// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include <linux/circ_buf.h>
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_lrc_reg.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_trace.h"
enum {
GUC_PREEMPT_NONE = 0,
GUC_PREEMPT_INPROGRESS,
GUC_PREEMPT_FINISHED,
};
#define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8
#define GUC_PREEMPT_BREADCRUMB_BYTES \
(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
/**
* DOC: GuC-based command submission
*
* GuC client:
* A intel_guc_client refers to a submission path through GuC. Currently, there
* is only one client, which is charged with all submissions to the GuC. This
* struct is the owner of a doorbell, a process descriptor and a workqueue (all
* of them inside a single gem object that contains all required pages for these
* elements).
*
* GuC stage descriptor:
* During initialization, the driver allocates a static pool of 1024 such
* descriptors, and shares them with the GuC.
* Currently, there exists a 1:1 mapping between a intel_guc_client and a
* guc_stage_desc (via the client's stage_id), so effectively only one
* gets used. This stage descriptor lets the GuC know about the doorbell,
* workqueue and process descriptor. Theoretically, it also lets the GuC
* know about our HW contexts (context ID, etc...), but we actually
* employ a kind of submission where the GuC uses the LRCA sent via the work
* item instead (the single guc_stage_desc associated to execbuf client
* contains information about the default kernel context only, but this is
* essentially unused). This is called a "proxy" submission.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
* See intel_guc_send()
*
* Doorbells:
* Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
* mapped into process space.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_add_request()
*
*/
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static inline bool is_high_priority(struct intel_guc_client *client)
{
return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
client->priority == GUC_CLIENT_PRIORITY_HIGH);
}
static int reserve_doorbell(struct intel_guc_client *client)
{
unsigned long offset;
unsigned long end;
u16 id;
GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
/*
* The bitmap tracks which doorbell registers are currently in use.
* It is split into two halves; the first half is used for normal
* priority contexts, the second half for high-priority ones.
*/
offset = 0;
end = GUC_NUM_DOORBELLS / 2;
if (is_high_priority(client)) {
offset = end;
end += offset;
}
id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
if (id == end)
return -ENOSPC;
__set_bit(id, client->guc->doorbell_bitmap);
client->doorbell_id = id;
DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
client->stage_id, yesno(is_high_priority(client)),
id);
return 0;
}
static bool has_doorbell(struct intel_guc_client *client)
{
if (client->doorbell_id == GUC_DOORBELL_INVALID)
return false;
return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}
static void unreserve_doorbell(struct intel_guc_client *client)
{
GEM_BUG_ON(!has_doorbell(client));
__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
client->doorbell_id = GUC_DOORBELL_INVALID;
}
/*
* Tell the GuC to allocate or deallocate a specific doorbell
*/
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
{
u32 action[] = {
INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
stage_id
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
{
u32 action[] = {
INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
stage_id
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
{
struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
return &base[client->stage_id];
}
/*
* Initialise, update, or clear doorbell data shared with the GuC
*
* These functions modify shared data and so need access to the mapped
* client object which contains the page being used for the doorbell
*/
static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
{
struct guc_stage_desc *desc;
/* Update the GuC's idea of the doorbell ID */
desc = __get_stage_desc(client);
desc->db_id = new_id;
}
static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
{
return client->vaddr + client->doorbell_offset;
}
static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
{
struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
}
static void __init_doorbell(struct intel_guc_client *client)
{
struct guc_doorbell_info *doorbell;
doorbell = __get_doorbell(client);
doorbell->db_status = GUC_DOORBELL_ENABLED;
doorbell->cookie = 0;
}
static void __fini_doorbell(struct intel_guc_client *client)
{
struct guc_doorbell_info *doorbell;
u16 db_id = client->doorbell_id;
doorbell = __get_doorbell(client);
doorbell->db_status = GUC_DOORBELL_DISABLED;
/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
* to go to zero after updating db_status before we call the GuC to
* release the doorbell
*/
if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
WARN_ONCE(true, "Doorbell never became invalid after disable\n");
}
static int create_doorbell(struct intel_guc_client *client)
{
int ret;
if (WARN_ON(!has_doorbell(client)))
return -ENODEV; /* internal setup error, should never happen */
__update_doorbell_desc(client, client->doorbell_id);
__init_doorbell(client);
ret = __guc_allocate_doorbell(client->guc, client->stage_id);
if (ret) {
__fini_doorbell(client);
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
client->stage_id, ret);
return ret;
}
return 0;
}
static int destroy_doorbell(struct intel_guc_client *client)
{
int ret;
GEM_BUG_ON(!has_doorbell(client));
__fini_doorbell(client);
ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
if (ret)
DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
client->stage_id, ret);
__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
return ret;
}
static unsigned long __select_cacheline(struct intel_guc *guc)
{
unsigned long offset;
/* Doorbell uses a single cache line within a page */
offset = offset_in_page(guc->db_cacheline);
/* Moving to next cache line to reduce contention */
guc->db_cacheline += cache_line_size();
DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
offset, guc->db_cacheline, cache_line_size());
return offset;
}
static inline struct guc_process_desc *
__get_process_desc(struct intel_guc_client *client)
{
return client->vaddr + client->proc_desc_offset;
}
/*
* Initialise the process descriptor shared with the GuC firmware.
*/
static void guc_proc_desc_init(struct intel_guc_client *client)
{
struct guc_process_desc *desc;
desc = memset(__get_process_desc(client), 0, sizeof(*desc));
/*
* XXX: pDoorbell and WQVBaseAddress are pointers in process address
* space for ring3 clients (set them as in mmap_ioctl) or kernel
* space for kernel clients (map on demand instead? May make debug
* easier to have it mapped).
*/
desc->wq_base_addr = 0;
desc->db_base_addr = 0;
desc->stage_id = client->stage_id;
desc->wq_size_bytes = GUC_WQ_SIZE;
desc->wq_status = WQ_STATUS_ACTIVE;
desc->priority = client->priority;
}
static void guc_proc_desc_fini(struct intel_guc_client *client)
{
struct guc_process_desc *desc;
desc = __get_process_desc(client);
memset(desc, 0, sizeof(*desc));
}
static int guc_stage_desc_pool_create(struct intel_guc *guc)
{
struct i915_vma *vma;
void *vaddr;
vma = intel_guc_allocate_vma(guc,
PAGE_ALIGN(sizeof(struct guc_stage_desc) *
GUC_MAX_STAGE_DESCRIPTORS));
if (IS_ERR(vma))
return PTR_ERR(vma);
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
i915_vma_unpin_and_release(&vma, 0);
return PTR_ERR(vaddr);
}
guc->stage_desc_pool = vma;
guc->stage_desc_pool_vaddr = vaddr;
ida_init(&guc->stage_ids);
return 0;
}
static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
{
ida_destroy(&guc->stage_ids);
i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
}
/*
* Initialise/clear the stage descriptor shared with the GuC firmware.
*
* This descriptor tells the GuC where (in GGTT space) to find the important
* data structures relating to this client (doorbell, process descriptor,
* write queue, etc).
*/
static void guc_stage_desc_init(struct intel_guc_client *client)
{
struct intel_guc *guc = client->guc;
struct guc_stage_desc *desc;
u32 gfx_addr;
desc = __get_stage_desc(client);
memset(desc, 0, sizeof(*desc));
desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
GUC_STAGE_DESC_ATTR_KERNEL;
if (is_high_priority(client))
desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
desc->stage_id = client->stage_id;
desc->priority = client->priority;
desc->db_id = client->doorbell_id;
/*
* The doorbell, process descriptor, and workqueue are all parts
* of the client object, which the GuC will reference via the GGTT
*/
gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
client->doorbell_offset;
desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
desc->process_desc = gfx_addr + client->proc_desc_offset;
desc->wq_addr = gfx_addr + GUC_DB_SIZE;
desc->wq_size = GUC_WQ_SIZE;
desc->desc_private = ptr_to_u64(client);
}
static void guc_stage_desc_fini(struct intel_guc_client *client)
{
struct guc_stage_desc *desc;
desc = __get_stage_desc(client);
memset(desc, 0, sizeof(*desc));
}
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct intel_guc_client *client,
u32 target_engine, u32 context_desc,
u32 ring_tail, u32 fence_id)
{
/* wqi_len is in DWords, and does not include the one-word header */
const size_t wqi_size = sizeof(struct guc_wq_item);
const u32 wqi_len = wqi_size / sizeof(u32) - 1;
struct guc_process_desc *desc = __get_process_desc(client);
struct guc_wq_item *wqi;
u32 wq_off;
lockdep_assert_held(&client->wq_lock);
/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
* should not have the case where structure wqi is across page, neither
* wrapped to the beginning. This simplifies the implementation below.
*
* XXX: if not the case, we need save data to a temp wqi and copy it to
* workqueue buffer dw by dw.
*/
BUILD_BUG_ON(wqi_size != 16);
/* We expect the WQ to be active if we're appending items to it */
GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
/* Free space is guaranteed. */
wq_off = READ_ONCE(desc->tail);
GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
GUC_WQ_SIZE) < wqi_size);
GEM_BUG_ON(wq_off & (wqi_size - 1));
/* WQ starts from the page after doorbell / process_desc */
wqi = client->vaddr + wq_off + GUC_DB_SIZE;
if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
} else {
/* Now fill in the 4-word work queue item */
wqi->header = WQ_TYPE_INORDER |
(wqi_len << WQ_LEN_SHIFT) |
(target_engine << WQ_TARGET_SHIFT) |
WQ_NO_WCFLUSH_WAIT;
wqi->context_desc = context_desc;
wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
wqi->fence_id = fence_id;
}
/* Make the update visible to GuC */
WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
}
static void guc_ring_doorbell(struct intel_guc_client *client)
{
struct guc_doorbell_info *db;
u32 cookie;
lockdep_assert_held(&client->wq_lock);
/* pointer of current doorbell cacheline */
db = __get_doorbell(client);
/*
* We're not expecting the doorbell cookie to change behind our back,
* we also need to treat 0 as a reserved value.
*/
cookie = READ_ONCE(db->cookie);
WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
/* XXX: doorbell was lost and need to acquire it again */
GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
}
static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
struct intel_guc_client *client = guc->execbuf_client;
struct intel_engine_cs *engine = rq->engine;
u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
guc_wq_item_append(client, engine->guc_id, ctx_desc,
ring_tail, rq->fence.seqno);
guc_ring_doorbell(client);
}
/*
* When we're doing submissions using regular execlists backend, writing to
* ELSP from CPU side is enough to make sure that writes to ringbuffer pages
* pinned in mappable aperture portion of GGTT are visible to command streamer.
* Writes done by GuC on our behalf are not guaranteeing such ordering,
* therefore, to ensure the flush, we're issuing a POSTING READ.
*/
static void flush_ggtt_writes(struct i915_vma *vma)
{
struct drm_i915_private *i915 = vma->vm->i915;
if (i915_vma_is_map_and_fenceable(vma))
intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
}
static void guc_submit(struct intel_engine_cs *engine,
struct i915_request **out,
struct i915_request **end)
{
struct intel_guc *guc = &engine->gt->uc.guc;
struct intel_guc_client *client = guc->execbuf_client;
spin_lock(&client->wq_lock);
do {
struct i915_request *rq = *out++;
flush_ggtt_writes(rq->ring->vma);
guc_add_request(guc, rq);
} while (out != end);
spin_unlock(&client->wq_lock);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority | __NO_PREEMPTION;
}
static struct i915_request *schedule_in(struct i915_request *rq, int idx)
{
trace_i915_request_in(rq, idx);
/*
* Currently we are not tracking the rq->context being inflight
* (ce->inflight = rq->engine). It is only used by the execlists
* backend at the moment, a similar counting strategy would be
* required if we generalise the inflight tracking.
*/
intel_gt_pm_get(rq->engine->gt);
return i915_request_get(rq);
}
static void schedule_out(struct i915_request *rq)
{
trace_i915_request_out(rq);
intel_gt_pm_put(rq->engine->gt);
i915_request_put(rq);
}
static void __guc_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **first = execlists->inflight;
struct i915_request ** const last_port = first + execlists->port_mask;
struct i915_request *last = first[0];
struct i915_request **port;
bool submit = false;
struct rb_node *rb;
lockdep_assert_held(&engine->active.lock);
if (last) {
if (*++first)
return;
last = NULL;
}
/*
* We write directly into the execlists->inflight queue and don't use
* the execlists->pending queue, as we don't have a distinct switch
* event.
*/
port = first;
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
if (last && rq->hw_context != last->hw_context) {
if (port == last_port)
goto done;
*port = schedule_in(last,
port - execlists->inflight);
port++;
}
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
submit = true;
last = rq;
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
execlists->queue_priority_hint =
rb ? to_priolist(rb)->priority : INT_MIN;
if (submit) {
*port = schedule_in(last, port - execlists->inflight);
*++port = NULL;
guc_submit(engine, first, port);
}
execlists->active = execlists->inflight;
}
static void guc_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **port, *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
for (port = execlists->inflight; (rq = *port); port++) {
if (!i915_request_completed(rq))
break;
schedule_out(rq);
}
if (port != execlists->inflight) {
int idx = port - execlists->inflight;
int rem = ARRAY_SIZE(execlists->inflight) - idx;
memmove(execlists->inflight, port, rem * sizeof(*port));
}
__guc_dequeue(engine);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
GEM_TRACE("%s\n", engine->name);
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->init_hw() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
}
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct i915_request * const *port, *rq;
/* Note we are only using the inflight and not the pending queue */
for (port = execlists->active; (rq = *port); port++)
schedule_out(rq);
execlists->active =
memset(execlists->inflight, 0, sizeof(execlists->inflight));
}
static void guc_reset(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq;
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
cancel_port_requests(execlists);
/* Push back any incomplete requests for replay after the reset. */
rq = execlists_unwind_incomplete_requests(execlists);
if (!rq)
goto out_unlock;
if (!i915_request_started(rq))
stalled = false;
__i915_request_reset(rq, stalled);
intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
out_unlock:
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_cancel_requests(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
GEM_TRACE("%s\n", engine->name);
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->active.lock, flags);
/* Cancel the requests on the HW and clear the ELSP tracker. */
cancel_port_requests(execlists);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->active.requests, sched.link) {
if (!i915_request_signaled(rq))
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
dma_fence_set_error(&rq->fence, -EIO);
i915_request_mark_complete(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void guc_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
GEM_TRACE("%s: depth->%d\n", engine->name,
atomic_read(&execlists->tasklet.count));
}
/*
* Everything below here is concerned with setup & teardown, and is
* therefore not part of the somewhat time-critical batch-submission
* path of guc_submit() above.
*/
/* Check that a doorbell register is in the expected state */
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
{
bool valid;
GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
valid = __doorbell_valid(guc, db_id);
if (test_bit(db_id, guc->doorbell_bitmap) == valid)
return true;
DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
db_id, yesno(valid));
return false;
}
static bool guc_verify_doorbells(struct intel_guc *guc)
{
bool doorbells_ok = true;
u16 db_id;
for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
if (!doorbell_ok(guc, db_id))
doorbells_ok = false;
return doorbells_ok;
}
/**
* guc_client_alloc() - Allocate an intel_guc_client
* @guc: the intel_guc structure
* @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
* The kernel client to replace ExecList submission is created with
* NORMAL priority. Priority of a client for scheduler can be HIGH,
* while a preemption context can use CRITICAL.
*
* Return: An intel_guc_client object if success, else NULL.
*/
static struct intel_guc_client *
guc_client_alloc(struct intel_guc *guc, u32 priority)
{
struct intel_guc_client *client;
struct i915_vma *vma;
void *vaddr;
int ret;
client = kzalloc(sizeof(*client), GFP_KERNEL);
if (!client)
return ERR_PTR(-ENOMEM);
client->guc = guc;
client->priority = priority;
client->doorbell_id = GUC_DOORBELL_INVALID;
spin_lock_init(&client->wq_lock);
ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
GFP_KERNEL);
if (ret < 0)
goto err_client;
client->stage_id = ret;
/* The first page is doorbell/proc_desc. Two followed pages are wq. */
vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_id;
}
/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
client->vma = vma;
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_vma;
}
client->vaddr = vaddr;
ret = reserve_doorbell(client);
if (ret)
goto err_vaddr;
client->doorbell_offset = __select_cacheline(guc);
/*
* Since the doorbell only requires a single cacheline, we can save
* space by putting the application process descriptor in the same
* page. Use the half of the page that doesn't include the doorbell.
*/
if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
client->proc_desc_offset = 0;
else
client->proc_desc_offset = (GUC_DB_SIZE / 2);
DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
priority, client, client->stage_id);
DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
client->doorbell_id, client->doorbell_offset);
return client;
err_vaddr:
i915_gem_object_unpin_map(client->vma->obj);
err_vma:
i915_vma_unpin_and_release(&client->vma, 0);
err_id:
ida_simple_remove(&guc->stage_ids, client->stage_id);
err_client:
kfree(client);
return ERR_PTR(ret);
}
static void guc_client_free(struct intel_guc_client *client)
{
unreserve_doorbell(client);
i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
ida_simple_remove(&client->guc->stage_ids, client->stage_id);
kfree(client);
}
static inline bool ctx_save_restore_disabled(struct intel_context *ce)
{
u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
#define SR_DISABLED \
_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
return (sr & SR_DISABLED) == SR_DISABLED;
#undef SR_DISABLED
}
static int guc_clients_create(struct intel_guc *guc)
{
struct intel_guc_client *client;
GEM_BUG_ON(guc->execbuf_client);
client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
if (IS_ERR(client)) {
DRM_ERROR("Failed to create GuC client for submission!\n");
return PTR_ERR(client);
}
guc->execbuf_client = client;
return 0;
}
static void guc_clients_destroy(struct intel_guc *guc)
{
struct intel_guc_client *client;
client = fetch_and_zero(&guc->execbuf_client);
if (client)
guc_client_free(client);
}
static int __guc_client_enable(struct intel_guc_client *client)
{
int ret;
guc_proc_desc_init(client);
guc_stage_desc_init(client);
ret = create_doorbell(client);
if (ret)
goto fail;
return 0;
fail:
guc_stage_desc_fini(client);
guc_proc_desc_fini(client);
return ret;
}
static void __guc_client_disable(struct intel_guc_client *client)
{
/*
* By the time we're here, GuC may have already been reset. if that is
* the case, instead of trying (in vain) to communicate with it, let's
* just cleanup the doorbell HW and our internal state.
*/
if (intel_guc_is_running(client->guc))
destroy_doorbell(client);
else
__fini_doorbell(client);
guc_stage_desc_fini(client);
guc_proc_desc_fini(client);
}
static int guc_clients_enable(struct intel_guc *guc)
{
return __guc_client_enable(guc->execbuf_client);
}
static void guc_clients_disable(struct intel_guc *guc)
{
if (guc->execbuf_client)
__guc_client_disable(guc->execbuf_client);
}
/*
* Set up the memory resources to be shared with the GuC (via the GGTT)
* at firmware loading time.
*/
int intel_guc_submission_init(struct intel_guc *guc)
{
int ret;
if (guc->stage_desc_pool)
return 0;
ret = guc_stage_desc_pool_create(guc);
if (ret)
return ret;
/*
* Keep static analysers happy, let them know that we allocated the
* vma after testing that it didn't exist earlier.
*/
GEM_BUG_ON(!guc->stage_desc_pool);
WARN_ON(!guc_verify_doorbells(guc));
ret = guc_clients_create(guc);
if (ret)
goto err_pool;
return 0;
err_pool:
guc_stage_desc_pool_destroy(guc);
return ret;
}
void intel_guc_submission_fini(struct intel_guc *guc)
{
guc_clients_destroy(guc);
WARN_ON(!guc_verify_doorbells(guc));
if (guc->stage_desc_pool)
guc_stage_desc_pool_destroy(guc);
}
static void guc_interrupts_capture(struct intel_gt *gt)
{
struct intel_rps *rps = >->i915->gt_pm.rps;
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int irqs;
/* tell all command streamers to forward interrupts (but not vblank)
* to GuC
*/
irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
for_each_engine(engine, gt->i915, id)
ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
/* route USER_INTERRUPT to Host, all others are sent to GuC. */
irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
/* These three registers have the same bit definitions */
intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
/*
* The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
* (unmasked) PM interrupts to the GuC. All other bits of this
* register *disable* generation of a specific interrupt.
*
* 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
* writing to the PM interrupt mask register, i.e. interrupts
* that must not be disabled.
*
* If the GuC is handling these interrupts, then we must not let
* the PM code disable ANY interrupt that the GuC is expecting.
* So for each ENABLED (0) bit in this register, we must SET the
* bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
* GuC needs ARAT expired interrupt unmasked hence it is set in
* pm_intrmsk_mbz.
*
* Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
* result in the register bit being left SET!
*/
rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
}
static void guc_interrupts_release(struct intel_gt *gt)
{
struct intel_rps *rps = >->i915->gt_pm.rps;
struct intel_uncore *uncore = gt->uncore;
struct intel_engine_cs *engine;
enum intel_engine_id id;
int irqs;
/*
* tell all command streamers NOT to forward interrupts or vblank
* to GuC.
*/
irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
for_each_engine(engine, gt->i915, id)
ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
/* route all GT interrupts to the host */
intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
/*
* We inherit a bunch of functions from execlists that we'd like
* to keep using:
*
* engine->submit_request = execlists_submit_request;
* engine->cancel_requests = execlists_cancel_requests;
* engine->schedule = execlists_schedule;
*
* But we need to override the actual submission backend in order
* to talk to the GuC.
*/
intel_execlists_set_default_submission(engine);
engine->execlists.tasklet.func = guc_submission_tasklet;
/* do not use execlists park/unpark */
engine->park = engine->unpark = NULL;
engine->reset.prepare = guc_reset_prepare;
engine->reset.reset = guc_reset;
engine->reset.finish = guc_reset_finish;
engine->cancel_requests = guc_cancel_requests;
engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
/*
* For the breadcrumb irq to work we need the interrupts to stay
* enabled. However, on all platforms on which we'll have support for
* GuC submission we don't allow disabling the interrupts at runtime, so
* we're always safe with the current flow.
*/
GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
}
int intel_guc_submission_enable(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
err = i915_inject_load_error(gt->i915, -ENXIO);
if (err)
return err;
/*
* We're using GuC work items for submitting work through GuC. Since
* we're coalescing multiple requests from a single context into a
* single work item prior to assigning it to execlist_port, we can
* never have more work items than the total number of ports (for all
* engines). The GuC firmware is controlling the HEAD of work queue,
* and it is guaranteed that it will remove the work item from the
* queue before our request is completed.
*/
BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
sizeof(struct guc_wq_item) *
I915_NUM_ENGINES > GUC_WQ_SIZE);
GEM_BUG_ON(!guc->execbuf_client);
err = guc_clients_enable(guc);
if (err)
return err;
/* Take over from manual control of ELSP (execlists) */
guc_interrupts_capture(gt);
for_each_engine(engine, gt->i915, id) {
engine->set_default_submission = guc_set_default_submission;
engine->set_default_submission(engine);
}
return 0;
}
void intel_guc_submission_disable(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
GEM_BUG_ON(gt->awake); /* GT should be parked first */
guc_interrupts_release(gt);
guc_clients_disable(guc);
}
static bool __guc_submission_support(struct intel_guc *guc)
{
/* XXX: GuC submission is unavailable for now */
return false;
if (!intel_guc_is_supported(guc))
return false;
return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
}
void intel_guc_submission_init_early(struct intel_guc *guc)
{
guc->submission_supported = __guc_submission_support(guc);
}
#if IS_ENABLED([31mCONFIG_DRM_I915_SELFTEST[0m)
#include "selftest_guc.c"
#endif