast for a single long sequence, but doesn't need
 * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
 */
FORCE_NOINLINE
size_t ZSTD_execSequenceEnd(BYTE* op,
                            BYTE* const oend, seq_t sequence,
                            const BYTE** litPtr, const BYTE* const litLimit,
                            const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
    BYTE* const oLitEnd = op + sequence.litLength;
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
    const BYTE* match = oLitEnd - sequence.offset;
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;

    /* bounds checks : careful of address space overflow in 32-bit mode */
    RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
    RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
    assert(op < op + sequenceLength);
    assert(oLitEnd < op + sequenceLength);

    /* copy literals */
    ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
    op = oLitEnd;
    *litPtr = iLitEnd;

    /* copy Match */
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
        /* offset beyond prefix */
        RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
        match = dictEnd - (prefixStart-match);
        if (match + sequence.matchLength <= dictEnd) {
            memmove(oLitEnd, match, sequence.matchLength);
            return sequenceLength;
        }
        /* span extDict & currentPrefixSegment */
        {   size_t const length1 = dictEnd - match;
            memmove(oLitEnd, match, length1);
            op = oLitEnd + length1;
            sequence.matchLength -= length1;
            match = prefixStart;
    }   }
    ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
    return sequenceLength;
}

HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
                         BYTE* const oend, seq_t sequence,
                         const BYTE** litPtr, const BYTE* const litLimit,
                         const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
    BYTE* const oLitEnd = op + sequence.litLength;
    size_t const sequenceLength = sequence.litLength + sequence.matchLength;
    BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
    BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
    const BYTE* const iLitEnd = *litPtr + sequence.litLength;
    const BYTE* match = oLitEnd - sequence.offset;

    assert(op != NULL /* Precondition */);
    assert(oend_w < oend /* No underflow */);
    /* Handle edge cases in a slow path:
     *   - Read beyond end of literals
     *   - Match end is within WILDCOPY_OVERLIMIT of oend
     *   - 32-bit mode and the match length overflows
     */
    if (UNLIKELY(
            iLitEnd > litLimit ||
            oMatchEnd > oend_w ||
            (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
        return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);

    /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
    assert(op <= oLitEnd /* No overflow */);
    assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
    assert(oMatchEnd <= oend /* No underflow */);
    assert(iLitEnd <= litLimit /* Literal length is in bounds */);
    assert(oLitEnd <= oend_w /* Can wildcopy literals */);
    assert(oMatchEnd <= oend_w /* Can wildcopy matches */);

    /* Copy Literals:
     * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
     * We likely don't need the full 32-byte wildcopy.
     */
    assert(WILDCOPY_OVERLENGTH >= 16);
    ZSTD_copy16(op, (*litPtr));
    if (UNLIKELY(sequence.litLength > 16)) {
        ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
    }
    op = oLitEnd;
    *litPtr = iLitEnd;   /* update for next sequence */

    /* Copy Match */
    if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
        /* offset beyond prefix -> go into extDict */
        RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
        match = dictEnd + (match - prefixStart);
        if (match + sequence.matchLength <= dictEnd) {
            memmove(oLitEnd, match, sequence.matchLength);
            return sequenceLength;
        }
        /* span extDict & currentPrefixSegment */
        {   size_t const length1 = dictEnd - match;
            memmove(oLitEnd, match, length1);
            op = oLitEnd + length1;
            sequence.matchLength -= length1;
            match = prefixStart;
    }   }
    /* Match within prefix of 1 or more bytes */
    assert(op <= oMatchEnd);
    assert(oMatchEnd <= oend_w);
    assert(match >= prefixStart);
    assert(sequence.matchLength >= 1);

    /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
     * without overlap checking.
     */
    if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
        /* We bet on a full wildcopy for matches, since we expect matches to be
         * longer than literals (in general). In silesia, ~10% of matches are longer
         * than 16 bytes.
         */
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
        return sequenceLength;
    }
    assert(sequence.offset < WILDCOPY_VECLEN);

    /* Copy 8 bytes and spread the offset to be >= 8. */
    ZSTD_overlapCopy8(&op, &match, sequence.offset);

    /* If the match length is > 8 bytes, then continue with the wildcopy. */
    if (sequence.matchLength > 8) {
        assert(op < oMatchEnd);
        ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
    }
    return sequenceLength;
}

static void
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
{
    const void* ptr = dt;
    const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
    DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
                (U32)DStatePtr->state, DTableH->tableLog);
    BIT_reloadDStream(bitD);
    DStatePtr->table = dt + 1;
}

FORCE_INLINE_TEMPLATE void
ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
{
    ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
    U32 const nbBits = DInfo.nbBits;
    size_t const lowBits = BIT_readBits(bitD, nbBits);
    DStatePtr->state = DInfo.nextState + lowBits;
}

FORCE_INLINE_TEMPLATE void
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, ZSTD_seqSymbol const DInfo)
{
    U32 const nbBits = DInfo.nbBits;
    size_t const lowBits = BIT_readBits(bitD, nbBits);
    DStatePtr->state = DInfo.nextState + lowBits;
}

/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
 * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
 * bits before reloading. This value is the maximum number of bytes we read
 * after reloading when we are decoding long offsets.
 */
#define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
    (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
        ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
        : 0)

typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
typedef enum { ZSTD_p_noPrefetch=0, ZSTD_p_prefetch=1 } ZSTD_prefetch_e;

FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const ZSTD_prefetch_e prefetch)
{
    seq_t seq;
    ZSTD_seqSymbol const llDInfo = seqState->stateLL.table[seqState->stateLL.state];
    ZSTD_seqSymbol const mlDInfo = seqState->stateML.table[seqState->stateML.state];
    ZSTD_seqSymbol const ofDInfo = seqState->stateOffb.table[seqState->stateOffb.state];
    U32 const llBase = llDInfo.baseValue;
    U32 const mlBase = mlDInfo.baseValue;
    U32 const ofBase = ofDInfo.baseValue;
    BYTE const llBits = llDInfo.nbAdditionalBits;
    BYTE const mlBits = mlDInfo.nbAdditionalBits;
    BYTE const ofBits = ofDInfo.nbAdditionalBits;
    BYTE const totalBits = llBits+mlBits+ofBits;

    /* sequence */
    {   size_t offset;
        if (ofBits > 1) {
            ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
            ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
            assert(ofBits <= MaxOff);
            if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
                U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
                offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
                BIT_reloadDStream(&seqState->DStream);
                if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
                assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32);   /* to avoid another reload */
            } else {
                offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
                if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
            }
            seqState->prevOffset[2] = seqState->prevOffset[1];
            seqState->prevOffset[1] = seqState->prevOffset[0];
            seqState->prevOffset[0] = offset;
        } else {
            U32 const ll0 = (llBase == 0);
            if (LIKELY((ofBits == 0))) {
                if (LIKELY(!ll0))
                    offset = seqState->prevOffset[0];
                else {
                    offset = seqState->prevOffset[1];
                    seqState->prevOffset[1] = seqState->prevOffset[0];
                    seqState->prevOffset[0] = offset;
                }
            } else {
                offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
                {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
                    temp += !temp;   /* 0 is not valid; input is corrupted; force offset to 1 */
                    if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
                    seqState->prevOffset[1] = seqState->prevOffset[0];
                    seqState->prevOffset[0] = offset = temp;
        }   }   }
        seq.offset = offset;
    }

    seq.matchLength = mlBase;
    if (mlBits > 0)
        seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);

    if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
        BIT_reloadDStream(&seqState->DStream);
    if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
        BIT_reloadDStream(&seqState->DStream);
    /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
    ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);

    seq.litLength = llBase;
    if (llBits > 0)
        seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);

    if (MEM_32bits())
        BIT_reloadDStream(&seqState->DStream);

    DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
                (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);

    if (prefetch == ZSTD_p_prefetch) {
        size_t const pos = seqState->pos + seq.litLength;
        const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
        seq.match = matchBase + pos - seq.offset;  /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
                                                    * No consequence though : no memory access will occur, offset is only used for prefetching */
        seqState->pos = pos + seq.matchLength;
    }

    /* ANS state update
     * gcc-9.0.0 does 2.5% worse with ZSTD_updateFseStateWithDInfo().
     * clang-9.2.0 does 7% worse with ZSTD_updateFseState().
     * Naturally it seems like ZSTD_updateFseStateWithDInfo() should be the
     * better option, so it is the default for other compilers. But, if you
     * measure that it is worse, please put up a pull request.
     */
    {
#if defined(__GNUC__) && !defined(__clang__)
        const int kUseUpdateFseState = 1;
#else
        const int kUseUpdateFseState = 0;
#endif
        if (kUseUpdateFseState) {
            ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream);    /* <=  9 bits */
            ZSTD_updateFseState(&seqState->stateML, &seqState->DStream);    /* <=  9 bits */
            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
            ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream);  /* <=  8 bits */
        } else {
            ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llDInfo);    /* <=  9 bits */
            ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlDInfo);    /* <=  9 bits */
            if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
            ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofDInfo);  /* <=  8 bits */
        }
    }

    return seq;
}

#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
{
    size_t const windowSize = dctx->fParams.windowSize;
    /* No dictionary used. */
    if (dctx->dictContentEndForFuzzing == NULL) return 0;
    /* Dictionary is our prefix. */
    if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
    /* Dictionary is not our ext-dict. */
    if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
    /* Dictionary is not within our window size. */
    if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
    /* Dictionary is active. */
    return 1;
}

MEM_STATIC void ZSTD_assertValidSequence(
        ZSTD_DCtx const* dctx,
        BYTE const* op, BYTE const* oend,
        seq_t const seq,
        BYTE const* prefixStart, BYTE const* virtualStart)
{
    size_t const windowSize = dctx->fParams.windowSize;
    size_t const sequenceSize = seq.litLength + seq.matchLength;
    BYTE const* const oLitEnd = op + seq.litLength;
    DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
            (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
    assert(op <= oend);
    assert((size_t)(oend - op) >= sequenceSize);
    assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
    if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
        size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
        /* Offset must be within the dictionary. */
        assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
        assert(seq.offset <= windowSize + dictSize);
    } else {
        /* Offset must be within our window. */
        assert(seq.offset <= windowSize);
    }
}
#endif

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
FORCE_INLINE_TEMPLATE size_t
DONT_VECTORIZE
ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize, int nbSeq,
                         const ZSTD_longOffset_e isLongOffset,
                         const int frame)
{
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* const oend = ostart + maxDstSize;
    BYTE* op = ostart;
    const BYTE* litPtr = dctx->litPtr;
    const BYTE* const litEnd = litPtr + dctx->litSize;
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
    const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
    DEBUGLOG(5, "ZSTD_decompressSequences_body");
    (void)frame;

    /* Regen sequences */
    if (nbSeq) {
        seqState_t seqState;
        size_t error = 0;
        dctx->fseEntropy = 1;
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
        RETURN_ERROR_IF(
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
            corruption_detected, "");
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
        assert(dst != NULL);

        ZSTD_STATIC_ASSERT(
                BIT_DStream_unfinished < BIT_DStream_completed &&
                BIT_DStream_endOfBuffer < BIT_DStream_completed &&
                BIT_DStream_completed < BIT_DStream_overflow);

#if defined(__GNUC__) && defined(__x86_64__)
        /* Align the decompression loop to 32 + 16 bytes.
         *
         * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
         * speed swings based on the alignment of the decompression loop. This
         * performance swing is caused by parts of the decompression loop falling
         * out of the DSB. The entire decompression loop should fit in the DSB,
         * when it can't we get much worse performance. You can measure if you've
         * hit the good case or the bad case with this perf command for some
         * compressed file test.zst:
         *
         *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
         *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
         *
         * If you see most cycles served out of the MITE you've hit the bad case.
         * If you see most cycles served out of the DSB you've hit the good case.
         * If it is pretty even then you may be in an okay case.
         *
         * I've been able to reproduce this issue on the following CPUs:
         *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
         *               Use Instruments->Counters to get DSB/MITE cycles.
         *               I never got performance swings, but I was able to
         *               go from the good case of mostly DSB to half of the
         *               cycles served from MITE.
         *   - Coffeelake: Intel i9-9900k
         *
         * I haven't been able to reproduce the instability or DSB misses on any
         * of the following CPUS:
         *   - Haswell
         *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
         *   - Skylake
         *
         * If you are seeing performance stability this script can help test.
         * It tests on 4 commits in zstd where I saw performance change.
         *
         *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
         */
        __asm__(".p2align 5");
        __asm__("nop");
        __asm__(".p2align 4");
#endif
        for ( ; ; ) {
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_noPrefetch);
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
#endif
            DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
            BIT_reloadDStream(&(seqState.DStream));
            /* gcc and clang both don't like early returns in this loop.
             * gcc doesn't like early breaks either.
             * Instead save an error and report it at the end.
             * When there is an error, don't increment op, so we don't
             * overwrite.
             */
            if (UNLIKELY(ZSTD_isError(oneSeqSize))) error = oneSeqSize;
            else op += oneSeqSize;
            if (UNLIKELY(!--nbSeq)) break;
        }

        /* check if reached exact end */
        DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
        if (ZSTD_isError(error)) return error;
        RETURN_ERROR_IF(nbSeq, corruption_detected, "");
        RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
        /* save reps for next block */
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
    }

    /* last literal segment */
    {   size_t const lastLLSize = litEnd - litPtr;
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
        if (op != NULL) {
            memcpy(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}

static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(
                               ZSTD_DCtx* dctx,
                               void* dst, size_t maxDstSize,
                         const void* seqStart, size_t seqSize, int nbSeq,
                         const ZSTD_longOffset_e isLongOffset,
                         const int frame)
{
    const BYTE* ip = (const BYTE*)seqStart;
    const BYTE* const iend = ip + seqSize;
    BYTE* const ostart = (BYTE* const)dst;
    BYTE* const oend = ostart + maxDstSize;
    BYTE* op = ostart;
    const BYTE* litPtr = dctx->litPtr;
    const BYTE* const litEnd = litPtr + dctx->litSize;
    const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
    const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
    const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
    (void)frame;

    /* Regen sequences */
    if (nbSeq) {
#define STORED_SEQS 4
#define STORED_SEQS_MASK (STORED_SEQS-1)
#define ADVANCED_SEQS 4
        seq_t sequences[STORED_SEQS];
        int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
        seqState_t seqState;
        int seqNb;
        dctx->fseEntropy = 1;
        { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
        seqState.prefixStart = prefixStart;
        seqState.pos = (size_t)(op-prefixStart);
        seqState.dictEnd = dictEnd;
        assert(dst != NULL);
        assert(iend >= ip);
        RETURN_ERROR_IF(
            ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
            corruption_detected, "");
        ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
        ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
        ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);

        /* prepare in advance */
        for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
            sequences[seqNb] = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
            PREFETCH_L1(sequences[seqNb].match); PREFETCH_L1(sequences[seqNb].match + sequences[seqNb].matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
        }
        RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");

        /* decode and decompress */
        for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
            seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, ZSTD_p_prefetch);
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb-ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
#endif
            if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
            PREFETCH_L1(sequence.match); PREFETCH_L1(sequence.match + sequence.matchLength - 1); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
            sequences[seqNb & STORED_SEQS_MASK] = sequence;
            op += oneSeqSize;
        }
        RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");

        /* finish queue */
        seqNb -= seqAdvance;
        for ( ; seqNb<nbSeq ; seqNb++) {
            size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[seqNb&STORED_SEQS_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
            assert(!ZSTD_isError(oneSeqSize));
            if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
#endif
            if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
            op += oneSeqSize;
        }

        /* save reps for next block */
        { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
    }

    /* last literal segment */
    {   size_t const lastLLSize = litEnd - litPtr;
        RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
        if (op != NULL) {
            memcpy(op, litPtr, lastLLSize);
            op += lastLLSize;
        }
    }

    return op-ostart;
}

static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */



#if DYNAMIC_BMI2

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static TARGET_ATTRIBUTE("bmi2") size_t
DONT_VECTORIZE
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
                                 void* dst, size_t maxDstSize,
                           const void* seqStart, size_t seqSize, int nbSeq,
                           const ZSTD_longOffset_e isLongOffset,
                           const int frame)
{
    return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */

#endif /* DYNAMIC_BMI2 */

typedef size_t (*ZSTD_decompressSequences_t)(
                            ZSTD_DCtx* dctx,
                            void* dst, size_t maxDstSize,
                            const void* seqStart, size_t seqSize, int nbSeq,
                            const ZSTD_longOffset_e isLongOffset,
                            const int frame);

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
static size_t
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
                   const void* seqStart, size_t seqSize, int nbSeq,
                   const ZSTD_longOffset_e isLongOffset,
                   const int frame)
{
    DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
    if (dctx->bmi2) {
        return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
    }
#endif
  return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */


#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
/* ZSTD_decompressSequencesLong() :
 * decompression function triggered when a minimum share of offsets is considered "long",
 * aka out of cache.
 * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
 * This function will try to mitigate main memory latency through the use of prefetching */
static size_t
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
                             void* dst, size_t maxDstSize,
                             const void* seqStart, size_t seqSize, int nbSeq,
                             const ZSTD_longOffset_e isLongOffset,
                             const int frame)
{
    DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
    if (dctx->bmi2) {
        return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
    }
#endif
  return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
}
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */



#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
/* ZSTD_getLongOffsetsShare() :
 * condition : offTable must be valid
 * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
 *           compared to maximum possible of (1<<OffFSELog) */
static unsigned
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
{
    const void* ptr = offTable;
    U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
    const ZSTD_seqSymbol* table = offTable + 1;
    U32 const max = 1 << tableLog;
    U32 u, total = 0;
    DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);

    assert(max <= (1 << OffFSELog));  /* max not too large */
    for (u=0; u<max; u++) {
        if (table[u].nbAdditionalBits > 22) total += 1;
    }

    assert(tableLog <= OffFSELog);
    total <<= (OffFSELog - tableLog);  /* scale to OffFSELog */

    return total;
}
#endif

size_t
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
                              void* dst, size_t dstCapacity,
                        const void* src, size_t srcSize, const int frame)
{   /* blockType == blockCompressed */
    const BYTE* ip = (const BYTE*)src;
    /* isLongOffset must be true if there are long offsets.
     * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
     * We don't expect that to be the case in 64-bit mode.
     * In block mode, window size is not known, so we have to be conservative.
     * (note: but it could be evaluated from current-lowLimit)
     */
    ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN))));
    DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);

    RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");

    /* Decode literals section */
    {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
        DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
        if (ZSTD_isError(litCSize)) return litCSize;
        ip += litCSize;
        srcSize -= litCSize;
    }

    /* Build Decoding Tables */
    {
        /* These macros control at build-time which decompressor implementation
         * we use. If neither is defined, we do some inspection and dispatch at
         * runtime.
         */
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        int usePrefetchDecoder = dctx->ddictIsCold;
#endif
        int nbSeq;
        size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
        if (ZSTD_isError(seqHSize)) return seqHSize;
        ip += seqHSize;
        srcSize -= seqHSize;

        RETURN_ERROR_IF(dst == NULL && nbSeq > 0, dstSize_tooSmall, "NULL not handled");

#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        if ( !usePrefetchDecoder
          && (!frame || (dctx->fParams.windowSize > (1<<24)))
          && (nbSeq>ADVANCED_SEQS) ) {  /* could probably use a larger nbSeq limit */
            U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
            U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
            usePrefetchDecoder = (shareLongOffsets >= minShare);
        }
#endif

        dctx->ddictIsCold = 0;

#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
    !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
        if (usePrefetchDecoder)
#endif
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
            return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif

#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
        /* else */
        return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
#endif
    }
}


void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
{
    if (dst != dctx->previousDstEnd) {   /* not contiguous */
        dctx->dictEnd = dctx->previousDstEnd;
        dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
        dctx->prefixStart = dst;
        dctx->previousDstEnd = dst;
    }
}


size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
                            void* dst, size_t dstCapacity,
                      const void* src, size_t srcSize)
{
    size_t dSize;
    ZSTD_checkContinuity(dctx, dst);
    dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
    dctx->previousDstEnd = (char*)dst + dSize;
    return dSize;
}