Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
// SPDX-License-Identifier: GPL-2.0
/*
 * Resource Director Technology (RDT)
 *
 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
 *
 * Copyright (C) 2018 Intel Corporation
 *
 * Author: Reinette Chatre <reinette.chatre@intel.com>
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/debugfs.h>
#include <linux/kthread.h>
#include <linux/mman.h>
#include <linux/perf_event.h>
#include <linux/pm_qos.h>
#include <linux/slab.h>
#include <linux/uaccess.h>

#include <asm/cacheflush.h>
#include <asm/intel-family.h>
#include <asm/resctrl_sched.h>
#include <asm/perf_event.h>

#include "../../events/perf_event.h" /* For X86_CONFIG() */
#include "internal.h"

#define CREATE_TRACE_POINTS
#include "pseudo_lock_event.h"

/*
 * The bits needed to disable hardware prefetching varies based on the
 * platform. During initialization we will discover which bits to use.
 */
static u64 prefetch_disable_bits;

/*
 * Major number assigned to and shared by all devices exposing
 * pseudo-locked regions.
 */
static unsigned int pseudo_lock_major;
static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
static struct class *pseudo_lock_class;

/**
 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
 *
 * Capture the list of platforms that have been validated to support
 * pseudo-locking. This includes testing to ensure pseudo-locked regions
 * with low cache miss rates can be created under variety of load conditions
 * as well as that these pseudo-locked regions can maintain their low cache
 * miss rates under variety of load conditions for significant lengths of time.
 *
 * After a platform has been validated to support pseudo-locking its
 * hardware prefetch disable bits are included here as they are documented
 * in the SDM.
 *
 * When adding a platform here also add support for its cache events to
 * measure_cycles_perf_fn()
 *
 * Return:
 * If platform is supported, the bits to disable hardware prefetchers, 0
 * if platform is not supported.
 */
static u64 get_prefetch_disable_bits(void)
{
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
	    boot_cpu_data.x86 != 6)
		return 0;

	switch (boot_cpu_data.x86_model) {
	case INTEL_FAM6_BROADWELL_X:
		/*
		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
		 * as:
		 * 0    L2 Hardware Prefetcher Disable (R/W)
		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
		 * 2    DCU Hardware Prefetcher Disable (R/W)
		 * 3    DCU IP Prefetcher Disable (R/W)
		 * 63:4 Reserved
		 */
		return 0xF;
	case INTEL_FAM6_ATOM_GOLDMONT:
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
		/*
		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
		 * as:
		 * 0     L2 Hardware Prefetcher Disable (R/W)
		 * 1     Reserved
		 * 2     DCU Hardware Prefetcher Disable (R/W)
		 * 63:3  Reserved
		 */
		return 0x5;
	}

	return 0;
}

/**
 * pseudo_lock_minor_get - Obtain available minor number
 * @minor: Pointer to where new minor number will be stored
 *
 * A bitmask is used to track available minor numbers. Here the next free
 * minor number is marked as unavailable and returned.
 *
 * Return: 0 on success, <0 on failure.
 */
static int pseudo_lock_minor_get(unsigned int *minor)
{
	unsigned long first_bit;

	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);

	if (first_bit == MINORBITS)
		return -ENOSPC;

	__clear_bit(first_bit, &pseudo_lock_minor_avail);
	*minor = first_bit;

	return 0;
}

/**
 * pseudo_lock_minor_release - Return minor number to available
 * @minor: The minor number made available
 */
static void pseudo_lock_minor_release(unsigned int minor)
{
	__set_bit(minor, &pseudo_lock_minor_avail);
}

/**
 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
 * @minor: The minor number of the device representing pseudo-locked region
 *
 * When the character device is accessed we need to determine which
 * pseudo-locked region it belongs to. This is done by matching the minor
 * number of the device to the pseudo-locked region it belongs.
 *
 * Minor numbers are assigned at the time a pseudo-locked region is associated
 * with a cache instance.
 *
 * Return: On success return pointer to resource group owning the pseudo-locked
 *         region, NULL on failure.
 */
static struct rdtgroup *region_find_by_minor(unsigned int minor)
{
	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;

	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
			rdtgrp_match = rdtgrp;
			break;
		}
	}
	return rdtgrp_match;
}

/**
 * pseudo_lock_pm_req - A power management QoS request list entry
 * @list:	Entry within the @pm_reqs list for a pseudo-locked region
 * @req:	PM QoS request
 */
struct pseudo_lock_pm_req {
	struct list_head list;
	struct dev_pm_qos_request req;
};

static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
{
	struct pseudo_lock_pm_req *pm_req, *next;

	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
		dev_pm_qos_remove_request(&pm_req->req);
		list_del(&pm_req->list);
		kfree(pm_req);
	}
}

/**
 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
 *
 * To prevent the cache from being affected by power management entering
 * C6 has to be avoided. This is accomplished by requesting a latency
 * requirement lower than lowest C6 exit latency of all supported
 * platforms as found in the cpuidle state tables in the intel_idle driver.
 * At this time it is possible to do so with a single latency requirement
 * for all supported platforms.
 *
 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
 * the ACPI latencies need to be considered while keeping in mind that C2
 * may be set to map to deeper sleep states. In this case the latency
 * requirement needs to prevent entering C2 also.
 */
static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
{
	struct pseudo_lock_pm_req *pm_req;
	int cpu;
	int ret;

	for_each_cpu(cpu, &plr->d->cpu_mask) {
		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
		if (!pm_req) {
			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
			ret = -ENOMEM;
			goto out_err;
		}
		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
					     &pm_req->req,
					     DEV_PM_QOS_RESUME_LATENCY,
					     30);
		if (ret < 0) {
			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
					    cpu);
			kfree(pm_req);
			ret = -1;
			goto out_err;
		}
		list_add(&pm_req->list, &plr->pm_reqs);
	}

	return 0;

out_err:
	pseudo_lock_cstates_relax(plr);
	return ret;
}

/**
 * pseudo_lock_region_clear - Reset pseudo-lock region data
 * @plr: pseudo-lock region
 *
 * All content of the pseudo-locked region is reset - any memory allocated
 * freed.
 *
 * Return: void
 */
static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
{
	plr->size = 0;
	plr->line_size = 0;
	kfree(plr->kmem);
	plr->kmem = NULL;
	plr->r = NULL;
	if (plr->d)
		plr->d->plr = NULL;
	plr->d = NULL;
	plr->cbm = 0;
	plr->debugfs_dir = NULL;
}

/**
 * pseudo_lock_region_init - Initialize pseudo-lock region information
 * @plr: pseudo-lock region
 *
 * Called after user provided a schemata to be pseudo-locked. From the
 * schemata the &struct pseudo_lock_region is on entry already initialized
 * with the resource, domain, and capacity bitmask. Here the information
 * required for pseudo-locking is deduced from this data and &struct
 * pseudo_lock_region initialized further. This information includes:
 * - size in bytes of the region to be pseudo-locked
 * - cache line size to know the stride with which data needs to be accessed
 *   to be pseudo-locked
 * - a cpu associated with the cache instance on which the pseudo-locking
 *   flow can be executed
 *
 * Return: 0 on success, <0 on failure. Descriptive error will be written
 * to last_cmd_status buffer.
 */
static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
{
	struct cpu_cacheinfo *ci;
	int ret;
	int i;

	/* Pick the first cpu we find that is associated with the cache. */
	plr->cpu = cpumask_first(&plr->d->cpu_mask);

	if (!cpu_online(plr->cpu)) {
		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
				    plr->cpu);
		ret = -ENODEV;
		goto out_region;
	}

	ci = get_cpu_cacheinfo(plr->cpu);

	plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);

	for (i = 0; i < ci->num_leaves; i++) {
		if (ci->info_list[i].level == plr->r->cache_level) {
			plr->line_size = ci->info_list[i].coherency_line_size;
			return 0;
		}
	}

	ret = -1;
	rdt_last_cmd_puts("Unable to determine cache line size\n");
out_region:
	pseudo_lock_region_clear(plr);
	return ret;
}

/**
 * pseudo_lock_init - Initialize a pseudo-lock region
 * @rdtgrp: resource group to which new pseudo-locked region will belong
 *
 * A pseudo-locked region is associated with a resource group. When this
 * association is created the pseudo-locked region is initialized. The
 * details of the pseudo-locked region are not known at this time so only
 * allocation is done and association established.
 *
 * Return: 0 on success, <0 on failure
 */
static int pseudo_lock_init(struct rdtgroup *rdtgrp)
{
	struct pseudo_lock_region *plr;

	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
	if (!plr)
		return -ENOMEM;

	init_waitqueue_head(&plr->lock_thread_wq);
	INIT_LIST_HEAD(&plr->pm_reqs);
	rdtgrp->plr = plr;
	return 0;
}

/**
 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
 * @plr: pseudo-lock region
 *
 * Initialize the details required to set up the pseudo-locked region and
 * allocate the contiguous memory that will be pseudo-locked to the cache.
 *
 * Return: 0 on success, <0 on failure.  Descriptive error will be written
 * to last_cmd_status buffer.
 */
static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
{
	int ret;

	ret = pseudo_lock_region_init(plr);
	if (ret < 0)
		return ret;

	/*
	 * We do not yet support contiguous regions larger than
	 * KMALLOC_MAX_SIZE.
	 */
	if (plr->size > KMALLOC_MAX_SIZE) {
		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
		ret = -E2BIG;
		goto out_region;
	}

	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
	if (!plr->kmem) {
		rdt_last_cmd_puts("Unable to allocate memory\n");
		ret = -ENOMEM;
		goto out_region;
	}

	ret = 0;
	goto out;
out_region:
	pseudo_lock_region_clear(plr);
out:
	return ret;
}

/**
 * pseudo_lock_free - Free a pseudo-locked region
 * @rdtgrp: resource group to which pseudo-locked region belonged
 *
 * The pseudo-locked region's resources have already been released, or not
 * yet created at this point. Now it can be freed and disassociated from the
 * resource group.
 *
 * Return: void
 */
static void pseudo_lock_free(struct rdtgroup *rdtgrp)
{
	pseudo_lock_region_clear(rdtgrp->plr);
	kfree(rdtgrp->plr);
	rdtgrp->plr = NULL;
}

/**
 * pseudo_lock_fn - Load kernel memory into cache
 * @_rdtgrp: resource group to which pseudo-lock region belongs
 *
 * This is the core pseudo-locking flow.
 *
 * First we ensure that the kernel memory cannot be found in the cache.
 * Then, while taking care that there will be as little interference as
 * possible, the memory to be loaded is accessed while core is running
 * with class of service set to the bitmask of the pseudo-locked region.
 * After this is complete no future CAT allocations will be allowed to
 * overlap with this bitmask.
 *
 * Local register variables are utilized to ensure that the memory region
 * to be locked is the only memory access made during the critical locking
 * loop.
 *
 * Return: 0. Waiter on waitqueue will be woken on completion.
 */
static int pseudo_lock_fn(void *_rdtgrp)
{
	struct rdtgroup *rdtgrp = _rdtgrp;
	struct pseudo_lock_region *plr = rdtgrp->plr;
	u32 rmid_p, closid_p;
	unsigned long i;
#ifdef CONFIG_KASAN
	/*
	 * The registers used for local register variables are also used
	 * when KASAN is active. When KASAN is active we use a regular
	 * variable to ensure we always use a valid pointer, but the cost
	 * is that this variable will enter the cache through evicting the
	 * memory we are trying to lock into the cache. Thus expect lower
	 * pseudo-locking success rate when KASAN is active.
	 */
	unsigned int line_size;
	unsigned int size;
	void *mem_r;
#else
	register unsigned int line_size asm("esi");
	register unsigned int size asm("edi");
	register void *mem_r asm(_ASM_BX);
#endif /* CONFIG_KASAN */

	/*
	 * Make sure none of the allocated memory is cached. If it is we
	 * will get a cache hit in below loop from outside of pseudo-locked
	 * region.
	 * wbinvd (as opposed to clflush/clflushopt) is required to
	 * increase likelihood that allocated cache portion will be filled
	 * with associated memory.
	 */
	native_wbinvd();

	/*
	 * Always called with interrupts enabled. By disabling interrupts
	 * ensure that we will not be preempted during this critical section.
	 */
	local_irq_disable();

	/*
	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
	 * clobbering local register variables or affecting cache accesses.
	 *
	 * Disable the hardware prefetcher so that when the end of the memory
	 * being pseudo-locked is reached the hardware will not read beyond
	 * the buffer and evict pseudo-locked memory read earlier from the
	 * cache.
	 */
	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
	closid_p = this_cpu_read(pqr_state.cur_closid);
	rmid_p = this_cpu_read(pqr_state.cur_rmid);
	mem_r = plr->kmem;
	size = plr->size;
	line_size = plr->line_size;
	/*
	 * Critical section begin: start by writing the closid associated
	 * with the capacity bitmask of the cache region being
	 * pseudo-locked followed by reading of kernel memory to load it
	 * into the cache.
	 */
	__wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
	/*
	 * Cache was flushed earlier. Now access kernel memory to read it
	 * into cache region associated with just activated plr->closid.
	 * Loop over data twice:
	 * - In first loop the cache region is shared with the page walker
	 *   as it populates the paging structure caches (including TLB).
	 * - In the second loop the paging structure caches are used and
	 *   cache region is populated with the memory being referenced.
	 */
	for (i = 0; i < size; i += PAGE_SIZE) {
		/*
		 * Add a barrier to prevent speculative execution of this
		 * loop reading beyond the end of the buffer.
		 */
		rmb();
		asm volatile("mov (%0,%1,1), %%eax\n\t"
			:
			: "r" (mem_r), "r" (i)
			: "%eax", "memory");
	}
	for (i = 0; i < size; i += line_size) {
		/*
		 * Add a barrier to prevent speculative execution of this
		 * loop reading beyond the end of the buffer.
		 */
		rmb();
		asm volatile("mov (%0,%1,1), %%eax\n\t"
			:
			: "r" (mem_r), "r" (i)
			: "%eax", "memory");
	}
	/*
	 * Critical section end: restore closid with capacity bitmask that
	 * does not overlap with pseudo-locked region.
	 */
	__wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);

	/* Re-enable the hardware prefetcher(s) */
	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
	local_irq_enable();

	plr->thread_done = 1;
	wake_up_interruptible(&plr->lock_thread_wq);
	return 0;
}

/**
 * rdtgroup_monitor_in_progress - Test if monitoring in progress
 * @r: resource group being queried
 *
 * Return: 1 if monitor groups have been created for this resource
 * group, 0 otherwise.
 */
static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
{
	return !list_empty(&rdtgrp->mon.crdtgrp_list);
}

/**
 * rdtgroup_locksetup_user_restrict - Restrict user access to group
 * @rdtgrp: resource group needing access restricted
 *
 * A resource group used for cache pseudo-locking cannot have cpus or tasks
 * assigned to it. This is communicated to the user by restricting access
 * to all the files that can be used to make such changes.
 *
 * Permissions restored with rdtgroup_locksetup_user_restore()
 *
 * Return: 0 on success, <0 on failure. If a failure occurs during the
 * restriction of access an attempt will be made to restore permissions but
 * the state of the mode of these files will be uncertain when a failure
 * occurs.
 */
static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
{
	int ret;

	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
	if (ret)
		return ret;

	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
	if (ret)
		goto err_tasks;

	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
	if (ret)
		goto err_cpus;

	if (rdt_mon_capable) {
		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
		if (ret)
			goto err_cpus_list;
	}

	ret = 0;
	goto out;

err_cpus_list:
	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
err_cpus:
	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
err_tasks:
	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
out:
	return ret;
}

/**
 * rdtgroup_locksetup_user_restore - Restore user access to group
 * @rdtgrp: resource group needing access restored
 *
 * Restore all file access previously removed using
 * rdtgroup_locksetup_user_restrict()
 *
 * Return: 0 on success, <0 on failure.  If a failure occurs during the
 * restoration of access an attempt will be made to restrict permissions
 * again but the state of the mode of these files will be uncertain when
 * a failure occurs.
 */
static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
{
	int ret;

	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
	if (ret)
		return ret;

	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
	if (ret)
		goto err_tasks;

	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
	if (ret)
		goto err_cpus;

	if (rdt_mon_capable) {
		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
		if (ret)
			goto err_cpus_list;
	}

	ret = 0;
	goto out;

err_cpus_list:
	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
err_cpus:
	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
err_tasks:
	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
out:
	return ret;
}

/**
 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
 * @rdtgrp: resource group requested to enter locksetup mode
 *
 * A resource group enters locksetup mode to reflect that it would be used
 * to represent a pseudo-locked region and is in the process of being set
 * up to do so. A resource group used for a pseudo-locked region would
 * lose the closid associated with it so we cannot allow it to have any
 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
 * future. Monitoring of a pseudo-locked region is not allowed either.
 *
 * The above and more restrictions on a pseudo-locked region are checked
 * for and enforced before the resource group enters the locksetup mode.
 *
 * Returns: 0 if the resource group successfully entered locksetup mode, <0
 * on failure. On failure the last_cmd_status buffer is updated with text to
 * communicate details of failure to the user.
 */
int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
{
	int ret;

	/*
	 * The default resource group can neither be removed nor lose the
	 * default closid associated with it.
	 */
	if (rdtgrp == &rdtgroup_default) {
		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
		return -EINVAL;
	}

	/*
	 * Cache Pseudo-locking not supported when CDP is enabled.
	 *
	 * Some things to consider if you would like to enable this
	 * support (using L3 CDP as example):
	 * - When CDP is enabled two separate resources are exposed,
	 *   L3DATA and L3CODE, but they are actually on the same cache.
	 *   The implication for pseudo-locking is that if a
	 *   pseudo-locked region is created on a domain of one
	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
	 *   be created on that same domain of the other resource
	 *   (eg. L3DATA). This is because the creation of a
	 *   pseudo-locked region involves a call to wbinvd that will
	 *   affect all cache allocations on particular domain.
	 * - Considering the previous, it may be possible to only
	 *   expose one of the CDP resources to pseudo-locking and
	 *   hide the other. For example, we could consider to only
	 *   expose L3DATA and since the L3 cache is unified it is
	 *   still possible to place instructions there are execute it.
	 * - If only one region is exposed to pseudo-locking we should
	 *   still keep in mind that availability of a portion of cache
	 *   for pseudo-locking should take into account both resources.
	 *   Similarly, if a pseudo-locked region is created in one
	 *   resource, the portion of cache used by it should be made
	 *   unavailable to all future allocations from both resources.
	 */
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
	    rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
		rdt_last_cmd_puts("CDP enabled\n");
		return -EINVAL;
	}

	/*
	 * Not knowing the bits to disable prefetching implies that this
	 * platform does not support Cache Pseudo-Locking.
	 */
	prefetch_disable_bits = get_prefetch_disable_bits();
	if (prefetch_disable_bits == 0) {
		rdt_last_cmd_puts("Pseudo-locking not supported\n");
		return -EINVAL;
	}

	if (rdtgroup_monitor_in_progress(rdtgrp)) {
		rdt_last_cmd_puts("Monitoring in progress\n");
		return -EINVAL;
	}

	if (rdtgroup_tasks_assigned(rdtgrp)) {
		rdt_last_cmd_puts("Tasks assigned to resource group\n");
		return -EINVAL;
	}

	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
		rdt_last_cmd_puts("CPUs assigned to resource group\n");
		return -EINVAL;
	}

	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
		return -EIO;
	}

	ret = pseudo_lock_init(rdtgrp);
	if (ret) {
		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
		goto out_release;
	}

	/*
	 * If this system is capable of monitoring a rmid would have been
	 * allocated when the control group was created. This is not needed
	 * anymore when this group would be used for pseudo-locking. This
	 * is safe to call on platforms not capable of monitoring.
	 */
	free_rmid(rdtgrp->mon.rmid);

	ret = 0;
	goto out;

out_release:
	rdtgroup_locksetup_user_restore(rdtgrp);
out:
	return ret;
}

/**
 * rdtgroup_locksetup_exit - resource group exist locksetup mode
 * @rdtgrp: resource group
 *
 * When a resource group exits locksetup mode the earlier restrictions are
 * lifted.
 *
 * Return: 0 on success, <0 on failure
 */
int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
{
	int ret;

	if (rdt_mon_capable) {
		ret = alloc_rmid();
		if (ret < 0) {
			rdt_last_cmd_puts("Out of RMIDs\n");
			return ret;
		}
		rdtgrp->mon.rmid = ret;
	}

	ret = rdtgroup_locksetup_user_restore(rdtgrp);
	if (ret) {
		free_rmid(rdtgrp->mon.rmid);
		return ret;
	}

	pseudo_lock_free(rdtgrp);
	return 0;
}

/**
 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
 * @d: RDT domain
 * @cbm: CBM to test
 *
 * @d represents a cache instance and @cbm a capacity bitmask that is
 * considered for it. Determine if @cbm overlaps with any existing
 * pseudo-locked region on @d.
 *
 * @cbm is unsigned long, even if only 32 bits are used, to make the
 * bitmap functions work correctly.
 *
 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
 * otherwise.
 */
bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
{
	unsigned int cbm_len;
	unsigned long cbm_b;

	if (d->plr) {
		cbm_len = d->plr->r->cache.cbm_len;
		cbm_b = d->plr->cbm;
		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
			return true;
	}
	return false;
}

/**
 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
 * @d: RDT domain under test
 *
 * The setup of a pseudo-locked region affects all cache instances within
 * the hierarchy of the region. It is thus essential to know if any
 * pseudo-locked regions exist within a cache hierarchy to prevent any
 * attempts to create new pseudo-locked regions in the same hierarchy.
 *
 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
 *         if it is not possible to test due to memory allocation issue,
 *         false otherwise.
 */
bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
{
	cpumask_var_t cpu_with_psl;
	struct rdt_resource *r;
	struct rdt_domain *d_i;
	bool ret = false;

	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
		return true;

	/*
	 * First determine which cpus have pseudo-locked regions
	 * associated with them.
	 */
	for_each_alloc_enabled_rdt_resource(r) {
		list_for_each_entry(d_i, &r->domains, list) {
			if (d_i->plr)
				cpumask_or(cpu_with_psl, cpu_with_psl,
					   &d_i->cpu_mask);
		}
	}

	/*
	 * Next test if new pseudo-locked region would intersect with
	 * existing region.
	 */
	if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
		ret = true;

	free_cpumask_var(cpu_with_psl);
	return ret;
}

/**
 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
 * @_plr: pseudo-lock region to measure
 *
 * There is no deterministic way to test if a memory region is cached. One
 * way is to measure how long it takes to read the memory, the speed of
 * access is a good way to learn how close to the cpu the data was. Even
 * more, if the prefetcher is disabled and the memory is read at a stride
 * of half the cache line, then a cache miss will be easy to spot since the
 * read of the first half would be significantly slower than the read of
 * the second half.
 *
 * Return: 0. Waiter on waitqueue will be woken on completion.
 */
static int measure_cycles_lat_fn(void *_plr)
{
	struct pseudo_lock_region *plr = _plr;
	unsigned long i;
	u64 start, end;
	void *mem_r;

	local_irq_disable();
	/*
	 * Disable hardware prefetchers.
	 */
	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
	mem_r = READ_ONCE(plr->kmem);
	/*
	 * Dummy execute of the time measurement to load the needed
	 * instructions into the L1 instruction cache.
	 */
	start = rdtsc_ordered();
	for (i = 0; i < plr->size; i += 32) {
		start = rdtsc_ordered();
		asm volatile("mov (%0,%1,1), %%eax\n\t"
			     :
			     : "r" (mem_r), "r" (i)
			     : "%eax", "memory");
		end = rdtsc_ordered();
		trace_pseudo_lock_mem_latency((u32)(end - start));
	}
	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
	local_irq_enable();
	plr->thread_done = 1;
	wake_up_interruptible(&plr->lock_thread_wq);
	return 0;
}

/*
 * Create a perf_event_attr for the hit and miss perf events that will
 * be used during the performance measurement. A perf_event maintains
 * a pointer to its perf_event_attr so a unique attribute structure is
 * created for each perf_event.
 *
 * The actual configuration of the event is set right before use in order
 * to use the X86_CONFIG macro.
 */
static struct perf_event_attr perf_miss_attr = {
	.type		= PERF_TYPE_RAW,
	.size		= sizeof(struct perf_event_attr),
	.pinned		= 1,
	.disabled	= 0,
	.exclude_user	= 1,
};

static struct perf_event_attr perf_hit_attr = {
	.type		= PERF_TYPE_RAW,
	.size		= sizeof(struct perf_event_attr),
	.pinned		= 1,
	.disabled	= 0,
	.exclude_user	= 1,
};

struct residency_counts {
	u64 miss_before, hits_before;
	u64 miss_after,  hits_after;
};

static int measure_residency_fn(struct perf_event_attr *miss_attr,
				struct perf_event_attr *hit_attr,
				struct pseudo_lock_region *plr,
				struct residency_counts *counts)
{
	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
	struct perf_event *miss_event, *hit_event;
	int hit_pmcnum, miss_pmcnum;
	unsigned int line_size;
	unsigned int size;
	unsigned long i;
	void *mem_r;
	u64 tmp;

	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
						      NULL, NULL, NULL);
	if (IS_ERR(miss_event))
		goto out;

	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
						     NULL, NULL, NULL);
	if (IS_ERR(hit_event))
		goto out_miss;

	local_irq_disable();
	/*
	 * Check any possible error state of events used by performing
	 * one local read.
	 */
	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
		local_irq_enable();
		goto out_hit;
	}
	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
		local_irq_enable();
		goto out_hit;
	}

	/*
	 * Disable hardware prefetchers.
	 */
	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);

	/* Initialize rest of local variables */
	/*
	 * Performance event has been validated right before this with
	 * interrupts disabled - it is thus safe to read the counter index.
	 */
	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
	line_size = READ_ONCE(plr->line_size);
	mem_r = READ_ONCE(plr->kmem);
	size = READ_ONCE(plr->size);

	/*
	 * Read counter variables twice - first to load the instructions
	 * used in L1 cache, second to capture accurate value that does not
	 * include cache misses incurred because of instruction loads.
	 */
	rdpmcl(hit_pmcnum, hits_before);
	rdpmcl(miss_pmcnum, miss_before);
	/*
	 * From SDM: Performing back-to-back fast reads are not guaranteed
	 * to be monotonic.
	 * Use LFENCE to ensure all previous instructions are retired
	 * before proceeding.
	 */
	rmb();
	rdpmcl(hit_pmcnum, hits_before);
	rdpmcl(miss_pmcnum, miss_before);
	/*
	 * Use LFENCE to ensure all previous instructions are retired
	 * before proceeding.
	 */
	rmb();
	for (i = 0; i < size; i += line_size) {
		/*
		 * Add a barrier to prevent speculative execution of this
		 * loop reading beyond the end of the buffer.
		 */
		rmb();
		asm volatile("mov (%0,%1,1), %%eax\n\t"
			     :
			     : "r" (mem_r), "r" (i)
			     : "%eax", "memory");
	}
	/*
	 * Use LFENCE to ensure all previous instructions are retired
	 * before proceeding.
	 */
	rmb();
	rdpmcl(hit_pmcnum, hits_after);
	rdpmcl(miss_pmcnum, miss_after);
	/*
	 * Use LFENCE to ensure all previous instructions are retired
	 * before proceeding.
	 */
	rmb();
	/* Re-enable hardware prefetchers */
	wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
	local_irq_enable();
out_hit:
	perf_event_release_kernel(hit_event);
out_miss:
	perf_event_release_kernel(miss_event);
out:
	/*
	 * All counts will be zero on failure.
	 */
	counts->miss_before = miss_before;
	counts->hits_before = hits_before;
	counts->miss_after  = miss_after;
	counts->hits_after  = hits_after;
	return 0;
}

static int measure_l2_residency(void *_plr)
{
	struct pseudo_lock_region *plr = _plr;
	struct residency_counts counts = {0};

	/*
	 * Non-architectural event for the Goldmont Microarchitecture
	 * from Intel x86 Architecture Software Developer Manual (SDM):
	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
	 * Umask values:
	 *     L2_HIT   02H
	 *     L2_MISS  10H
	 */
	switch (boot_cpu_data.x86_model) {
	case INTEL_FAM6_ATOM_GOLDMONT:
	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
						   .umask = 0x10);
		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
						  .umask = 0x2);
		break;
	default:
		goto out;
	}

	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
	/*
	 * If a failure prevented the measurements from succeeding
	 * tracepoints will still be written and all counts will be zero.
	 */
	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
			     counts.miss_after - counts.miss_before);
out:
	plr->thread_done = 1;
	wake_up_interruptible(&plr->lock_thread_wq);
	return 0;
}

static int measure_l3_residency(void *_plr)
{
	struct pseudo_lock_region *plr = _plr;
	struct residency_counts counts = {0};

	/*
	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
	 * this platform the following events are used instead:
	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
	 *       REFERENCE 4FH
	 *       MISS      41H
	 */

	switch (boot_cpu_data.x86_model) {
	case INTEL_FAM6_BROADWELL_X:
		/* On BDW the hit event counts references, not hits */
		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
						  .umask = 0x4f);
		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
						   .umask = 0x41);
		break;
	default:
		goto out;
	}

	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
	/*
	 * If a failure prevented the measurements from succeeding
	 * tracepoints will still be written and all counts will be zero.
	 */

	counts.miss_after -= counts.miss_before;
	if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
		/*
		 * On BDW references and misses are counted, need to adjust.
		 * Sometimes the "hits" counter is a bit more than the
		 * references, for example, x references but x + 1 hits.
		 * To not report invalid hit values in this case we treat
		 * that as misses equal to references.
		 */
		/* First compute the number of cache references measured */
		counts.hits_after -= counts.hits_before;
		/* Next convert references to cache hits */
		counts.hits_after -= min(counts.miss_after, counts.hits_after);
	} else {
		counts.hits_after -= counts.hits_before;
	}

	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
out:
	plr->thread_done = 1;
	wake_up_interruptible(&plr->lock_thread_wq);
	return 0;
}

/**
 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
 *
 * The measurement of latency to access a pseudo-locked region should be
 * done from a cpu that is associated with that pseudo-locked region.
 * Determine which cpu is associated with this region and start a thread on
 * that cpu to perform the measurement, wait for that thread to complete.
 *
 * Return: 0 on success, <0 on failure
 */
static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
{
	struct pseudo_lock_region *plr = rdtgrp->plr;
	struct task_struct *thread;
	unsigned int cpu;
	int ret = -1;

	cpus_read_lock();
	mutex_lock(&rdtgroup_mutex);

	if (rdtgrp->flags & RDT_DELETED) {
		ret = -ENODEV;
		goto out;
	}

	if (!plr->d) {
		ret = -ENODEV;
		goto out;
	}

	plr->thread_done = 0;
	cpu = cpumask_first(&plr->d->cpu_mask);
	if (!cpu_online(cpu)) {
		ret = -ENODEV;
		goto out;
	}

	plr->cpu = cpu;

	if (sel == 1)
		thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
						cpu_to_node(cpu),
						"pseudo_lock_measure/%u",
						cpu);
	else if (sel == 2)
		thread = kthread_create_on_node(measure_l2_residency, plr,
						cpu_to_node(cpu),
						"pseudo_lock_measure/%u",
						cpu);
	else if (sel == 3)
		thread = kthread_create_on_node(measure_l3_residency, plr,
						cpu_to_node(cpu),
						"pseudo_lock_measure/%u",
						cpu);
	else
		goto out;

	if (IS_ERR(thread)) {
		ret = PTR_ERR(thread);
		goto out;
	}
	kthread_bind(thread, cpu);
	wake_up_process(thread);

	ret = wait_event_interruptible(plr->lock_thread_wq,
				       plr->thread_done == 1);
	if (ret < 0)
		goto out;

	ret = 0;

out:
	mutex_unlock(&rdtgroup_mutex);
	cpus_read_unlock();
	return ret;
}

static ssize_t pseudo_lock_measure_trigger(struct file *file,
					   const char __user *user_buf,
					   size_t count, loff_t *ppos)
{
	struct rdtgroup *rdtgrp = file->private_data;
	size_t buf_size;
	char buf[32];
	int ret;
	int sel;

	buf_size = min(count, (sizeof(buf) - 1));
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

	buf[buf_size] = '\0';
	ret = kstrtoint(buf, 10, &sel);
	if (ret == 0) {
		if (sel != 1 && sel != 2 && sel != 3)
			return -EINVAL;
		ret = debugfs_file_get(file->f_path.dentry);
		if (ret)
			return ret;
		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
		if (ret == 0)
			ret = count;
		debugfs_file_put(file->f_path.dentry);
	}

	return ret;
}

static const struct file_operations pseudo_measure_fops = {
	.write = pseudo_lock_measure_trigger,
	.open = simple_open,
	.llseek = default_llseek,
};

/**
 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
 * @rdtgrp: resource group to which pseudo-lock region belongs
 *
 * Called when a resource group in the pseudo-locksetup mode receives a
 * valid schemata that should be pseudo-locked. Since the resource group is
 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
 * allocated and initialized with the essential information. If a failure
 * occurs the resource group remains in the pseudo-locksetup mode with the
 * &struct pseudo_lock_region associated with it, but cleared from all
 * information and ready for the user to re-attempt pseudo-locking by
 * writing the schemata again.
 *
 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
 * on failure. Descriptive error will be written to last_cmd_status buffer.
 */
int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
{
	struct pseudo_lock_region *plr = rdtgrp->plr;
	struct task_struct *thread;
	unsigned int new_minor;
	struct device *dev;
	int ret;

	ret = pseudo_lock_region_alloc(plr);
	if (ret < 0)
		return ret;

	ret = pseudo_lock_cstates_constrain(plr);
	if (ret < 0) {
		ret = -EINVAL;
		goto out_region;
	}

	plr->thread_done = 0;

	thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
					cpu_to_node(plr->cpu),
					"pseudo_lock/%u", plr->cpu);
	if (IS_ERR(thread)) {
		ret = PTR_ERR(thread);
		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
		goto out_cstates;
	}

	kthread_bind(thread, plr->cpu);
	wake_up_process(thread);

	ret = wait_event_interruptible(plr->lock_thread_wq,
				       plr->thread_done == 1);
	if (ret < 0) {
		/*
		 * If the thread does not get on the CPU for whatever
		 * reason and the process which sets up the region is
		 * interrupted then this will leave the thread in runnable
		 * state and once it gets on the CPU it will derefence
		 * the cleared, but not freed, plr struct resulting in an
		 * empty pseudo-locking loop.
		 */
		rdt_last_cmd_puts("Locking thread interrupted\n");
		goto out_cstates;
	}

	ret = pseudo_lock_minor_get(&new_minor);
	if (ret < 0) {
		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
		goto out_cstates;
	}

	/*
	 * Unlock access but do not release the reference. The
	 * pseudo-locked region will still be here on return.
	 *
	 * The mutex has to be released temporarily to avoid a potential
	 * deadlock with the mm->mmap_sem semaphore which is obtained in
	 * the device_create() and debugfs_create_dir() callpath below
	 * as well as before the mmap() callback is called.
	 */
	mutex_unlock(&rdtgroup_mutex);

	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
		plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
						      debugfs_resctrl);
		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
			debugfs_create_file("pseudo_lock_measure", 0200,
					    plr->debugfs_dir, rdtgrp,
					    &pseudo_measure_fops);
	}

	dev = device_create(pseudo_lock_class, NULL,
			    MKDEV(pseudo_lock_major, new_minor),
			    rdtgrp, "%s", rdtgrp->kn->name);

	mutex_lock(&rdtgroup_mutex);

	if (IS_ERR(dev)) {
		ret = PTR_ERR(dev);
		rdt_last_cmd_printf("Failed to create character device: %d\n",
				    ret);
		goto out_debugfs;
	}

	/* We released the mutex - check if group was removed while we did so */
	if (rdtgrp->flags & RDT_DELETED) {
		ret = -ENODEV;
		goto out_device;
	}

	plr->minor = new_minor;

	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
	closid_free(rdtgrp->closid);
	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);

	ret = 0;
	goto out;

out_device:
	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
out_debugfs:
	debugfs_remove_recursive(plr->debugfs_dir);
	pseudo_lock_minor_release(new_minor);
out_cstates:
	pseudo_lock_cstates_relax(plr);
out_region:
	pseudo_lock_region_clear(plr);
out:
	return ret;
}

/**
 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
 * @rdtgrp: resource group to which the pseudo-locked region belongs
 *
 * The removal of a pseudo-locked region can be initiated when the resource
 * group is removed from user space via a "rmdir" from userspace or the
 * unmount of the resctrl filesystem. On removal the resource group does
 * not go back to pseudo-locksetup mode before it is removed, instead it is
 * removed directly. There is thus assymmetry with the creation where the
 * &struct pseudo_lock_region is removed here while it was not created in
 * rdtgroup_pseudo_lock_create().
 *
 * Return: void
 */
void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
{
	struct pseudo_lock_region *plr = rdtgrp->plr;

	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
		/*
		 * Default group cannot be a pseudo-locked region so we can
		 * free closid here.
		 */
		closid_free(rdtgrp->closid);
		goto free;
	}

	pseudo_lock_cstates_relax(plr);
	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
	device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
	pseudo_lock_minor_release(plr->minor);

free:
	pseudo_lock_free(rdtgrp);
}

static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
{
	struct rdtgroup *rdtgrp;

	mutex_lock(&rdtgroup_mutex);

	rdtgrp = region_find_by_minor(iminor(inode));
	if (!rdtgrp) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENODEV;
	}

	filp->private_data = rdtgrp;
	atomic_inc(&rdtgrp->waitcount);
	/* Perform a non-seekable open - llseek is not supported */
	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);

	mutex_unlock(&rdtgroup_mutex);

	return 0;
}

static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
{
	struct rdtgroup *rdtgrp;

	mutex_lock(&rdtgroup_mutex);
	rdtgrp = filp->private_data;
	WARN_ON(!rdtgrp);
	if (!rdtgrp) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENODEV;
	}
	filp->private_data = NULL;
	atomic_dec(&rdtgrp->waitcount);
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
{
	/* Not supported */
	return -EINVAL;
}

static const struct vm_operations_struct pseudo_mmap_ops = {
	.mremap = pseudo_lock_dev_mremap,
};

static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
{
	unsigned long vsize = vma->vm_end - vma->vm_start;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
	struct pseudo_lock_region *plr;
	struct rdtgroup *rdtgrp;
	unsigned long physical;
	unsigned long psize;

	mutex_lock(&rdtgroup_mutex);

	rdtgrp = filp->private_data;
	WARN_ON(!rdtgrp);
	if (!rdtgrp) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENODEV;
	}

	plr = rdtgrp->plr;

	if (!plr->d) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENODEV;
	}

	/*
	 * Task is required to run with affinity to the cpus associated
	 * with the pseudo-locked region. If this is not the case the task
	 * may be scheduled elsewhere and invalidate entries in the
	 * pseudo-locked region.
	 */
	if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
		mutex_unlock(&rdtgroup_mutex);
		return -EINVAL;
	}

	physical = __pa(plr->kmem) >> PAGE_SHIFT;
	psize = plr->size - off;

	if (off > plr->size) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENOSPC;
	}

	/*
	 * Ensure changes are carried directly to the memory being mapped,
	 * do not allow copy-on-write mapping.
	 */
	if (!(vma->vm_flags & VM_SHARED)) {
		mutex_unlock(&rdtgroup_mutex);
		return -EINVAL;
	}

	if (vsize > psize) {
		mutex_unlock(&rdtgroup_mutex);
		return -ENOSPC;
	}

	memset(plr->kmem + off, 0, vsize);

	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
			    vsize, vma->vm_page_prot)) {
		mutex_unlock(&rdtgroup_mutex);
		return -EAGAIN;
	}
	vma->vm_ops = &pseudo_mmap_ops;
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

static const struct file_operations pseudo_lock_dev_fops = {
	.owner =	THIS_MODULE,
	.llseek =	no_llseek,
	.read =		NULL,
	.write =	NULL,
	.open =		pseudo_lock_dev_open,
	.release =	pseudo_lock_dev_release,
	.mmap =		pseudo_lock_dev_mmap,
};

static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
{
	struct rdtgroup *rdtgrp;

	rdtgrp = dev_get_drvdata(dev);
	if (mode)
		*mode = 0600;
	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
}

int rdt_pseudo_lock_init(void)
{
	int ret;

	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
	if (ret < 0)
		return ret;

	pseudo_lock_major = ret;

	pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
	if (IS_ERR(pseudo_lock_class)) {
		ret = PTR_ERR(pseudo_lock_class);
		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
		return ret;
	}

	pseudo_lock_class->devnode = pseudo_lock_devnode;
	return 0;
}

void rdt_pseudo_lock_release(void)
{
	class_destroy(pseudo_lock_class);
	pseudo_lock_class = NULL;
	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
	pseudo_lock_major = 0;
}