Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

Code Examples
=============

Code Example For Symmetric Key Cipher Operation
-----------------------------------------------

This code encrypts some data with AES-256-XTS.  For sake of example,
all inputs are random bytes, the encryption is done in-place, and it's
assumed the code is running in a context where it can sleep.

::

    static int test_skcipher(void)
    {
            struct crypto_skcipher *tfm = NULL;
            struct skcipher_request *req = NULL;
            u8 *data = NULL;
            const size_t datasize = 512; /* data size in bytes */
            struct scatterlist sg;
            DECLARE_CRYPTO_WAIT(wait);
            u8 iv[16];  /* AES-256-XTS takes a 16-byte IV */
            u8 key[64]; /* AES-256-XTS takes a 64-byte key */
            int err;

            /*
             * Allocate a tfm (a transformation object) and set the key.
             *
             * In real-world use, a tfm and key are typically used for many
             * encryption/decryption operations.  But in this example, we'll just do a
             * single encryption operation with it (which is not very efficient).
             */

            tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
            if (IS_ERR(tfm)) {
                    pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
                    return PTR_ERR(tfm);
            }

            get_random_bytes(key, sizeof(key));
            err = crypto_skcipher_setkey(tfm, key, sizeof(key));
            if (err) {
                    pr_err("Error setting key: %d\n", err);
                    goto out;
            }

            /* Allocate a request object */
            req = skcipher_request_alloc(tfm, GFP_KERNEL);
            if (!req) {
                    err = -ENOMEM;
                    goto out;
            }

            /* Prepare the input data */
            data = kmalloc(datasize, GFP_KERNEL);
            if (!data) {
                    err = -ENOMEM;
                    goto out;
            }
            get_random_bytes(data, datasize);

            /* Initialize the IV */
            get_random_bytes(iv, sizeof(iv));

            /*
             * Encrypt the data in-place.
             *
             * For simplicity, in this example we wait for the request to complete
             * before proceeding, even if the underlying implementation is asynchronous.
             *
             * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
             * crypto_skcipher_decrypt().
             */
            sg_init_one(&sg, data, datasize);
            skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
                                               CRYPTO_TFM_REQ_MAY_SLEEP,
                                          crypto_req_done, &wait);
            skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
            err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
            if (err) {
                    pr_err("Error encrypting data: %d\n", err);
                    goto out;
            }

            pr_debug("Encryption was successful\n");
    out:
            crypto_free_skcipher(tfm);
            skcipher_request_free(req);
            kfree(data);
            return err;
    }


Code Example For Use of Operational State Memory With SHASH
-----------------------------------------------------------

::


    struct sdesc {
        struct shash_desc shash;
        char ctx[];
    };

    static struct sdesc *init_sdesc(struct crypto_shash *alg)
    {
        struct sdesc *sdesc;
        int size;

        size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
        sdesc = kmalloc(size, GFP_KERNEL);
        if (!sdesc)
            return ERR_PTR(-ENOMEM);
        sdesc->shash.tfm = alg;
        return sdesc;
    }

    static int calc_hash(struct crypto_shash *alg,
                 const unsigned char *data, unsigned int datalen,
                 unsigned char *digest)
    {
        struct sdesc *sdesc;
        int ret;

        sdesc = init_sdesc(alg);
        if (IS_ERR(sdesc)) {
            pr_info("can't alloc sdesc\n");
            return PTR_ERR(sdesc);
        }

        ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
        kfree(sdesc);
        return ret;
    }

    static int test_hash(const unsigned char *data, unsigned int datalen,
                 unsigned char *digest)
    {
        struct crypto_shash *alg;
        char *hash_alg_name = "sha1-padlock-nano";
        int ret;

        alg = crypto_alloc_shash(hash_alg_name, 0, 0);
        if (IS_ERR(alg)) {
                pr_info("can't alloc alg %s\n", hash_alg_name);
                return PTR_ERR(alg);
        }
        ret = calc_hash(alg, data, datalen, digest);
        crypto_free_shash(alg);
        return ret;
    }


Code Example For Random Number Generator Usage
----------------------------------------------

::


    static int get_random_numbers(u8 *buf, unsigned int len)
    {
        struct crypto_rng *rng = NULL;
        char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
        int ret;

        if (!buf || !len) {
            pr_debug("No output buffer provided\n");
            return -EINVAL;
        }

        rng = crypto_alloc_rng(drbg, 0, 0);
        if (IS_ERR(rng)) {
            pr_debug("could not allocate RNG handle for %s\n", drbg);
            return PTR_ERR(rng);
        }

        ret = crypto_rng_get_bytes(rng, buf, len);
        if (ret < 0)
            pr_debug("generation of random numbers failed\n");
        else if (ret == 0)
            pr_debug("RNG returned no data");
        else
            pr_debug("RNG returned %d bytes of data\n", ret);

    out:
        crypto_free_rng(rng);
        return ret;
    }