Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
/*-
 * SPDX-License-Identifier: ISC
 *
 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
 * Copyright (c) 2002-2008 Atheros Communications, Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * $FreeBSD$
 */
#include "opt_ah.h"

#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_eeprom.h"			/* for 5ghz fast clock flag */

#include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
#include "ar9003/ar9300_devid.h"

/* linker set of registered chips */
OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
TAILQ_HEAD(, ath_hal_chip) ah_chip_list = TAILQ_HEAD_INITIALIZER(ah_chip_list);

int
ath_hal_add_chip(struct ath_hal_chip *ahc)
{

	TAILQ_INSERT_TAIL(&ah_chip_list, ahc, node);
	return (0);
}

int
ath_hal_remove_chip(struct ath_hal_chip *ahc)
{

	TAILQ_REMOVE(&ah_chip_list, ahc, node);
	return (0);
}

/*
 * Check the set of registered chips to see if any recognize
 * the device as one they can support.
 */
const char*
ath_hal_probe(uint16_t vendorid, uint16_t devid)
{
	struct ath_hal_chip * const *pchip;
	struct ath_hal_chip *pc;

	/* Linker set */
	OS_SET_FOREACH(pchip, ah_chips) {
		const char *name = (*pchip)->probe(vendorid, devid);
		if (name != AH_NULL)
			return name;
	}

	/* List */
	TAILQ_FOREACH(pc, &ah_chip_list, node) {
		const char *name = pc->probe(vendorid, devid);
		if (name != AH_NULL)
			return name;
	}

	return AH_NULL;
}

/*
 * Attach detects device chip revisions, initializes the hwLayer
 * function list, reads EEPROM information,
 * selects reset vectors, and performs a short self test.
 * Any failures will return an error that should cause a hardware
 * disable.
 */
struct ath_hal*
ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_OPS_CONFIG *ah_config,
	HAL_STATUS *error)
{
	struct ath_hal_chip * const *pchip;
	struct ath_hal_chip *pc;

	OS_SET_FOREACH(pchip, ah_chips) {
		struct ath_hal_chip *chip = *pchip;
		struct ath_hal *ah;

		/* XXX don't have vendorid, assume atheros one works */
		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
			continue;
		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
		    error);
		if (ah != AH_NULL) {
			/* copy back private state to public area */
			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
			return ah;
		}
	}

	/* List */
	TAILQ_FOREACH(pc, &ah_chip_list, node) {
		struct ath_hal_chip *chip = pc;
		struct ath_hal *ah;

		/* XXX don't have vendorid, assume atheros one works */
		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
			continue;
		ah = chip->attach(devid, sc, st, sh, eepromdata, ah_config,
		    error);
		if (ah != AH_NULL) {
			/* copy back private state to public area */
			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
			return ah;
		}
	}

	return AH_NULL;
}

const char *
ath_hal_mac_name(struct ath_hal *ah)
{
	switch (ah->ah_macVersion) {
	case AR_SREV_VERSION_CRETE:
	case AR_SREV_VERSION_MAUI_1:
		return "AR5210";
	case AR_SREV_VERSION_MAUI_2:
	case AR_SREV_VERSION_OAHU:
		return "AR5211";
	case AR_SREV_VERSION_VENICE:
		return "AR5212";
	case AR_SREV_VERSION_GRIFFIN:
		return "AR2413";
	case AR_SREV_VERSION_CONDOR:
		return "AR5424";
	case AR_SREV_VERSION_EAGLE:
		return "AR5413";
	case AR_SREV_VERSION_COBRA:
		return "AR2415";
	case AR_SREV_2425:	/* Swan */
		return "AR2425";
	case AR_SREV_2417:	/* Nala */
		return "AR2417";
	case AR_XSREV_VERSION_OWL_PCI:
		return "AR5416";
	case AR_XSREV_VERSION_OWL_PCIE:
		return "AR5418";
	case AR_XSREV_VERSION_HOWL:
		return "AR9130";
	case AR_XSREV_VERSION_SOWL:
		return "AR9160";
	case AR_XSREV_VERSION_MERLIN:
		if (AH_PRIVATE(ah)->ah_ispcie)
			return "AR9280";
		return "AR9220";
	case AR_XSREV_VERSION_KITE:
		return "AR9285";
	case AR_XSREV_VERSION_KIWI:
		if (AH_PRIVATE(ah)->ah_ispcie)
			return "AR9287";
		return "AR9227";
	case AR_SREV_VERSION_AR9380:
		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
			return "AR9580";
		return "AR9380";
	case AR_SREV_VERSION_AR9460:
		return "AR9460";
	case AR_SREV_VERSION_AR9330:
		return "AR9330";
	case AR_SREV_VERSION_AR9340:
		return "AR9340";
	case AR_SREV_VERSION_QCA9550:
		return "QCA9550";
	case AR_SREV_VERSION_AR9485:
		return "AR9485";
	case AR_SREV_VERSION_QCA9565:
		return "QCA9565";
	case AR_SREV_VERSION_QCA9530:
		return "QCA9530";
	}
	return "????";
}

/*
 * Return the mask of available modes based on the hardware capabilities.
 */
u_int
ath_hal_getwirelessmodes(struct ath_hal*ah)
{
	return ath_hal_getWirelessModes(ah);
}

/* linker set of registered RF backends */
OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
TAILQ_HEAD(, ath_hal_rf) ah_rf_list = TAILQ_HEAD_INITIALIZER(ah_rf_list);

int
ath_hal_add_rf(struct ath_hal_rf *arf)
{

	TAILQ_INSERT_TAIL(&ah_rf_list, arf, node);
	return (0);
}

int
ath_hal_remove_rf(struct ath_hal_rf *arf)
{

	TAILQ_REMOVE(&ah_rf_list, arf, node);
	return (0);
}

/*
 * Check the set of registered RF backends to see if
 * any recognize the device as one they can support.
 */
struct ath_hal_rf *
ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
{
	struct ath_hal_rf * const *prf;
	struct ath_hal_rf * rf;

	OS_SET_FOREACH(prf, ah_rfs) {
		struct ath_hal_rf *rf = *prf;
		if (rf->probe(ah))
			return rf;
	}

	TAILQ_FOREACH(rf, &ah_rf_list, node) {
		if (rf->probe(ah))
			return rf;
	}
	*ecode = HAL_ENOTSUPP;
	return AH_NULL;
}

const char *
ath_hal_rf_name(struct ath_hal *ah)
{
	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
	case 0:			/* 5210 */
		return "5110";	/* NB: made up */
	case AR_RAD5111_SREV_MAJOR:
	case AR_RAD5111_SREV_PROD:
		return "5111";
	case AR_RAD2111_SREV_MAJOR:
		return "2111";
	case AR_RAD5112_SREV_MAJOR:
	case AR_RAD5112_SREV_2_0:
	case AR_RAD5112_SREV_2_1:
		return "5112";
	case AR_RAD2112_SREV_MAJOR:
	case AR_RAD2112_SREV_2_0:
	case AR_RAD2112_SREV_2_1:
		return "2112";
	case AR_RAD2413_SREV_MAJOR:
		return "2413";
	case AR_RAD5413_SREV_MAJOR:
		return "5413";
	case AR_RAD2316_SREV_MAJOR:
		return "2316";
	case AR_RAD2317_SREV_MAJOR:
		return "2317";
	case AR_RAD5424_SREV_MAJOR:
		return "5424";

	case AR_RAD5133_SREV_MAJOR:
		return "5133";
	case AR_RAD2133_SREV_MAJOR:
		return "2133";
	case AR_RAD5122_SREV_MAJOR:
		return "5122";
	case AR_RAD2122_SREV_MAJOR:
		return "2122";
	}
	return "????";
}

/*
 * Poll the register looking for a specific value.
 */
HAL_BOOL
ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
{
#define	AH_TIMEOUT	5000
	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
#undef AH_TIMEOUT
}

HAL_BOOL
ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
{
	int i;

	for (i = 0; i < timeout; i++) {
		if ((OS_REG_READ(ah, reg) & mask) == val)
			return AH_TRUE;
		OS_DELAY(10);
	}
	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
	return AH_FALSE;
}

/*
 * Reverse the bits starting at the low bit for a value of
 * bit_count in size
 */
uint32_t
ath_hal_reverseBits(uint32_t val, uint32_t n)
{
	uint32_t retval;
	int i;

	for (i = 0, retval = 0; i < n; i++) {
		retval = (retval << 1) | (val & 1);
		val >>= 1;
	}
	return retval;
}

/* 802.11n related timing definitions */

#define	OFDM_PLCP_BITS	22
#define	HT_L_STF	8
#define	HT_L_LTF	8
#define	HT_L_SIG	4
#define	HT_SIG		8
#define	HT_STF		4
#define	HT_LTF(n)	((n) * 4)

#define	HT_RC_2_MCS(_rc)	((_rc) & 0x1f)
#define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
#define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)

/*
 * Calculate the duration of a packet whether it is 11n or legacy.
 */
uint32_t
ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
    uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble,
    HAL_BOOL includeSifs)
{
	uint8_t rc;
	int numStreams;

	rc = rates->info[rateix].rateCode;

	/* Legacy rate? Return the old way */
	if (! IS_HT_RATE(rc))
		return ath_hal_computetxtime(ah, rates, frameLen, rateix,
		    shortPreamble, includeSifs);

	/* 11n frame - extract out the number of spatial streams */
	numStreams = HT_RC_2_STREAMS(rc);
	KASSERT(numStreams > 0 && numStreams <= 4,
	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
	    rateix));

	/* XXX TODO: Add SIFS */
	return ath_computedur_ht(frameLen, rc, numStreams, isht40,
	    shortPreamble);
}

static const uint16_t ht20_bps[32] = {
    26, 52, 78, 104, 156, 208, 234, 260,
    52, 104, 156, 208, 312, 416, 468, 520,
    78, 156, 234, 312, 468, 624, 702, 780,
    104, 208, 312, 416, 624, 832, 936, 1040
};
static const uint16_t ht40_bps[32] = {
    54, 108, 162, 216, 324, 432, 486, 540,
    108, 216, 324, 432, 648, 864, 972, 1080,
    162, 324, 486, 648, 972, 1296, 1458, 1620,
    216, 432, 648, 864, 1296, 1728, 1944, 2160
};

/*
 * Calculate the transmit duration of an 11n frame.
 */
uint32_t
ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
    HAL_BOOL isht40, HAL_BOOL isShortGI)
{
	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;

	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));

	if (isht40)
		bitsPerSymbol = ht40_bps[HT_RC_2_MCS(rate)];
	else
		bitsPerSymbol = ht20_bps[HT_RC_2_MCS(rate)];
	numBits = OFDM_PLCP_BITS + (frameLen << 3);
	numSymbols = howmany(numBits, bitsPerSymbol);
	if (isShortGI)
		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
	else
		txTime = numSymbols * 4;                /* 4us */
	return txTime + HT_L_STF + HT_L_LTF +
	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
}

/*
 * Compute the time to transmit a frame of length frameLen bytes
 * using the specified rate, phy, and short preamble setting.
 */
uint16_t
ath_hal_computetxtime(struct ath_hal *ah,
	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
	HAL_BOOL shortPreamble, HAL_BOOL includeSifs)
{
	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
	uint32_t kbps;

	/* Warn if this function is called for 11n rates; it should not be! */
	if (IS_HT_RATE(rates->info[rateix].rateCode))
		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
		    __func__, rateix, rates->info[rateix].rateCode);

	kbps = rates->info[rateix].rateKbps;
	/*
	 * index can be invalid during dynamic Turbo transitions. 
	 * XXX
	 */
	if (kbps == 0)
		return 0;
	switch (rates->info[rateix].phy) {
	case IEEE80211_T_CCK:
		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
		if (shortPreamble && rates->info[rateix].shortPreamble)
			phyTime >>= 1;
		numBits		= frameLen << 3;
		txTime		= phyTime
				+ ((numBits * 1000)/kbps);
		if (includeSifs)
			txTime	+= CCK_SIFS_TIME;
		break;
	case IEEE80211_T_OFDM:
		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_PREAMBLE_TIME
				+ (numSymbols * OFDM_SYMBOL_TIME);
		if (includeSifs)
			txTime	+= OFDM_SIFS_TIME;
		break;
	case IEEE80211_T_OFDM_HALF:
		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_HALF_PREAMBLE_TIME
				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
		if (includeSifs)
			txTime	+= OFDM_HALF_SIFS_TIME;
		break;
	case IEEE80211_T_OFDM_QUARTER:
		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= OFDM_QUARTER_PREAMBLE_TIME
				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
		if (includeSifs)
			txTime	+= OFDM_QUARTER_SIFS_TIME;
		break;
	case IEEE80211_T_TURBO:
		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
		HALASSERT(bitsPerSymbol != 0);

		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
		numSymbols	= howmany(numBits, bitsPerSymbol);
		txTime		= TURBO_PREAMBLE_TIME
				+ (numSymbols * TURBO_SYMBOL_TIME);
		if (includeSifs)
			txTime	+= TURBO_SIFS_TIME;
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_PHYIO,
		    "%s: unknown phy %u (rate ix %u)\n",
		    __func__, rates->info[rateix].phy, rateix);
		txTime = 0;
		break;
	}
	return txTime;
}

int
ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	/*
	 * Pick a default mode at bootup. A channel change is inevitable.
	 */
	if (!chan)
		return HAL_MODE_11NG_HT20;

	if (IEEE80211_IS_CHAN_TURBO(chan))
		return HAL_MODE_TURBO;

	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
		return HAL_MODE_11NA_HT20;
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
		return HAL_MODE_11NA_HT40PLUS;
	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
		return HAL_MODE_11NA_HT40MINUS;
	if (IEEE80211_IS_CHAN_A(chan))
		return HAL_MODE_11A;

	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
		return HAL_MODE_11NG_HT20;
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
		return HAL_MODE_11NG_HT40PLUS;
	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
		return HAL_MODE_11NG_HT40MINUS;

	/*
	 * XXX For FreeBSD, will this work correctly given the DYN
	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
	 */
	if (IEEE80211_IS_CHAN_G(chan))
		return HAL_MODE_11G;
	if (IEEE80211_IS_CHAN_B(chan))
		return HAL_MODE_11B;

	HALASSERT(0);
	return HAL_MODE_11NG_HT20;
}

typedef enum {
	WIRELESS_MODE_11a   = 0,
	WIRELESS_MODE_TURBO = 1,
	WIRELESS_MODE_11b   = 2,
	WIRELESS_MODE_11g   = 3,
	WIRELESS_MODE_108g  = 4,

	WIRELESS_MODE_MAX
} WIRELESS_MODE;

/*
 * XXX TODO: for some (?) chips, an 11b mode still runs at 11bg.
 * Maybe AR5211 has separate 11b and 11g only modes, so 11b is 22MHz
 * and 11g is 44MHz, but AR5416 and later run 11b in 11bg mode, right?
 */
static WIRELESS_MODE
ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	if (IEEE80211_IS_CHAN_B(chan))
		return WIRELESS_MODE_11b;
	if (IEEE80211_IS_CHAN_G(chan))
		return WIRELESS_MODE_11g;
	if (IEEE80211_IS_CHAN_108G(chan))
		return WIRELESS_MODE_108g;
	if (IEEE80211_IS_CHAN_TURBO(chan))
		return WIRELESS_MODE_TURBO;
	return WIRELESS_MODE_11a;
}

/*
 * Convert between microseconds and core system clocks.
 */
                                     /* 11a Turbo  11b  11g  108g */
static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };

#define	CLOCK_FAST_RATE_5GHZ_OFDM	44

u_int
ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
{
	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
	u_int clks;

	/* NB: ah_curchan may be null when called attach time */
	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
		if (IEEE80211_IS_CHAN_HT40(c))
			clks <<= 1;
	} else if (c != AH_NULL) {
		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
		if (IEEE80211_IS_CHAN_HT40(c))
			clks <<= 1;
	} else
		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];

	/* Compensate for half/quarter rate */
	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
		clks = clks / 2;
	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
		clks = clks / 4;

	return clks;
}

u_int
ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
{
	uint64_t psec;

	psec = ath_hal_mac_psec(ah, clks);
	return (psec / 1000000);
}

/*
 * XXX TODO: half, quarter rates.
 */
uint64_t
ath_hal_mac_psec(struct ath_hal *ah, u_int clks)
{
	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
	uint64_t psec;

	/* NB: ah_curchan may be null when called attach time */
	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
		psec = (clks * 1000000ULL) / CLOCK_FAST_RATE_5GHZ_OFDM;
		if (IEEE80211_IS_CHAN_HT40(c))
			psec >>= 1;
	} else if (c != AH_NULL) {
		psec = (clks * 1000000ULL) / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
		if (IEEE80211_IS_CHAN_HT40(c))
			psec >>= 1;
	} else
		psec = (clks * 1000000ULL) / CLOCK_RATE[WIRELESS_MODE_11b];
	return psec;
}

/*
 * Setup a h/w rate table's reverse lookup table and
 * fill in ack durations.  This routine is called for
 * each rate table returned through the ah_getRateTable
 * method.  The reverse lookup tables are assumed to be
 * initialized to zero (or at least the first entry).
 * We use this as a key that indicates whether or not
 * we've previously setup the reverse lookup table.
 *
 * XXX not reentrant, but shouldn't matter
 */
void
ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
{
#define	N(a)	(sizeof(a)/sizeof(a[0]))
	int i;

	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
		return;
	for (i = 0; i < N(rt->rateCodeToIndex); i++)
		rt->rateCodeToIndex[i] = (uint8_t) -1;
	for (i = 0; i < rt->rateCount; i++) {
		uint8_t code = rt->info[i].rateCode;
		uint8_t cix = rt->info[i].controlRate;

		HALASSERT(code < N(rt->rateCodeToIndex));
		rt->rateCodeToIndex[code] = i;
		HALASSERT((code | rt->info[i].shortPreamble) <
		    N(rt->rateCodeToIndex));
		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
		/*
		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
		 *     depends on whether they are marked as basic rates;
		 *     the static tables are setup with an 11b-compatible
		 *     2Mb/s rate which will work but is suboptimal
		 */
		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE, AH_TRUE);
		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE, AH_TRUE);
	}
#undef N
}

HAL_STATUS
ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
	uint32_t capability, uint32_t *result)
{
	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;

	switch (type) {
	case HAL_CAP_REG_DMN:		/* regulatory domain */
		*result = AH_PRIVATE(ah)->ah_currentRD;
		return HAL_OK;
	case HAL_CAP_DFS_DMN:		/* DFS Domain */
		*result = AH_PRIVATE(ah)->ah_dfsDomain;
		return HAL_OK;
	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
		return HAL_ENOTSUPP;
	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
		return HAL_ENOTSUPP;
	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
		return HAL_ENOTSUPP;
	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
		return HAL_ENOTSUPP;
	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
		*result =  pCap->halKeyCacheSize;
		return HAL_OK;
	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
		*result = pCap->halTotalQueues;
		return HAL_OK;
	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
	case HAL_CAP_COMPRESSION:
		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_BURST:
		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_FASTFRAME:
		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_DIAG:		/* hardware diagnostic support */
		*result = AH_PRIVATE(ah)->ah_diagreg;
		return HAL_OK;
	case HAL_CAP_TXPOW:		/* global tx power limit  */
		switch (capability) {
		case 0:			/* facility is supported */
			return HAL_OK;
		case 1:			/* current limit */
			*result = AH_PRIVATE(ah)->ah_powerLimit;
			return HAL_OK;
		case 2:			/* current max tx power */
			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
			return HAL_OK;
		case 3:			/* scale factor */
			*result = AH_PRIVATE(ah)->ah_tpScale;
			return HAL_OK;
		}
		return HAL_ENOTSUPP;
	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
		return HAL_ENOTSUPP;
	case HAL_CAP_RFSILENT:		/* rfsilent support  */
		switch (capability) {
		case 0:			/* facility is supported */
			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
		case 1:			/* current setting */
			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
				HAL_OK : HAL_ENOTSUPP;
		case 2:			/* rfsilent config */
			*result = AH_PRIVATE(ah)->ah_rfsilent;
			return HAL_OK;
		}
		return HAL_ENOTSUPP;
	case HAL_CAP_11D:
		return HAL_OK;

	case HAL_CAP_HT:
		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_GTXTO:
		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_FAST_CC:
		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
		*result = pCap->halTxChainMask;
		return HAL_OK;
	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
		*result = pCap->halRxChainMask;
		return HAL_OK;
	case HAL_CAP_NUM_GPIO_PINS:
		*result = pCap->halNumGpioPins;
		return HAL_OK;
	case HAL_CAP_CST:
		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RTS_AGGR_LIMIT:
		*result = pCap->halRtsAggrLimit;
		return HAL_OK;
	case HAL_CAP_4ADDR_AGGR:
		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_EXT_CHAN_DFS:
		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RX_STBC:
		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TX_STBC:
		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_COMBINED_RADAR_RSSI:
		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_AUTO_SLEEP:
		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MBSSID_AGGR_SUPPORT:
		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_REG_FLAG:
		*result = AH_PRIVATE(ah)->ah_currentRDext;
		return HAL_OK;
	case HAL_CAP_ENHANCED_DMA_SUPPORT:
		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_NUM_TXMAPS:
		*result = pCap->halNumTxMaps;
		return HAL_OK;
	case HAL_CAP_TXDESCLEN:
		*result = pCap->halTxDescLen;
		return HAL_OK;
	case HAL_CAP_TXSTATUSLEN:
		*result = pCap->halTxStatusLen;
		return HAL_OK;
	case HAL_CAP_RXSTATUSLEN:
		*result = pCap->halRxStatusLen;
		return HAL_OK;
	case HAL_CAP_RXFIFODEPTH:
		switch (capability) {
		case HAL_RX_QUEUE_HP:
			*result = pCap->halRxHpFifoDepth;
			return HAL_OK;
		case HAL_RX_QUEUE_LP:
			*result = pCap->halRxLpFifoDepth;
			return HAL_OK;
		default:
			return HAL_ENOTSUPP;
	}
	case HAL_CAP_RXBUFSIZE:
	case HAL_CAP_NUM_MR_RETRIES:
		*result = pCap->halNumMRRetries;
		return HAL_OK;
	case HAL_CAP_BT_COEX:
		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SPECTRAL_SCAN:
		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_HT20_SGI:
		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
		*result = pCap->halRxTstampPrecision;
		return HAL_OK;
	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;

	case HAL_CAP_ENHANCED_DFS_SUPPORT:
		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;

	/* FreeBSD-specific entries for now */
	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
		*result = pCap->halIntrMask;
		return HAL_OK;
	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
		switch (capability) {
		case 0:			/* TX */
			*result = pCap->halTxStreams;
			return HAL_OK;
		case 1:			/* RX */
			*result = pCap->halRxStreams;
			return HAL_OK;
		default:
			return HAL_ENOTSUPP;
		}
	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_MFP:			/* Management frame protection setting */
		*result = pCap->halMfpSupport;
		return HAL_OK;
	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_DO_MYBEACON:	/* Hardware supports filtering my-beacons */
		return pCap->halRxDoMyBeacon ? HAL_OK : HAL_ENOTSUPP;
	case HAL_CAP_TXTSTAMP_PREC:	/* tx desc tstamp precision (bits) */
		*result = pCap->halTxTstampPrecision;
		return HAL_OK;
	default:
		return HAL_EINVAL;
	}
}

HAL_BOOL
ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
	uint32_t capability, uint32_t setting, HAL_STATUS *status)
{

	switch (type) {
	case HAL_CAP_TXPOW:
		switch (capability) {
		case 3:
			if (setting <= HAL_TP_SCALE_MIN) {
				AH_PRIVATE(ah)->ah_tpScale = setting;
				return AH_TRUE;
			}
			break;
		}
		break;
	case HAL_CAP_RFSILENT:		/* rfsilent support  */
		/*
		 * NB: allow even if halRfSilentSupport is false
		 *     in case the EEPROM is misprogrammed.
		 */
		switch (capability) {
		case 1:			/* current setting */
			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
			return AH_TRUE;
		case 2:			/* rfsilent config */
			/* XXX better done per-chip for validation? */
			AH_PRIVATE(ah)->ah_rfsilent = setting;
			return AH_TRUE;
		}
		break;
	case HAL_CAP_REG_DMN:		/* regulatory domain */
		AH_PRIVATE(ah)->ah_currentRD = setting;
		return AH_TRUE;
	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
		return AH_TRUE;
	default:
		break;
	}
	if (status)
		*status = HAL_EINVAL;
	return AH_FALSE;
}

/* 
 * Common support for getDiagState method.
 */

static u_int
ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
	void *dstbuf, int space)
{
	uint32_t *dp = dstbuf;
	int i;

	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
		uint32_t r = regs[i].start;
		uint32_t e = regs[i].end;
		*dp++ = r;
		*dp++ = e;
		space -= 2*sizeof(uint32_t);
		do {
			*dp++ = OS_REG_READ(ah, r);
			r += sizeof(uint32_t);
			space -= sizeof(uint32_t);
		} while (r <= e && space >= sizeof(uint32_t));
	}
	return (char *) dp - (char *) dstbuf;
}

static void
ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
{
	while (space >= sizeof(HAL_REGWRITE)) {
		OS_REG_WRITE(ah, regs->addr, regs->value);
		regs++, space -= sizeof(HAL_REGWRITE);
	}
}

HAL_BOOL
ath_hal_getdiagstate(struct ath_hal *ah, int request,
	const void *args, uint32_t argsize,
	void **result, uint32_t *resultsize)
{

	switch (request) {
	case HAL_DIAG_REVS:
		*result = &AH_PRIVATE(ah)->ah_devid;
		*resultsize = sizeof(HAL_REVS);
		return AH_TRUE;
	case HAL_DIAG_REGS:
		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
		return AH_TRUE;
	case HAL_DIAG_SETREGS:
		ath_hal_setregs(ah, args, argsize);
		*resultsize = 0;
		return AH_TRUE;
	case HAL_DIAG_FATALERR:
		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
		return AH_TRUE;
	case HAL_DIAG_EEREAD:
		if (argsize != sizeof(uint16_t))
			return AH_FALSE;
		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
			return AH_FALSE;
		*resultsize = sizeof(uint16_t);
		return AH_TRUE;
#ifdef AH_PRIVATE_DIAG
	case HAL_DIAG_SETKEY: {
		const HAL_DIAG_KEYVAL *dk;

		if (argsize != sizeof(HAL_DIAG_KEYVAL))
			return AH_FALSE;
		dk = (const HAL_DIAG_KEYVAL *)args;
		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
	}
	case HAL_DIAG_RESETKEY:
		if (argsize != sizeof(uint16_t))
			return AH_FALSE;
		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
#ifdef AH_SUPPORT_WRITE_EEPROM
	case HAL_DIAG_EEWRITE: {
		const HAL_DIAG_EEVAL *ee;
		if (argsize != sizeof(HAL_DIAG_EEVAL))
			return AH_FALSE;
		ee = (const HAL_DIAG_EEVAL *)args;
		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
	}
#endif /* AH_SUPPORT_WRITE_EEPROM */
#endif /* AH_PRIVATE_DIAG */
	case HAL_DIAG_11NCOMPAT:
		if (argsize == 0) {
			*resultsize = sizeof(uint32_t);
			*((uint32_t *)(*result)) =
				AH_PRIVATE(ah)->ah_11nCompat;
		} else if (argsize == sizeof(uint32_t)) {
			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
		} else
			return AH_FALSE;
		return AH_TRUE;
	case HAL_DIAG_CHANSURVEY:
		*result = &AH_PRIVATE(ah)->ah_chansurvey;
		*resultsize = sizeof(HAL_CHANNEL_SURVEY);
		return AH_TRUE;
	}
	return AH_FALSE;
}

/*
 * Set the properties of the tx queue with the parameters
 * from qInfo.
 */
HAL_BOOL
ath_hal_setTxQProps(struct ath_hal *ah,
	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
{
	uint32_t cw;

	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
		    "%s: inactive queue\n", __func__);
		return AH_FALSE;
	}
	/* XXX validate parameters */
	qi->tqi_ver = qInfo->tqi_ver;
	qi->tqi_subtype = qInfo->tqi_subtype;
	qi->tqi_qflags = qInfo->tqi_qflags;
	qi->tqi_priority = qInfo->tqi_priority;
	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
	else
		qi->tqi_aifs = INIT_AIFS;
	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
		/* make sure that the CWmin is of the form (2^n - 1) */
		qi->tqi_cwmin = 1;
		while (qi->tqi_cwmin < cw)
			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
	} else
		qi->tqi_cwmin = qInfo->tqi_cwmin;
	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
		/* make sure that the CWmax is of the form (2^n - 1) */
		qi->tqi_cwmax = 1;
		while (qi->tqi_cwmax < cw)
			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
	} else
		qi->tqi_cwmax = INIT_CWMAX;
	/* Set retry limit values */
	if (qInfo->tqi_shretry != 0)
		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
	else
		qi->tqi_shretry = INIT_SH_RETRY;
	if (qInfo->tqi_lgretry != 0)
		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
	else
		qi->tqi_lgretry = INIT_LG_RETRY;
	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
	qi->tqi_burstTime = qInfo->tqi_burstTime;
	qi->tqi_readyTime = qInfo->tqi_readyTime;

	switch (qInfo->tqi_subtype) {
	case HAL_WME_UPSD:
		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
		break;
	default:
		break;		/* NB: silence compiler */
	}
	return AH_TRUE;
}

HAL_BOOL
ath_hal_getTxQProps(struct ath_hal *ah,
	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
{
	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
		    "%s: inactive queue\n", __func__);
		return AH_FALSE;
	}

	qInfo->tqi_ver = qi->tqi_ver;
	qInfo->tqi_subtype = qi->tqi_subtype;
	qInfo->tqi_qflags = qi->tqi_qflags;
	qInfo->tqi_priority = qi->tqi_priority;
	qInfo->tqi_aifs = qi->tqi_aifs;
	qInfo->tqi_cwmin = qi->tqi_cwmin;
	qInfo->tqi_cwmax = qi->tqi_cwmax;
	qInfo->tqi_shretry = qi->tqi_shretry;
	qInfo->tqi_lgretry = qi->tqi_lgretry;
	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
	qInfo->tqi_burstTime = qi->tqi_burstTime;
	qInfo->tqi_readyTime = qi->tqi_readyTime;
	qInfo->tqi_compBuf = qi->tqi_physCompBuf;
	return AH_TRUE;
}

                                     /* 11a Turbo  11b  11g  108g */
static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };

/*
 * Read the current channel noise floor and return.
 * If nf cal hasn't finished, channel noise floor should be 0
 * and we return a nominal value based on band and frequency.
 *
 * NB: This is a private routine used by per-chip code to
 *     implement the ah_getChanNoise method.
 */
int16_t
ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	HAL_CHANNEL_INTERNAL *ichan;

	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_NFCAL,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		return 0;
	}
	if (ichan->rawNoiseFloor == 0) {
		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);

		HALASSERT(mode < WIRELESS_MODE_MAX);
		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
	} else
		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
}

/*
 * Fetch the current setup of ctl/ext noise floor values.
 *
 * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
 * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
 *
 * The caller must supply ctl/ext NF arrays which are at least
 * AH_MAX_CHAINS entries long.
 */
int
ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
    const struct ieee80211_channel *chan, int16_t *nf_ctl,
    int16_t *nf_ext)
{
	HAL_CHANNEL_INTERNAL *ichan;
	int i;

	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_NFCAL,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = 0;
		}
		return 0;
	}

	/* Return 0 if there's no valid MIMO values (yet) */
	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = 0;
		}
		return 0;
	}
	if (ichan->rawNoiseFloor == 0) {
		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
		HALASSERT(mode < WIRELESS_MODE_MAX);
		/*
		 * See the comment below - this could cause issues for
		 * stations which have a very low RSSI, below the
		 * 'normalised' NF values in NOISE_FLOOR[].
		 */
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
			    ath_hal_getNfAdjust(ah, ichan);
		}
		return 1;
	} else {
		/*
		 * The value returned here from a MIMO radio is presumed to be
		 * "good enough" as a NF calculation. As RSSI values are calculated
		 * against this, an adjusted NF may be higher than the RSSI value
		 * returned from a vary weak station, resulting in an obscenely
		 * high signal strength calculation being returned.
		 *
		 * This should be re-evaluated at a later date, along with any
		 * signal strength calculations which are made. Quite likely the
		 * RSSI values will need to be adjusted to ensure the calculations
		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
		 */
		for (i = 0; i < AH_MAX_CHAINS; i++) {
			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
		}
		return 1;
	}
}

/*
 * Process all valid raw noise floors into the dBm noise floor values.
 * Though our device has no reference for a dBm noise floor, we perform
 * a relative minimization of NF's based on the lowest NF found across a
 * channel scan.
 */
void
ath_hal_process_noisefloor(struct ath_hal *ah)
{
	HAL_CHANNEL_INTERNAL *c;
	int16_t correct2, correct5;
	int16_t lowest2, lowest5;
	int i;

	/* 
	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
	 * for statistically recorded NF/channel deviation.
	 */
	correct2 = lowest2 = 0;
	correct5 = lowest5 = 0;
	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
		WIRELESS_MODE mode;
		int16_t nf;

		c = &AH_PRIVATE(ah)->ah_channels[i];
		if (c->rawNoiseFloor >= 0)
			continue;
		/* XXX can't identify proper mode */
		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
			ath_hal_getNfAdjust(ah, c);
		if (IS_CHAN_5GHZ(c)) {
			if (nf < lowest5) { 
				lowest5 = nf;
				correct5 = NOISE_FLOOR[mode] -
				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
			}
		} else {
			if (nf < lowest2) { 
				lowest2 = nf;
				correct2 = NOISE_FLOOR[mode] -
				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
			}
		}
	}

	/* Correct the channels to reach the expected NF value */
	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
		c = &AH_PRIVATE(ah)->ah_channels[i];
		if (c->rawNoiseFloor >= 0)
			continue;
		/* Apply correction factor */
		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
	}
}

/*
 * INI support routines.
 */

int
ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
	int col, int regWr)
{
	int r;

	HALASSERT(col < ia->cols);
	for (r = 0; r < ia->rows; r++) {
		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
		    HAL_INI_VAL(ia, r, col));

		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
			OS_DELAY(100);

		DMA_YIELD(regWr);
	}
	return regWr;
}

void
ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
{
	int r;

	HALASSERT(col < ia->cols);
	for (r = 0; r < ia->rows; r++)
		data[r] = HAL_INI_VAL(ia, r, col);
}

int
ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
	const uint32_t data[], int regWr)
{
	int r;

	for (r = 0; r < ia->rows; r++) {
		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
		DMA_YIELD(regWr);
	}
	return regWr;
}

/*
 * These are EEPROM board related routines which should likely live in
 * a helper library of some sort.
 */

/**************************************************************
 * ath_ee_getLowerUppderIndex
 *
 * Return indices surrounding the value in sorted integer lists.
 * Requirement: the input list must be monotonically increasing
 *     and populated up to the list size
 * Returns: match is set if an index in the array matches exactly
 *     or a the target is before or after the range of the array.
 */
HAL_BOOL
ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
                   uint16_t *indexL, uint16_t *indexR)
{
    uint16_t i;

    /*
     * Check first and last elements for beyond ordered array cases.
     */
    if (target <= pList[0]) {
        *indexL = *indexR = 0;
        return AH_TRUE;
    }
    if (target >= pList[listSize-1]) {
        *indexL = *indexR = (uint16_t)(listSize - 1);
        return AH_TRUE;
    }

    /* look for value being near or between 2 values in list */
    for (i = 0; i < listSize - 1; i++) {
        /*
         * If value is close to the current value of the list
         * then target is not between values, it is one of the values
         */
        if (pList[i] == target) {
            *indexL = *indexR = i;
            return AH_TRUE;
        }
        /*
         * Look for value being between current value and next value
         * if so return these 2 values
         */
        if (target < pList[i + 1]) {
            *indexL = i;
            *indexR = (uint16_t)(i + 1);
            return AH_FALSE;
        }
    }
    HALASSERT(0);
    *indexL = *indexR = 0;
    return AH_FALSE;
}

/**************************************************************
 * ath_ee_FillVpdTable
 *
 * Fill the Vpdlist for indices Pmax-Pmin
 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
 */
HAL_BOOL
ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
    uint16_t  i, k;
    uint8_t   currPwr = pwrMin;
    uint16_t  idxL, idxR;

    HALASSERT(pwrMax > pwrMin);
    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
        ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
                           &(idxL), &(idxR));
        if (idxR < 1)
            idxR = 1;           /* extrapolate below */
        if (idxL == numIntercepts - 1)
            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
        if (pPwrList[idxL] == pPwrList[idxR])
            k = pVpdList[idxL];
        else
            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
                  (pPwrList[idxR] - pPwrList[idxL]) );
        HALASSERT(k < 256);
        pRetVpdList[i] = (uint8_t)k;
        currPwr += 2;               /* half dB steps */
    }

    return AH_TRUE;
}

/**************************************************************************
 * ath_ee_interpolate
 *
 * Returns signed interpolated or the scaled up interpolated value
 */
int16_t
ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
            int16_t targetLeft, int16_t targetRight)
{
    int16_t rv;

    if (srcRight == srcLeft) {
        rv = targetLeft;
    } else {
        rv = (int16_t)( ((target - srcLeft) * targetRight +
              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
    }
    return rv;
}

/*
 * Adjust the TSF.
 */
void
ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
{
	/* XXX handle wrap/overflow */
	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
}

/*
 * Enable or disable CCA.
 */
void
ath_hal_setcca(struct ath_hal *ah, int ena)
{
	/*
	 * NB: fill me in; this is not provided by default because disabling
	 *     CCA in most locales violates regulatory.
	 */
}

/*
 * Get CCA setting.
 *
 * XXX TODO: turn this and the above function into methods
 * in case there are chipset differences in handling CCA.
 */
int
ath_hal_getcca(struct ath_hal *ah)
{
	u_int32_t diag;
	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
		return 1;
	return ((diag & 0x500000) == 0);
}

/*
 * Set the current state of self-generated ACK and RTS/CTS frames.
 *
 * For correct DFS operation, the device should not even /ACK/ frames
 * that are sent to it during CAC or CSA.
 */
void
ath_hal_set_dfs_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL ena)
{

	if (ah->ah_setDfsCacTxQuiet == NULL)
		return;
	ah->ah_setDfsCacTxQuiet(ah, ena);
}

/*
 * This routine is only needed when supporting EEPROM-in-RAM setups
 * (eg embedded SoCs and on-board PCI/PCIe devices.)
 */
/* NB: This is in 16 bit words; not bytes */
/* XXX This doesn't belong here!  */
#define ATH_DATA_EEPROM_SIZE    2048

HAL_BOOL
ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
{
	if (ah->ah_eepromdata == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
		return AH_FALSE;
	}
	if (off > ATH_DATA_EEPROM_SIZE) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
		    __func__, off, ATH_DATA_EEPROM_SIZE);
		return AH_FALSE;
	}
	(*data) = ah->ah_eepromdata[off];
	return AH_TRUE;
}

/*
 * Do a 2GHz specific MHz->IEEE based on the hardware
 * frequency.
 *
 * This is the unmapped frequency which is programmed into the hardware.
 */
int
ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, int freq)
{

	if (freq == 2484)
		return 14;
	if (freq < 2484)
		return ((int) freq - 2407) / 5;
	else
		return 15 + ((freq - 2512) / 20);
}

/*
 * Clear the current survey data.
 *
 * This should be done during a channel change.
 */
void
ath_hal_survey_clear(struct ath_hal *ah)
{

	OS_MEMZERO(&AH_PRIVATE(ah)->ah_chansurvey,
	    sizeof(AH_PRIVATE(ah)->ah_chansurvey));
}

/*
 * Add a sample to the channel survey.
 */
void
ath_hal_survey_add_sample(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
{
	HAL_CHANNEL_SURVEY *cs;

	cs = &AH_PRIVATE(ah)->ah_chansurvey;

	OS_MEMCPY(&cs->samples[cs->cur_sample], hs, sizeof(*hs));
	cs->samples[cs->cur_sample].seq_num = cs->cur_seq;
	cs->cur_sample = (cs->cur_sample + 1) % CHANNEL_SURVEY_SAMPLE_COUNT;
	cs->cur_seq++;
}