Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*-
 * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
 * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
 * Copyright (c) 1982, 1986, 1988, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_rss.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/kernel.h>
#include <sys/hash.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_var.h>
#include <net/rss_config.h>
#include <net/netisr.h>
#include <net/vnet.h>

#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_rss.h>
#ifdef MAC
#include <security/mac/mac_framework.h>
#endif

SYSCTL_DECL(_net_inet_ip);

/*
 * Reassembly headers are stored in hash buckets.
 */
#define	IPREASS_NHASH_LOG2	10
#define	IPREASS_NHASH		(1 << IPREASS_NHASH_LOG2)
#define	IPREASS_HMASK		(IPREASS_NHASH - 1)

struct ipqbucket {
	TAILQ_HEAD(ipqhead, ipq) head;
	struct mtx		 lock;
	int			 count;
};

VNET_DEFINE_STATIC(struct ipqbucket, ipq[IPREASS_NHASH]);
#define	V_ipq		VNET(ipq)
VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
#define V_ipq_hashseed   VNET(ipq_hashseed)

#define	IPQ_LOCK(i)	mtx_lock(&V_ipq[i].lock)
#define	IPQ_TRYLOCK(i)	mtx_trylock(&V_ipq[i].lock)
#define	IPQ_UNLOCK(i)	mtx_unlock(&V_ipq[i].lock)
#define	IPQ_LOCK_ASSERT(i)	mtx_assert(&V_ipq[i].lock, MA_OWNED)

VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
#define	V_ipreass_maxbucketsize	VNET(ipreass_maxbucketsize)

void		ipreass_init(void);
void		ipreass_drain(void);
void		ipreass_slowtimo(void);
#ifdef VIMAGE
void		ipreass_destroy(void);
#endif
static int	sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
static int	sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
static void	ipreass_zone_change(void *);
static void	ipreass_drain_tomax(void);
static void	ipq_free(struct ipqbucket *, struct ipq *);
static struct ipq * ipq_reuse(int);

static inline void
ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
{

	IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
	ipq_free(bucket, fp);
}

static inline void
ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
{

	IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
	ipq_free(bucket, fp);
}

/*
 * By default, limit the number of IP fragments across all reassembly
 * queues to  1/32 of the total number of mbuf clusters.
 *
 * Limit the total number of reassembly queues per VNET to the
 * IP fragment limit, but ensure the limit will not allow any bucket
 * to grow above 100 items. (The bucket limit is
 * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
 * multiplier to reach a 100-item limit.)
 * The 100-item limit was chosen as brief testing seems to show that
 * this produces "reasonable" performance on some subset of systems
 * under DoS attack.
 */
#define	IP_MAXFRAGS		(nmbclusters / 32)
#define	IP_MAXFRAGPACKETS	(imin(IP_MAXFRAGS, IPREASS_NHASH * 50))

static int		maxfrags;
static volatile u_int	nfrags;
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
    &maxfrags, 0,
    "Maximum number of IPv4 fragments allowed across all reassembly queues");
SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
    __DEVOLATILE(u_int *, &nfrags), 0,
    "Current number of IPv4 fragments across all reassembly queues");

VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
#define	V_ipq_zone	VNET(ipq_zone)
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
    NULL, 0, sysctl_maxfragpackets, "I",
    "Maximum number of IPv4 fragment reassembly queue entries");
SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
    &VNET_NAME(ipq_zone),
    "Current number of IPv4 fragment reassembly queue entries");

VNET_DEFINE_STATIC(int, noreass);
#define	V_noreass	VNET(noreass)

VNET_DEFINE_STATIC(int, maxfragsperpacket);
#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
    &VNET_NAME(maxfragsperpacket), 0,
    "Maximum number of IPv4 fragments allowed per packet");
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
    CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
    sysctl_maxfragbucketsize, "I",
    "Maximum number of IPv4 fragment reassembly queue entries per bucket");

/*
 * Take incoming datagram fragment and try to reassemble it into
 * whole datagram.  If the argument is the first fragment or one
 * in between the function will return NULL and store the mbuf
 * in the fragment chain.  If the argument is the last fragment
 * the packet will be reassembled and the pointer to the new
 * mbuf returned for further processing.  Only m_tags attached
 * to the first packet/fragment are preserved.
 * The IP header is *NOT* adjusted out of iplen.
 */
#define	M_IP_FRAG	M_PROTO9
struct mbuf *
ip_reass(struct mbuf *m)
{
	struct ip *ip;
	struct mbuf *p, *q, *nq, *t;
	struct ipq *fp;
	struct ifnet *srcifp;
	struct ipqhead *head;
	int i, hlen, next, tmpmax;
	u_int8_t ecn, ecn0;
	uint32_t hash, hashkey[3];
#ifdef	RSS
	uint32_t rss_hash, rss_type;
#endif

	/*
	 * If no reassembling or maxfragsperpacket are 0,
	 * never accept fragments.
	 * Also, drop packet if it would exceed the maximum
	 * number of fragments.
	 */
	tmpmax = maxfrags;
	if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
	    (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
		IPSTAT_INC(ips_fragments);
		IPSTAT_INC(ips_fragdropped);
		m_freem(m);
		return (NULL);
	}

	ip = mtod(m, struct ip *);
	hlen = ip->ip_hl << 2;

	/*
	 * Adjust ip_len to not reflect header,
	 * convert offset of this to bytes.
	 */
	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
	/*
	 * Make sure that fragments have a data length
	 * that's a non-zero multiple of 8 bytes, unless
	 * this is the last fragment.
	 */
	if (ip->ip_len == htons(0) ||
	    ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
		IPSTAT_INC(ips_toosmall); /* XXX */
		IPSTAT_INC(ips_fragdropped);
		m_freem(m);
		return (NULL);
	}
	if (ip->ip_off & htons(IP_MF))
		m->m_flags |= M_IP_FRAG;
	else
		m->m_flags &= ~M_IP_FRAG;
	ip->ip_off = htons(ntohs(ip->ip_off) << 3);

	/*
	 * Make sure the fragment lies within a packet of valid size.
	 */
	if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
		IPSTAT_INC(ips_toolong);
		IPSTAT_INC(ips_fragdropped);
		m_freem(m);
		return (NULL);
	}

	/*
	 * Store receive network interface pointer for later.
	 */
	srcifp = m->m_pkthdr.rcvif;

	/*
	 * Attempt reassembly; if it succeeds, proceed.
	 * ip_reass() will return a different mbuf.
	 */
	IPSTAT_INC(ips_fragments);
	m->m_pkthdr.PH_loc.ptr = ip;

	/*
	 * Presence of header sizes in mbufs
	 * would confuse code below.
	 */
	m->m_data += hlen;
	m->m_len -= hlen;

	hashkey[0] = ip->ip_src.s_addr;
	hashkey[1] = ip->ip_dst.s_addr;
	hashkey[2] = (uint32_t)ip->ip_p << 16;
	hashkey[2] += ip->ip_id;
	hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
	hash &= IPREASS_HMASK;
	head = &V_ipq[hash].head;
	IPQ_LOCK(hash);

	/*
	 * Look for queue of fragments
	 * of this datagram.
	 */
	TAILQ_FOREACH(fp, head, ipq_list)
		if (ip->ip_id == fp->ipq_id &&
		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
#ifdef MAC
		    mac_ipq_match(m, fp) &&
#endif
		    ip->ip_p == fp->ipq_p)
			break;
	/*
	 * If first fragment to arrive, create a reassembly queue.
	 */
	if (fp == NULL) {
		if (V_ipq[hash].count < V_ipreass_maxbucketsize)
			fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
		if (fp == NULL)
			fp = ipq_reuse(hash);
		if (fp == NULL)
			goto dropfrag;
#ifdef MAC
		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
			uma_zfree(V_ipq_zone, fp);
			fp = NULL;
			goto dropfrag;
		}
		mac_ipq_create(m, fp);
#endif
		TAILQ_INSERT_HEAD(head, fp, ipq_list);
		V_ipq[hash].count++;
		fp->ipq_nfrags = 1;
		atomic_add_int(&nfrags, 1);
		fp->ipq_ttl = IPFRAGTTL;
		fp->ipq_p = ip->ip_p;
		fp->ipq_id = ip->ip_id;
		fp->ipq_src = ip->ip_src;
		fp->ipq_dst = ip->ip_dst;
		fp->ipq_frags = m;
		if (m->m_flags & M_IP_FRAG)
			fp->ipq_maxoff = -1;
		else
			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
		m->m_nextpkt = NULL;
		goto done;
	} else {
		/*
		 * If we already saw the last fragment, make sure
		 * this fragment's offset looks sane. Otherwise, if
		 * this is the last fragment, record its endpoint.
		 */
		if (fp->ipq_maxoff > 0) {
			i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
			if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
			    ((m->m_flags & M_IP_FRAG) == 0 &&
			    i != fp->ipq_maxoff)) {
				fp = NULL;
				goto dropfrag;
			}
		} else if ((m->m_flags & M_IP_FRAG) == 0)
			fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
		fp->ipq_nfrags++;
		atomic_add_int(&nfrags, 1);
#ifdef MAC
		mac_ipq_update(m, fp);
#endif
	}

#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))

	/*
	 * Handle ECN by comparing this segment with the first one;
	 * if CE is set, do not lose CE.
	 * drop if CE and not-ECT are mixed for the same packet.
	 */
	ecn = ip->ip_tos & IPTOS_ECN_MASK;
	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
	if (ecn == IPTOS_ECN_CE) {
		if (ecn0 == IPTOS_ECN_NOTECT)
			goto dropfrag;
		if (ecn0 != IPTOS_ECN_CE)
			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
	}
	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
		goto dropfrag;

	/*
	 * Find a segment which begins after this one does.
	 */
	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
			break;

	/*
	 * If there is a preceding segment, it may provide some of
	 * our data already.  If so, drop the data from the incoming
	 * segment.  If it provides all of our data, drop us, otherwise
	 * stick new segment in the proper place.
	 *
	 * If some of the data is dropped from the preceding
	 * segment, then it's checksum is invalidated.
	 */
	if (p) {
		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
		    ntohs(ip->ip_off);
		if (i > 0) {
			if (i >= ntohs(ip->ip_len))
				goto dropfrag;
			m_adj(m, i);
			m->m_pkthdr.csum_flags = 0;
			ip->ip_off = htons(ntohs(ip->ip_off) + i);
			ip->ip_len = htons(ntohs(ip->ip_len) - i);
		}
		m->m_nextpkt = p->m_nextpkt;
		p->m_nextpkt = m;
	} else {
		m->m_nextpkt = fp->ipq_frags;
		fp->ipq_frags = m;
	}

	/*
	 * While we overlap succeeding segments trim them or,
	 * if they are completely covered, dequeue them.
	 */
	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
	    ntohs(GETIP(q)->ip_off); q = nq) {
		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
		    ntohs(GETIP(q)->ip_off);
		if (i < ntohs(GETIP(q)->ip_len)) {
			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
			m_adj(q, i);
			q->m_pkthdr.csum_flags = 0;
			break;
		}
		nq = q->m_nextpkt;
		m->m_nextpkt = nq;
		IPSTAT_INC(ips_fragdropped);
		fp->ipq_nfrags--;
		atomic_subtract_int(&nfrags, 1);
		m_freem(q);
	}

	/*
	 * Check for complete reassembly and perform frag per packet
	 * limiting.
	 *
	 * Frag limiting is performed here so that the nth frag has
	 * a chance to complete the packet before we drop the packet.
	 * As a result, n+1 frags are actually allowed per packet, but
	 * only n will ever be stored. (n = maxfragsperpacket.)
	 *
	 */
	next = 0;
	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
		if (ntohs(GETIP(q)->ip_off) != next) {
			if (fp->ipq_nfrags > V_maxfragsperpacket)
				ipq_drop(&V_ipq[hash], fp);
			goto done;
		}
		next += ntohs(GETIP(q)->ip_len);
	}
	/* Make sure the last packet didn't have the IP_MF flag */
	if (p->m_flags & M_IP_FRAG) {
		if (fp->ipq_nfrags > V_maxfragsperpacket)
			ipq_drop(&V_ipq[hash], fp);
		goto done;
	}

	/*
	 * Reassembly is complete.  Make sure the packet is a sane size.
	 */
	q = fp->ipq_frags;
	ip = GETIP(q);
	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
		IPSTAT_INC(ips_toolong);
		ipq_drop(&V_ipq[hash], fp);
		goto done;
	}

	/*
	 * Concatenate fragments.
	 */
	m = q;
	t = m->m_next;
	m->m_next = NULL;
	m_cat(m, t);
	nq = q->m_nextpkt;
	q->m_nextpkt = NULL;
	for (q = nq; q != NULL; q = nq) {
		nq = q->m_nextpkt;
		q->m_nextpkt = NULL;
		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
		m_demote_pkthdr(q);
		m_cat(m, q);
	}
	/*
	 * In order to do checksumming faster we do 'end-around carry' here
	 * (and not in for{} loop), though it implies we are not going to
	 * reassemble more than 64k fragments.
	 */
	while (m->m_pkthdr.csum_data & 0xffff0000)
		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
		    (m->m_pkthdr.csum_data >> 16);
	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
#ifdef MAC
	mac_ipq_reassemble(fp, m);
	mac_ipq_destroy(fp);
#endif

	/*
	 * Create header for new ip packet by modifying header of first
	 * packet;  dequeue and discard fragment reassembly header.
	 * Make header visible.
	 */
	ip->ip_len = htons((ip->ip_hl << 2) + next);
	ip->ip_src = fp->ipq_src;
	ip->ip_dst = fp->ipq_dst;
	TAILQ_REMOVE(head, fp, ipq_list);
	V_ipq[hash].count--;
	uma_zfree(V_ipq_zone, fp);
	m->m_len += (ip->ip_hl << 2);
	m->m_data -= (ip->ip_hl << 2);
	/* some debugging cruft by sklower, below, will go away soon */
	if (m->m_flags & M_PKTHDR) {	/* XXX this should be done elsewhere */
		m_fixhdr(m);
		/* set valid receive interface pointer */
		m->m_pkthdr.rcvif = srcifp;
	}
	IPSTAT_INC(ips_reassembled);
	IPQ_UNLOCK(hash);

#ifdef	RSS
	/*
	 * Query the RSS layer for the flowid / flowtype for the
	 * mbuf payload.
	 *
	 * For now, just assume we have to calculate a new one.
	 * Later on we should check to see if the assigned flowid matches
	 * what RSS wants for the given IP protocol and if so, just keep it.
	 *
	 * We then queue into the relevant netisr so it can be dispatched
	 * to the correct CPU.
	 *
	 * Note - this may return 1, which means the flowid in the mbuf
	 * is correct for the configured RSS hash types and can be used.
	 */
	if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
		m->m_pkthdr.flowid = rss_hash;
		M_HASHTYPE_SET(m, rss_type);
	}

	/*
	 * Queue/dispatch for reprocessing.
	 *
	 * Note: this is much slower than just handling the frame in the
	 * current receive context.  It's likely worth investigating
	 * why this is.
	 */
	netisr_dispatch(NETISR_IP_DIRECT, m);
	return (NULL);
#endif

	/* Handle in-line */
	return (m);

dropfrag:
	IPSTAT_INC(ips_fragdropped);
	if (fp != NULL) {
		fp->ipq_nfrags--;
		atomic_subtract_int(&nfrags, 1);
	}
	m_freem(m);
done:
	IPQ_UNLOCK(hash);
	return (NULL);

#undef GETIP
}

/*
 * Initialize IP reassembly structures.
 */
void
ipreass_init(void)
{
	int max;

	for (int i = 0; i < IPREASS_NHASH; i++) {
		TAILQ_INIT(&V_ipq[i].head);
		mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
		    MTX_DEF | MTX_DUPOK);
		V_ipq[i].count = 0;
	}
	V_ipq_hashseed = arc4random();
	V_maxfragsperpacket = 16;
	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
	    NULL, UMA_ALIGN_PTR, 0);
	max = IP_MAXFRAGPACKETS;
	max = uma_zone_set_max(V_ipq_zone, max);
	V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);

	if (IS_DEFAULT_VNET(curvnet)) {
		maxfrags = IP_MAXFRAGS;
		EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
		    NULL, EVENTHANDLER_PRI_ANY);
	}
}

/*
 * If a timer expires on a reassembly queue, discard it.
 */
void
ipreass_slowtimo(void)
{
	struct ipq *fp, *tmp;

	for (int i = 0; i < IPREASS_NHASH; i++) {
		IPQ_LOCK(i);
		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
		if (--fp->ipq_ttl == 0)
				ipq_timeout(&V_ipq[i], fp);
		IPQ_UNLOCK(i);
	}
}

/*
 * Drain off all datagram fragments.
 */
void
ipreass_drain(void)
{

	for (int i = 0; i < IPREASS_NHASH; i++) {
		IPQ_LOCK(i);
		while(!TAILQ_EMPTY(&V_ipq[i].head))
			ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
		KASSERT(V_ipq[i].count == 0,
		    ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
		    V_ipq[i].count, V_ipq));
		IPQ_UNLOCK(i);
	}
}

/*
 * Drain off all datagram fragments belonging to
 * the given network interface.
 */
static void
ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
{
	struct ipq *fp, *temp;
	struct mbuf *m;
	int i;

	KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));

	CURVNET_SET_QUIET(ifp->if_vnet);

	/*
	 * Skip processing if IPv4 reassembly is not initialised or
	 * torn down by ipreass_destroy().
	 */
	if (V_ipq_zone == NULL) {
		CURVNET_RESTORE();
		return;
	}

	for (i = 0; i < IPREASS_NHASH; i++) {
		IPQ_LOCK(i);
		/* Scan fragment list. */
		TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
			for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
				/* clear no longer valid rcvif pointer */
				if (m->m_pkthdr.rcvif == ifp)
					m->m_pkthdr.rcvif = NULL;
			}
		}
		IPQ_UNLOCK(i);
	}
	CURVNET_RESTORE();
}
EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);

#ifdef VIMAGE
/*
 * Destroy IP reassembly structures.
 */
void
ipreass_destroy(void)
{

	ipreass_drain();
	uma_zdestroy(V_ipq_zone);
	V_ipq_zone = NULL;
	for (int i = 0; i < IPREASS_NHASH; i++)
		mtx_destroy(&V_ipq[i].lock);
}
#endif

/*
 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
 * max has slightly different semantics than the sysctl, for historical
 * reasons.
 */
static void
ipreass_drain_tomax(void)
{
	struct ipq *fp;
	int target;

	/*
	 * Make sure each bucket is under the new limit. If
	 * necessary, drop enough of the oldest elements from
	 * each bucket to get under the new limit.
	 */
	for (int i = 0; i < IPREASS_NHASH; i++) {
		IPQ_LOCK(i);
		while (V_ipq[i].count > V_ipreass_maxbucketsize &&
		    (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
			ipq_timeout(&V_ipq[i], fp);
		IPQ_UNLOCK(i);
	}

	/*
	 * If we are over the maximum number of fragments,
	 * drain off enough to get down to the new limit,
	 * stripping off last elements on queues.  Every
	 * run we strip the oldest element from each bucket.
	 */
	target = uma_zone_get_max(V_ipq_zone);
	while (uma_zone_get_cur(V_ipq_zone) > target) {
		for (int i = 0; i < IPREASS_NHASH; i++) {
			IPQ_LOCK(i);
			fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
			if (fp != NULL)
				ipq_timeout(&V_ipq[i], fp);
			IPQ_UNLOCK(i);
		}
	}
}

static void
ipreass_zone_change(void *tag)
{
	VNET_ITERATOR_DECL(vnet_iter);
	int max;

	maxfrags = IP_MAXFRAGS;
	max = IP_MAXFRAGPACKETS;
	VNET_LIST_RLOCK_NOSLEEP();
	VNET_FOREACH(vnet_iter) {
		CURVNET_SET(vnet_iter);
		max = uma_zone_set_max(V_ipq_zone, max);
		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
		ipreass_drain_tomax();
		CURVNET_RESTORE();
	}
	VNET_LIST_RUNLOCK_NOSLEEP();
}

/*
 * Change the limit on the UMA zone, or disable the fragment allocation
 * at all.  Since 0 and -1 is a special values here, we need our own handler,
 * instead of sysctl_handle_uma_zone_max().
 */
static int
sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
{
	int error, max;

	if (V_noreass == 0) {
		max = uma_zone_get_max(V_ipq_zone);
		if (max == 0)
			max = -1;
	} else
		max = 0;
	error = sysctl_handle_int(oidp, &max, 0, req);
	if (error || !req->newptr)
		return (error);
	if (max > 0) {
		/*
		 * XXXRW: Might be a good idea to sanity check the argument
		 * and place an extreme upper bound.
		 */
		max = uma_zone_set_max(V_ipq_zone, max);
		V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
		ipreass_drain_tomax();
		V_noreass = 0;
	} else if (max == 0) {
		V_noreass = 1;
		ipreass_drain();
	} else if (max == -1) {
		V_noreass = 0;
		uma_zone_set_max(V_ipq_zone, 0);
		V_ipreass_maxbucketsize = INT_MAX;
	} else
		return (EINVAL);
	return (0);
}

/*
 * Seek for old fragment queue header that can be reused.  Try to
 * reuse a header from currently locked hash bucket.
 */
static struct ipq *
ipq_reuse(int start)
{
	struct ipq *fp;
	int bucket, i;

	IPQ_LOCK_ASSERT(start);

	for (i = 0; i < IPREASS_NHASH; i++) {
		bucket = (start + i) % IPREASS_NHASH;
		if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
			continue;
		fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
		if (fp) {
			struct mbuf *m;

			IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
			atomic_subtract_int(&nfrags, fp->ipq_nfrags);
			while (fp->ipq_frags) {
				m = fp->ipq_frags;
				fp->ipq_frags = m->m_nextpkt;
				m_freem(m);
			}
			TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
			V_ipq[bucket].count--;
			if (bucket != start)
				IPQ_UNLOCK(bucket);
			break;
		}
		if (bucket != start)
			IPQ_UNLOCK(bucket);
	}
	IPQ_LOCK_ASSERT(start);
	return (fp);
}

/*
 * Free a fragment reassembly header and all associated datagrams.
 */
static void
ipq_free(struct ipqbucket *bucket, struct ipq *fp)
{
	struct mbuf *q;

	atomic_subtract_int(&nfrags, fp->ipq_nfrags);
	while (fp->ipq_frags) {
		q = fp->ipq_frags;
		fp->ipq_frags = q->m_nextpkt;
		m_freem(q);
	}
	TAILQ_REMOVE(&bucket->head, fp, ipq_list);
	bucket->count--;
	uma_zfree(V_ipq_zone, fp);
}

/*
 * Get or set the maximum number of reassembly queues per bucket.
 */
static int
sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
{
	int error, max;

	max = V_ipreass_maxbucketsize;
	error = sysctl_handle_int(oidp, &max, 0, req);
	if (error || !req->newptr)
		return (error);
	if (max <= 0)
		return (EINVAL);
	V_ipreass_maxbucketsize = max;
	ipreass_drain_tomax();
	return (0);
}