Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// SPDX-License-Identifier: GPL-2.0
#include <linux/delay.h>

#include "nitrox_dev.h"
#include "nitrox_csr.h"

#define PLL_REF_CLK 50
#define MAX_CSR_RETRIES 10

/**
 * emu_enable_cores - Enable EMU cluster cores.
 * @ndev: NITROX device
 */
static void emu_enable_cores(struct nitrox_device *ndev)
{
	union emu_se_enable emu_se;
	union emu_ae_enable emu_ae;
	int i;

	/* AE cores 20 per cluster */
	emu_ae.value = 0;
	emu_ae.s.enable = 0xfffff;

	/* SE cores 16 per cluster */
	emu_se.value = 0;
	emu_se.s.enable = 0xffff;

	/* enable per cluster cores */
	for (i = 0; i < NR_CLUSTERS; i++) {
		nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
		nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
	}
}

/**
 * nitrox_config_emu_unit - configure EMU unit.
 * @ndev: NITROX device
 */
void nitrox_config_emu_unit(struct nitrox_device *ndev)
{
	union emu_wd_int_ena_w1s emu_wd_int;
	union emu_ge_int_ena_w1s emu_ge_int;
	u64 offset;
	int i;

	/* enable cores */
	emu_enable_cores(ndev);

	/* enable general error and watch dog interrupts */
	emu_ge_int.value = 0;
	emu_ge_int.s.se_ge = 0xffff;
	emu_ge_int.s.ae_ge = 0xfffff;
	emu_wd_int.value = 0;
	emu_wd_int.s.se_wd = 1;

	for (i = 0; i < NR_CLUSTERS; i++) {
		offset = EMU_WD_INT_ENA_W1SX(i);
		nitrox_write_csr(ndev, offset, emu_wd_int.value);
		offset = EMU_GE_INT_ENA_W1SX(i);
		nitrox_write_csr(ndev, offset, emu_ge_int.value);
	}
}

static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
{
	union nps_pkt_in_instr_ctl pkt_in_ctl;
	union nps_pkt_in_done_cnts pkt_in_cnts;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	/* step 1: disable the ring, clear enable bit */
	offset = NPS_PKT_IN_INSTR_CTLX(ring);
	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
	pkt_in_ctl.s.enb = 0;
	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);

	/* step 2: wait to clear [ENB] */
	usleep_range(100, 150);
	do {
		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
		if (!pkt_in_ctl.s.enb)
			break;
		udelay(50);
	} while (max_retries--);

	/* step 3: clear done counts */
	offset = NPS_PKT_IN_DONE_CNTSX(ring);
	pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
	nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
	usleep_range(50, 100);
}

void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
{
	union nps_pkt_in_instr_ctl pkt_in_ctl;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	/* 64-byte instruction size */
	offset = NPS_PKT_IN_INSTR_CTLX(ring);
	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
	pkt_in_ctl.s.is64b = 1;
	pkt_in_ctl.s.enb = 1;
	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);

	/* wait for set [ENB] */
	do {
		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
		if (pkt_in_ctl.s.enb)
			break;
		udelay(50);
	} while (max_retries--);
}

/**
 * nitrox_config_pkt_input_rings - configure Packet Input Rings
 * @ndev: NITROX device
 */
void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
{
	int i;

	for (i = 0; i < ndev->nr_queues; i++) {
		struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
		union nps_pkt_in_instr_rsize pkt_in_rsize;
		union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
		u64 offset;

		reset_pkt_input_ring(ndev, i);

		/**
		 * step 4:
		 * configure ring base address 16-byte aligned,
		 * size and interrupt threshold.
		 */
		offset = NPS_PKT_IN_INSTR_BADDRX(i);
		nitrox_write_csr(ndev, offset, cmdq->dma);

		/* configure ring size */
		offset = NPS_PKT_IN_INSTR_RSIZEX(i);
		pkt_in_rsize.value = 0;
		pkt_in_rsize.s.rsize = ndev->qlen;
		nitrox_write_csr(ndev, offset, pkt_in_rsize.value);

		/* set high threshold for pkt input ring interrupts */
		offset = NPS_PKT_IN_INT_LEVELSX(i);
		nitrox_write_csr(ndev, offset, 0xffffffff);

		/* step 5: clear off door bell counts */
		offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
		pkt_in_dbell.value = 0;
		pkt_in_dbell.s.dbell = 0xffffffff;
		nitrox_write_csr(ndev, offset, pkt_in_dbell.value);

		/* enable the ring */
		enable_pkt_input_ring(ndev, i);
	}
}

static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
	union nps_pkt_slc_ctl pkt_slc_ctl;
	union nps_pkt_slc_cnts pkt_slc_cnts;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	/* step 1: disable slc port */
	offset = NPS_PKT_SLC_CTLX(port);
	pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
	pkt_slc_ctl.s.enb = 0;
	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);

	/* step 2 */
	usleep_range(100, 150);
	/* wait to clear [ENB] */
	do {
		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
		if (!pkt_slc_ctl.s.enb)
			break;
		udelay(50);
	} while (max_retries--);

	/* step 3: clear slc counters */
	offset = NPS_PKT_SLC_CNTSX(port);
	pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
	nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
	usleep_range(50, 100);
}

void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
	union nps_pkt_slc_ctl pkt_slc_ctl;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	offset = NPS_PKT_SLC_CTLX(port);
	pkt_slc_ctl.value = 0;
	pkt_slc_ctl.s.enb = 1;
	/*
	 * 8 trailing 0x00 bytes will be added
	 * to the end of the outgoing packet.
	 */
	pkt_slc_ctl.s.z = 1;
	/* enable response header */
	pkt_slc_ctl.s.rh = 1;
	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);

	/* wait to set [ENB] */
	do {
		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
		if (pkt_slc_ctl.s.enb)
			break;
		udelay(50);
	} while (max_retries--);
}

static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
{
	union nps_pkt_slc_int_levels pkt_slc_int;
	u64 offset;

	reset_pkt_solicit_port(ndev, port);

	/* step 4: configure interrupt levels */
	offset = NPS_PKT_SLC_INT_LEVELSX(port);
	pkt_slc_int.value = 0;
	/* time interrupt threshold */
	pkt_slc_int.s.timet = 0x3fffff;
	nitrox_write_csr(ndev, offset, pkt_slc_int.value);

	/* enable the solicit port */
	enable_pkt_solicit_port(ndev, port);
}

void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
{
	int i;

	for (i = 0; i < ndev->nr_queues; i++)
		config_pkt_solicit_port(ndev, i);
}

/**
 * enable_nps_core_interrupts - enable NPS core interrutps
 * @ndev: NITROX device.
 *
 * This includes NPS core interrupts.
 */
static void enable_nps_core_interrupts(struct nitrox_device *ndev)
{
	union nps_core_int_ena_w1s core_int;

	/* NPS core interrutps */
	core_int.value = 0;
	core_int.s.host_wr_err = 1;
	core_int.s.host_wr_timeout = 1;
	core_int.s.exec_wr_timeout = 1;
	core_int.s.npco_dma_malform = 1;
	core_int.s.host_nps_wr_err = 1;
	nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
}

void nitrox_config_nps_core_unit(struct nitrox_device *ndev)
{
	union nps_core_gbl_vfcfg core_gbl_vfcfg;

	/* endian control information */
	nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);

	/* disable ILK interface */
	core_gbl_vfcfg.value = 0;
	core_gbl_vfcfg.s.ilk_disable = 1;
	core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);

	/* enable nps core interrupts */
	enable_nps_core_interrupts(ndev);
}

/**
 * enable_nps_pkt_interrupts - enable NPS packet interrutps
 * @ndev: NITROX device.
 *
 * This includes NPS packet in and slc interrupts.
 */
static void enable_nps_pkt_interrupts(struct nitrox_device *ndev)
{
	/* NPS packet in ring interrupts */
	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
	/* NPS packet slc port interrupts */
	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
}

void nitrox_config_nps_pkt_unit(struct nitrox_device *ndev)
{
	/* config input and solicit ports */
	nitrox_config_pkt_input_rings(ndev);
	nitrox_config_pkt_solicit_ports(ndev);

	/* enable nps packet interrupts */
	enable_nps_pkt_interrupts(ndev);
}

static void reset_aqm_ring(struct nitrox_device *ndev, int ring)
{
	union aqmq_en aqmq_en_reg;
	union aqmq_activity_stat activity_stat;
	union aqmq_cmp_cnt cmp_cnt;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	/* step 1: disable the queue */
	offset = AQMQ_ENX(ring);
	aqmq_en_reg.value = 0;
	aqmq_en_reg.queue_enable = 0;
	nitrox_write_csr(ndev, offset, aqmq_en_reg.value);

	/* step 2: wait for AQMQ_ACTIVITY_STATX[QUEUE_ACTIVE] to clear */
	usleep_range(100, 150);
	offset = AQMQ_ACTIVITY_STATX(ring);
	do {
		activity_stat.value = nitrox_read_csr(ndev, offset);
		if (!activity_stat.queue_active)
			break;
		udelay(50);
	} while (max_retries--);

	/* step 3: clear commands completed count */
	offset = AQMQ_CMP_CNTX(ring);
	cmp_cnt.value = nitrox_read_csr(ndev, offset);
	nitrox_write_csr(ndev, offset, cmp_cnt.value);
	usleep_range(50, 100);
}

void enable_aqm_ring(struct nitrox_device *ndev, int ring)
{
	union aqmq_en aqmq_en_reg;
	u64 offset;

	offset = AQMQ_ENX(ring);
	aqmq_en_reg.value = 0;
	aqmq_en_reg.queue_enable = 1;
	nitrox_write_csr(ndev, offset, aqmq_en_reg.value);
	usleep_range(50, 100);
}

void nitrox_config_aqm_rings(struct nitrox_device *ndev)
{
	int ring;

	for (ring = 0; ring < ndev->nr_queues; ring++) {
		struct nitrox_cmdq *cmdq = ndev->aqmq[ring];
		union aqmq_drbl drbl;
		union aqmq_qsz qsize;
		union aqmq_cmp_thr cmp_thr;
		u64 offset;

		/* steps 1 - 3 */
		reset_aqm_ring(ndev, ring);

		/* step 4: clear doorbell count of ring */
		offset = AQMQ_DRBLX(ring);
		drbl.value = 0;
		drbl.dbell_count = 0xFFFFFFFF;
		nitrox_write_csr(ndev, offset, drbl.value);

		/* step 5: configure host ring details */

		/* set host address for next command of ring */
		offset = AQMQ_NXT_CMDX(ring);
		nitrox_write_csr(ndev, offset, 0ULL);

		/* set host address of ring base */
		offset = AQMQ_BADRX(ring);
		nitrox_write_csr(ndev, offset, cmdq->dma);

		/* set ring size */
		offset = AQMQ_QSZX(ring);
		qsize.value = 0;
		qsize.host_queue_size = ndev->qlen;
		nitrox_write_csr(ndev, offset, qsize.value);

		/* set command completion threshold */
		offset = AQMQ_CMP_THRX(ring);
		cmp_thr.value = 0;
		cmp_thr.commands_completed_threshold = 1;
		nitrox_write_csr(ndev, offset, cmp_thr.value);

		/* step 6: enable the queue */
		enable_aqm_ring(ndev, ring);
	}
}

static void enable_aqm_interrupts(struct nitrox_device *ndev)
{
	/* clear interrupt enable bits */
	nitrox_write_csr(ndev, AQM_DBELL_OVF_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_DBELL_OVF_HI_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_DMA_RD_ERR_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_DMA_RD_ERR_HI_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_EXEC_NA_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_EXEC_NA_HI_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_EXEC_ERR_LO_ENA_W1S, (~0ULL));
	nitrox_write_csr(ndev, AQM_EXEC_ERR_HI_ENA_W1S, (~0ULL));
}

void nitrox_config_aqm_unit(struct nitrox_device *ndev)
{
	/* config aqm command queues */
	nitrox_config_aqm_rings(ndev);

	/* enable aqm interrupts */
	enable_aqm_interrupts(ndev);
}

void nitrox_config_pom_unit(struct nitrox_device *ndev)
{
	union pom_int_ena_w1s pom_int;
	int i;

	/* enable pom interrupts */
	pom_int.value = 0;
	pom_int.s.illegal_dport = 1;
	nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);

	/* enable perf counters */
	for (i = 0; i < ndev->hw.se_cores; i++)
		nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
}

/**
 * nitrox_config_rand_unit - enable NITROX random number unit
 * @ndev: NITROX device
 */
void nitrox_config_rand_unit(struct nitrox_device *ndev)
{
	union efl_rnm_ctl_status efl_rnm_ctl;
	u64 offset;

	offset = EFL_RNM_CTL_STATUS;
	efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
	efl_rnm_ctl.s.ent_en = 1;
	efl_rnm_ctl.s.rng_en = 1;
	nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
}

void nitrox_config_efl_unit(struct nitrox_device *ndev)
{
	int i;

	for (i = 0; i < NR_CLUSTERS; i++) {
		union efl_core_int_ena_w1s efl_core_int;
		u64 offset;

		/* EFL core interrupts */
		offset = EFL_CORE_INT_ENA_W1SX(i);
		efl_core_int.value = 0;
		efl_core_int.s.len_ovr = 1;
		efl_core_int.s.d_left = 1;
		efl_core_int.s.epci_decode_err = 1;
		nitrox_write_csr(ndev, offset, efl_core_int.value);

		offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
		nitrox_write_csr(ndev, offset, (~0ULL));
		offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
		nitrox_write_csr(ndev, offset, (~0ULL));
	}
}

void nitrox_config_bmi_unit(struct nitrox_device *ndev)
{
	union bmi_ctl bmi_ctl;
	union bmi_int_ena_w1s bmi_int_ena;
	u64 offset;

	/* no threshold limits for PCIe */
	offset = BMI_CTL;
	bmi_ctl.value = nitrox_read_csr(ndev, offset);
	bmi_ctl.s.max_pkt_len = 0xff;
	bmi_ctl.s.nps_free_thrsh = 0xff;
	bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
	nitrox_write_csr(ndev, offset, bmi_ctl.value);

	/* enable interrupts */
	offset = BMI_INT_ENA_W1S;
	bmi_int_ena.value = 0;
	bmi_int_ena.s.max_len_err_nps = 1;
	bmi_int_ena.s.pkt_rcv_err_nps = 1;
	bmi_int_ena.s.fpf_undrrn = 1;
	nitrox_write_csr(ndev, offset, bmi_int_ena.value);
}

void nitrox_config_bmo_unit(struct nitrox_device *ndev)
{
	union bmo_ctl2 bmo_ctl2;
	u64 offset;

	/* no threshold limits for PCIe */
	offset = BMO_CTL2;
	bmo_ctl2.value = nitrox_read_csr(ndev, offset);
	bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
	nitrox_write_csr(ndev, offset, bmo_ctl2.value);
}

void invalidate_lbc(struct nitrox_device *ndev)
{
	union lbc_inval_ctl lbc_ctl;
	union lbc_inval_status lbc_stat;
	int max_retries = MAX_CSR_RETRIES;
	u64 offset;

	/* invalidate LBC */
	offset = LBC_INVAL_CTL;
	lbc_ctl.value = nitrox_read_csr(ndev, offset);
	lbc_ctl.s.cam_inval_start = 1;
	nitrox_write_csr(ndev, offset, lbc_ctl.value);

	offset = LBC_INVAL_STATUS;
	do {
		lbc_stat.value = nitrox_read_csr(ndev, offset);
		if (lbc_stat.s.done)
			break;
		udelay(50);
	} while (max_retries--);
}

void nitrox_config_lbc_unit(struct nitrox_device *ndev)
{
	union lbc_int_ena_w1s lbc_int_ena;
	u64 offset;

	invalidate_lbc(ndev);

	/* enable interrupts */
	offset = LBC_INT_ENA_W1S;
	lbc_int_ena.value = 0;
	lbc_int_ena.s.dma_rd_err = 1;
	lbc_int_ena.s.over_fetch_err = 1;
	lbc_int_ena.s.cam_inval_abort = 1;
	lbc_int_ena.s.cam_hard_err = 1;
	nitrox_write_csr(ndev, offset, lbc_int_ena.value);

	offset = LBC_PLM_VF1_64_INT_ENA_W1S;
	nitrox_write_csr(ndev, offset, (~0ULL));
	offset = LBC_PLM_VF65_128_INT_ENA_W1S;
	nitrox_write_csr(ndev, offset, (~0ULL));

	offset = LBC_ELM_VF1_64_INT_ENA_W1S;
	nitrox_write_csr(ndev, offset, (~0ULL));
	offset = LBC_ELM_VF65_128_INT_ENA_W1S;
	nitrox_write_csr(ndev, offset, (~0ULL));
}

void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
{
	union nps_core_gbl_vfcfg vfcfg;

	vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
	vfcfg.s.cfg = mode & 0x7;

	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
}

static const char *get_core_option(u8 se_cores, u8 ae_cores)
{
	const char *option = "";

	if (ae_cores == AE_MAX_CORES) {
		switch (se_cores) {
		case SE_MAX_CORES:
			option = "60";
			break;
		case 40:
			option = "60s";
			break;
		}
	} else if (ae_cores == (AE_MAX_CORES / 2)) {
		option = "30";
	} else {
		option = "60i";
	}

	return option;
}

static const char *get_feature_option(u8 zip_cores, int core_freq)
{
	if (zip_cores == 0)
		return "";
	else if (zip_cores < ZIP_MAX_CORES)
		return "-C15";

	if (core_freq >= 850)
		return "-C45";
	else if (core_freq >= 750)
		return "-C35";
	else if (core_freq >= 550)
		return "-C25";

	return "";
}

void nitrox_get_hwinfo(struct nitrox_device *ndev)
{
	union emu_fuse_map emu_fuse;
	union rst_boot rst_boot;
	union fus_dat1 fus_dat1;
	unsigned char name[IFNAMSIZ * 2] = {};
	int i, dead_cores;
	u64 offset;

	/* get core frequency */
	offset = RST_BOOT;
	rst_boot.value = nitrox_read_csr(ndev, offset);
	ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;

	for (i = 0; i < NR_CLUSTERS; i++) {
		offset = EMU_FUSE_MAPX(i);
		emu_fuse.value = nitrox_read_csr(ndev, offset);
		if (emu_fuse.s.valid) {
			dead_cores = hweight32(emu_fuse.s.ae_fuse);
			ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
			dead_cores = hweight16(emu_fuse.s.se_fuse);
			ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
		}
	}
	/* find zip hardware availability */
	offset = FUS_DAT1;
	fus_dat1.value = nitrox_read_csr(ndev, offset);
	if (!fus_dat1.nozip) {
		dead_cores = hweight8(fus_dat1.zip_info);
		ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
	}

	/* determine the partname
	 * CNN55<core option>-<freq><pincount>-<feature option>-<rev>
	 */
	snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
		 get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
		 ndev->hw.freq,
		 get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
		 ndev->hw.revision_id);

	/* copy partname */
	strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
}

void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
{
	u64 value = ~0ULL;
	u64 reg_addr;

	/* Mailbox interrupt low enable set register */
	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
	nitrox_write_csr(ndev, reg_addr, value);

	/* Mailbox interrupt high enable set register */
	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
	nitrox_write_csr(ndev, reg_addr, value);
}

void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
{
	u64 value = ~0ULL;
	u64 reg_addr;

	/* Mailbox interrupt low enable clear register */
	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
	nitrox_write_csr(ndev, reg_addr, value);

	/* Mailbox interrupt high enable clear register */
	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
	nitrox_write_csr(ndev, reg_addr, value);
}