Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/*
 * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "acr_r352.h"
#include "hs_ucode.h"

#include <core/gpuobj.h>
#include <core/firmware.h>
#include <engine/falcon.h>
#include <subdev/pmu.h>
#include <core/msgqueue.h>
#include <engine/sec2.h>

/**
 * struct acr_r352_flcn_bl_desc - DMEM bootloader descriptor
 * @signature:		16B signature for secure code. 0s if no secure code
 * @ctx_dma:		DMA context to be used by BL while loading code/data
 * @code_dma_base:	256B-aligned Physical FB Address where code is located
 *			(falcon's $xcbase register)
 * @non_sec_code_off:	offset from code_dma_base where the non-secure code is
 *                      located. The offset must be multiple of 256 to help perf
 * @non_sec_code_size:	the size of the nonSecure code part.
 * @sec_code_off:	offset from code_dma_base where the secure code is
 *                      located. The offset must be multiple of 256 to help perf
 * @sec_code_size:	offset from code_dma_base where the secure code is
 *                      located. The offset must be multiple of 256 to help perf
 * @code_entry_point:	code entry point which will be invoked by BL after
 *                      code is loaded.
 * @data_dma_base:	256B aligned Physical FB Address where data is located.
 *			(falcon's $xdbase register)
 * @data_size:		size of data block. Should be multiple of 256B
 *
 * Structure used by the bootloader to load the rest of the code. This has
 * to be filled by host and copied into DMEM at offset provided in the
 * hsflcn_bl_desc.bl_desc_dmem_load_off.
 */
struct acr_r352_flcn_bl_desc {
	u32 reserved[4];
	u32 signature[4];
	u32 ctx_dma;
	u32 code_dma_base;
	u32 non_sec_code_off;
	u32 non_sec_code_size;
	u32 sec_code_off;
	u32 sec_code_size;
	u32 code_entry_point;
	u32 data_dma_base;
	u32 data_size;
	u32 code_dma_base1;
	u32 data_dma_base1;
};

/**
 * acr_r352_generate_flcn_bl_desc - generate generic BL descriptor for LS image
 */
static void
acr_r352_generate_flcn_bl_desc(const struct nvkm_acr *acr,
			       const struct ls_ucode_img *img, u64 wpr_addr,
			       void *_desc)
{
	struct acr_r352_flcn_bl_desc *desc = _desc;
	const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
	u64 base, addr_code, addr_data;

	base = wpr_addr + img->ucode_off + pdesc->app_start_offset;
	addr_code = (base + pdesc->app_resident_code_offset) >> 8;
	addr_data = (base + pdesc->app_resident_data_offset) >> 8;

	desc->ctx_dma = FALCON_DMAIDX_UCODE;
	desc->code_dma_base = lower_32_bits(addr_code);
	desc->code_dma_base1 = upper_32_bits(addr_code);
	desc->non_sec_code_off = pdesc->app_resident_code_offset;
	desc->non_sec_code_size = pdesc->app_resident_code_size;
	desc->code_entry_point = pdesc->app_imem_entry;
	desc->data_dma_base = lower_32_bits(addr_data);
	desc->data_dma_base1 = upper_32_bits(addr_data);
	desc->data_size = pdesc->app_resident_data_size;
}


/**
 * struct hsflcn_acr_desc - data section of the HS firmware
 *
 * This header is to be copied at the beginning of DMEM by the HS bootloader.
 *
 * @signature:		signature of ACR ucode
 * @wpr_region_id:	region ID holding the WPR header and its details
 * @wpr_offset:		offset from the WPR region holding the wpr header
 * @regions:		region descriptors
 * @nonwpr_ucode_blob_size:	size of LS blob
 * @nonwpr_ucode_blob_start:	FB location of LS blob is
 */
struct hsflcn_acr_desc {
	union {
		u8 reserved_dmem[0x200];
		u32 signatures[4];
	} ucode_reserved_space;
	u32 wpr_region_id;
	u32 wpr_offset;
	u32 mmu_mem_range;
#define FLCN_ACR_MAX_REGIONS 2
	struct {
		u32 no_regions;
		struct {
			u32 start_addr;
			u32 end_addr;
			u32 region_id;
			u32 read_mask;
			u32 write_mask;
			u32 client_mask;
		} region_props[FLCN_ACR_MAX_REGIONS];
	} regions;
	u32 ucode_blob_size;
	u64 ucode_blob_base __aligned(8);
	struct {
		u32 vpr_enabled;
		u32 vpr_start;
		u32 vpr_end;
		u32 hdcp_policies;
	} vpr_desc;
};


/*
 * Low-secure blob creation
 */

/**
 * struct acr_r352_lsf_lsb_header - LS firmware header
 * @signature:		signature to verify the firmware against
 * @ucode_off:		offset of the ucode blob in the WPR region. The ucode
 *                      blob contains the bootloader, code and data of the
 *                      LS falcon
 * @ucode_size:		size of the ucode blob, including bootloader
 * @data_size:		size of the ucode blob data
 * @bl_code_size:	size of the bootloader code
 * @bl_imem_off:	offset in imem of the bootloader
 * @bl_data_off:	offset of the bootloader data in WPR region
 * @bl_data_size:	size of the bootloader data
 * @app_code_off:	offset of the app code relative to ucode_off
 * @app_code_size:	size of the app code
 * @app_data_off:	offset of the app data relative to ucode_off
 * @app_data_size:	size of the app data
 * @flags:		flags for the secure bootloader
 *
 * This structure is written into the WPR region for each managed falcon. Each
 * instance is referenced by the lsb_offset member of the corresponding
 * lsf_wpr_header.
 */
struct acr_r352_lsf_lsb_header {
	/**
	 * LS falcon signatures
	 * @prd_keys:		signature to use in production mode
	 * @dgb_keys:		signature to use in debug mode
	 * @b_prd_present:	whether the production key is present
	 * @b_dgb_present:	whether the debug key is present
	 * @falcon_id:		ID of the falcon the ucode applies to
	 */
	struct {
		u8 prd_keys[2][16];
		u8 dbg_keys[2][16];
		u32 b_prd_present;
		u32 b_dbg_present;
		u32 falcon_id;
	} signature;
	u32 ucode_off;
	u32 ucode_size;
	u32 data_size;
	u32 bl_code_size;
	u32 bl_imem_off;
	u32 bl_data_off;
	u32 bl_data_size;
	u32 app_code_off;
	u32 app_code_size;
	u32 app_data_off;
	u32 app_data_size;
	u32 flags;
};

/**
 * struct acr_r352_lsf_wpr_header - LS blob WPR Header
 * @falcon_id:		LS falcon ID
 * @lsb_offset:		offset of the lsb_lsf_header in the WPR region
 * @bootstrap_owner:	secure falcon reponsible for bootstrapping the LS falcon
 * @lazy_bootstrap:	skip bootstrapping by ACR
 * @status:		bootstrapping status
 *
 * An array of these is written at the beginning of the WPR region, one for
 * each managed falcon. The array is terminated by an instance which falcon_id
 * is LSF_FALCON_ID_INVALID.
 */
struct acr_r352_lsf_wpr_header {
	u32 falcon_id;
	u32 lsb_offset;
	u32 bootstrap_owner;
	u32 lazy_bootstrap;
	u32 status;
#define LSF_IMAGE_STATUS_NONE				0
#define LSF_IMAGE_STATUS_COPY				1
#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED		2
#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED		3
#define LSF_IMAGE_STATUS_VALIDATION_DONE		4
#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED		5
#define LSF_IMAGE_STATUS_BOOTSTRAP_READY		6
};

/**
 * struct ls_ucode_img_r352 - ucode image augmented with r352 headers
 */
struct ls_ucode_img_r352 {
	struct ls_ucode_img base;

	const struct acr_r352_lsf_func *func;

	struct acr_r352_lsf_wpr_header wpr_header;
	struct acr_r352_lsf_lsb_header lsb_header;
};
#define ls_ucode_img_r352(i) container_of(i, struct ls_ucode_img_r352, base)

/**
 * ls_ucode_img_load() - create a lsf_ucode_img and load it
 */
struct ls_ucode_img *
acr_r352_ls_ucode_img_load(const struct acr_r352 *acr,
			   const struct nvkm_secboot *sb,
			   enum nvkm_secboot_falcon falcon_id)
{
	const struct nvkm_subdev *subdev = acr->base.subdev;
	const struct acr_r352_ls_func *func = acr->func->ls_func[falcon_id];
	struct ls_ucode_img_r352 *img;
	int ret;

	img = kzalloc(sizeof(*img), GFP_KERNEL);
	if (!img)
		return ERR_PTR(-ENOMEM);

	img->base.falcon_id = falcon_id;

	ret = func->load(sb, func->version_max, &img->base);
	if (ret < 0) {
		kfree(img->base.ucode_data);
		kfree(img->base.sig);
		kfree(img);
		return ERR_PTR(ret);
	}

	img->func = func->version[ret];

	/* Check that the signature size matches our expectations... */
	if (img->base.sig_size != sizeof(img->lsb_header.signature)) {
		nvkm_error(subdev, "invalid signature size for %s falcon!\n",
			   nvkm_secboot_falcon_name[falcon_id]);
		return ERR_PTR(-EINVAL);
	}

	/* Copy signature to the right place */
	memcpy(&img->lsb_header.signature, img->base.sig, img->base.sig_size);

	/* not needed? the signature should already have the right value */
	img->lsb_header.signature.falcon_id = falcon_id;

	return &img->base;
}

#define LSF_LSB_HEADER_ALIGN 256
#define LSF_BL_DATA_ALIGN 256
#define LSF_BL_DATA_SIZE_ALIGN 256
#define LSF_BL_CODE_SIZE_ALIGN 256
#define LSF_UCODE_DATA_ALIGN 4096

/**
 * acr_r352_ls_img_fill_headers - fill the WPR and LSB headers of an image
 * @acr:	ACR to use
 * @img:	image to generate for
 * @offset:	offset in the WPR region where this image starts
 *
 * Allocate space in the WPR area from offset and write the WPR and LSB headers
 * accordingly.
 *
 * Return: offset at the end of this image.
 */
static u32
acr_r352_ls_img_fill_headers(struct acr_r352 *acr,
			     struct ls_ucode_img_r352 *img, u32 offset)
{
	struct ls_ucode_img *_img = &img->base;
	struct acr_r352_lsf_wpr_header *whdr = &img->wpr_header;
	struct acr_r352_lsf_lsb_header *lhdr = &img->lsb_header;
	struct ls_ucode_img_desc *desc = &_img->ucode_desc;
	const struct acr_r352_lsf_func *func = img->func;

	/* Fill WPR header */
	whdr->falcon_id = _img->falcon_id;
	whdr->bootstrap_owner = acr->base.boot_falcon;
	whdr->status = LSF_IMAGE_STATUS_COPY;

	/* Skip bootstrapping falcons started by someone else than ACR */
	if (acr->lazy_bootstrap & BIT(_img->falcon_id))
		whdr->lazy_bootstrap = 1;

	/* Align, save off, and include an LSB header size */
	offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
	whdr->lsb_offset = offset;
	offset += sizeof(*lhdr);

	/*
	 * Align, save off, and include the original (static) ucode
	 * image size
	 */
	offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
	_img->ucode_off = lhdr->ucode_off = offset;
	offset += _img->ucode_size;

	/*
	 * For falcons that use a boot loader (BL), we append a loader
	 * desc structure on the end of the ucode image and consider
	 * this the boot loader data. The host will then copy the loader
	 * desc args to this space within the WPR region (before locking
	 * down) and the HS bin will then copy them to DMEM 0 for the
	 * loader.
	 */
	lhdr->bl_code_size = ALIGN(desc->bootloader_size,
				   LSF_BL_CODE_SIZE_ALIGN);
	lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
				 LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
	lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
				lhdr->bl_code_size - lhdr->ucode_size;
	/*
	 * Though the BL is located at 0th offset of the image, the VA
	 * is different to make sure that it doesn't collide the actual
	 * OS VA range
	 */
	lhdr->bl_imem_off = desc->bootloader_imem_offset;
	lhdr->app_code_off = desc->app_start_offset +
			     desc->app_resident_code_offset;
	lhdr->app_code_size = desc->app_resident_code_size;
	lhdr->app_data_off = desc->app_start_offset +
			     desc->app_resident_data_offset;
	lhdr->app_data_size = desc->app_resident_data_size;

	lhdr->flags = func->lhdr_flags;
	if (_img->falcon_id == acr->base.boot_falcon)
		lhdr->flags |= LSF_FLAG_DMACTL_REQ_CTX;

	/* Align and save off BL descriptor size */
	lhdr->bl_data_size = ALIGN(func->bl_desc_size, LSF_BL_DATA_SIZE_ALIGN);

	/*
	 * Align, save off, and include the additional BL data
	 */
	offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
	lhdr->bl_data_off = offset;
	offset += lhdr->bl_data_size;

	return offset;
}

/**
 * acr_r352_ls_fill_headers - fill WPR and LSB headers of all managed images
 */
int
acr_r352_ls_fill_headers(struct acr_r352 *acr, struct list_head *imgs)
{
	struct ls_ucode_img_r352 *img;
	struct list_head *l;
	u32 count = 0;
	u32 offset;

	/* Count the number of images to manage */
	list_for_each(l, imgs)
		count++;

	/*
	 * Start with an array of WPR headers at the base of the WPR.
	 * The expectation here is that the secure falcon will do a single DMA
	 * read of this array and cache it internally so it's ok to pack these.
	 * Also, we add 1 to the falcon count to indicate the end of the array.
	 */
	offset = sizeof(img->wpr_header) * (count + 1);

	/*
	 * Walk the managed falcons, accounting for the LSB structs
	 * as well as the ucode images.
	 */
	list_for_each_entry(img, imgs, base.node) {
		offset = acr_r352_ls_img_fill_headers(acr, img, offset);
	}

	return offset;
}

/**
 * acr_r352_ls_write_wpr - write the WPR blob contents
 */
int
acr_r352_ls_write_wpr(struct acr_r352 *acr, struct list_head *imgs,
		      struct nvkm_gpuobj *wpr_blob, u64 wpr_addr)
{
	struct ls_ucode_img *_img;
	u32 pos = 0;
	u32 max_desc_size = 0;
	u8 *gdesc;

	/* Figure out how large we need gdesc to be. */
	list_for_each_entry(_img, imgs, node) {
		struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img);
		const struct acr_r352_lsf_func *ls_func = img->func;

		max_desc_size = max(max_desc_size, ls_func->bl_desc_size);
	}

	gdesc = kmalloc(max_desc_size, GFP_KERNEL);
	if (!gdesc)
		return -ENOMEM;

	nvkm_kmap(wpr_blob);

	list_for_each_entry(_img, imgs, node) {
		struct ls_ucode_img_r352 *img = ls_ucode_img_r352(_img);
		const struct acr_r352_lsf_func *ls_func = img->func;

		nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
				      sizeof(img->wpr_header));

		nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
				     &img->lsb_header, sizeof(img->lsb_header));

		/* Generate and write BL descriptor */
		memset(gdesc, 0, ls_func->bl_desc_size);
		ls_func->generate_bl_desc(&acr->base, _img, wpr_addr, gdesc);

		nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.bl_data_off,
				      gdesc, ls_func->bl_desc_size);

		/* Copy ucode */
		nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
				      _img->ucode_data, _img->ucode_size);

		pos += sizeof(img->wpr_header);
	}

	nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);

	nvkm_done(wpr_blob);

	kfree(gdesc);

	return 0;
}

/* Both size and address of WPR need to be 256K-aligned */
#define WPR_ALIGNMENT	0x40000
/**
 * acr_r352_prepare_ls_blob() - prepare the LS blob
 *
 * For each securely managed falcon, load the FW, signatures and bootloaders and
 * prepare a ucode blob. Then, compute the offsets in the WPR region for each
 * blob, and finally write the headers and ucode blobs into a GPU object that
 * will be copied into the WPR region by the HS firmware.
 */
static int
acr_r352_prepare_ls_blob(struct acr_r352 *acr, struct nvkm_secboot *sb)
{
	const struct nvkm_subdev *subdev = acr->base.subdev;
	struct list_head imgs;
	struct ls_ucode_img *img, *t;
	unsigned long managed_falcons = acr->base.managed_falcons;
	u64 wpr_addr = sb->wpr_addr;
	u32 wpr_size = sb->wpr_size;
	int managed_count = 0;
	u32 image_wpr_size, ls_blob_size;
	int falcon_id;
	int ret;

	INIT_LIST_HEAD(&imgs);

	/* Load all LS blobs */
	for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
		struct ls_ucode_img *img;

		img = acr->func->ls_ucode_img_load(acr, sb, falcon_id);
		if (IS_ERR(img)) {
			if (acr->base.optional_falcons & BIT(falcon_id)) {
				managed_falcons &= ~BIT(falcon_id);
				nvkm_info(subdev, "skipping %s falcon...\n",
					  nvkm_secboot_falcon_name[falcon_id]);
				continue;
			}
			ret = PTR_ERR(img);
			goto cleanup;
		}

		list_add_tail(&img->node, &imgs);
		managed_count++;
	}

	/* Commit the actual list of falcons we will manage from now on */
	acr->base.managed_falcons = managed_falcons;

	/*
	 * If the boot falcon has a firmare, let it manage the bootstrap of other
	 * falcons.
	 */
	if (acr->func->ls_func[acr->base.boot_falcon] &&
	    (managed_falcons & BIT(acr->base.boot_falcon))) {
		for_each_set_bit(falcon_id, &managed_falcons,
				 NVKM_SECBOOT_FALCON_END) {
			if (falcon_id == acr->base.boot_falcon)
				continue;

			acr->lazy_bootstrap |= BIT(falcon_id);
		}
	}

	/*
	 * Fill the WPR and LSF headers with the right offsets and compute
	 * required WPR size
	 */
	image_wpr_size = acr->func->ls_fill_headers(acr, &imgs);
	image_wpr_size = ALIGN(image_wpr_size, WPR_ALIGNMENT);

	ls_blob_size = image_wpr_size;

	/*
	 * If we need a shadow area, allocate twice the size and use the
	 * upper half as WPR
	 */
	if (wpr_size == 0 && acr->func->shadow_blob)
		ls_blob_size *= 2;

	/* Allocate GPU object that will contain the WPR region */
	ret = nvkm_gpuobj_new(subdev->device, ls_blob_size, WPR_ALIGNMENT,
			      false, NULL, &acr->ls_blob);
	if (ret)
		goto cleanup;

	nvkm_debug(subdev, "%d managed LS falcons, WPR size is %d bytes\n",
		    managed_count, image_wpr_size);

	/* If WPR address and size are not fixed, set them to fit the LS blob */
	if (wpr_size == 0) {
		wpr_addr = acr->ls_blob->addr;
		if (acr->func->shadow_blob)
			wpr_addr += acr->ls_blob->size / 2;

		wpr_size = image_wpr_size;
	/*
	 * But if the WPR region is set by the bootloader, it is illegal for
	 * the HS blob to be larger than this region.
	 */
	} else if (image_wpr_size > wpr_size) {
		nvkm_error(subdev, "WPR region too small for FW blob!\n");
		nvkm_error(subdev, "required: %dB\n", image_wpr_size);
		nvkm_error(subdev, "available: %dB\n", wpr_size);
		ret = -ENOSPC;
		goto cleanup;
	}

	/* Write LS blob */
	ret = acr->func->ls_write_wpr(acr, &imgs, acr->ls_blob, wpr_addr);
	if (ret)
		nvkm_gpuobj_del(&acr->ls_blob);

cleanup:
	list_for_each_entry_safe(img, t, &imgs, node) {
		kfree(img->ucode_data);
		kfree(img->sig);
		kfree(img);
	}

	return ret;
}




void
acr_r352_fixup_hs_desc(struct acr_r352 *acr, struct nvkm_secboot *sb,
		       void *_desc)
{
	struct hsflcn_acr_desc *desc = _desc;
	struct nvkm_gpuobj *ls_blob = acr->ls_blob;

	/* WPR region information if WPR is not fixed */
	if (sb->wpr_size == 0) {
		u64 wpr_start = ls_blob->addr;
		u64 wpr_end = wpr_start + ls_blob->size;

		desc->wpr_region_id = 1;
		desc->regions.no_regions = 2;
		desc->regions.region_props[0].start_addr = wpr_start >> 8;
		desc->regions.region_props[0].end_addr = wpr_end >> 8;
		desc->regions.region_props[0].region_id = 1;
		desc->regions.region_props[0].read_mask = 0xf;
		desc->regions.region_props[0].write_mask = 0xc;
		desc->regions.region_props[0].client_mask = 0x2;
	} else {
		desc->ucode_blob_base = ls_blob->addr;
		desc->ucode_blob_size = ls_blob->size;
	}
}

static void
acr_r352_generate_hs_bl_desc(const struct hsf_load_header *hdr, void *_bl_desc,
			     u64 offset)
{
	struct acr_r352_flcn_bl_desc *bl_desc = _bl_desc;
	u64 addr_code, addr_data;

	addr_code = offset >> 8;
	addr_data = (offset + hdr->data_dma_base) >> 8;

	bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
	bl_desc->code_dma_base = lower_32_bits(addr_code);
	bl_desc->non_sec_code_off = hdr->non_sec_code_off;
	bl_desc->non_sec_code_size = hdr->non_sec_code_size;
	bl_desc->sec_code_off = hsf_load_header_app_off(hdr, 0);
	bl_desc->sec_code_size = hsf_load_header_app_size(hdr, 0);
	bl_desc->code_entry_point = 0;
	bl_desc->data_dma_base = lower_32_bits(addr_data);
	bl_desc->data_size = hdr->data_size;
}

/**
 * acr_r352_prepare_hs_blob - load and prepare a HS blob and BL descriptor
 *
 * @sb secure boot instance to prepare for
 * @fw name of the HS firmware to load
 * @blob pointer to gpuobj that will be allocated to receive the HS FW payload
 * @bl_desc pointer to the BL descriptor to write for this firmware
 * @patch whether we should patch the HS descriptor (only for HS loaders)
 */
static int
acr_r352_prepare_hs_blob(struct acr_r352 *acr, struct nvkm_secboot *sb,
			 const char *fw, struct nvkm_gpuobj **blob,
			 struct hsf_load_header *load_header, bool patch)
{
	struct nvkm_subdev *subdev = &sb->subdev;
	void *acr_image;
	struct fw_bin_header *hsbin_hdr;
	struct hsf_fw_header *fw_hdr;
	struct hsf_load_header *load_hdr;
	void *acr_data;
	int ret;

	acr_image = hs_ucode_load_blob(subdev, sb->boot_falcon, fw);
	if (IS_ERR(acr_image))
		return PTR_ERR(acr_image);

	hsbin_hdr = acr_image;
	fw_hdr = acr_image + hsbin_hdr->header_offset;
	load_hdr = acr_image + fw_hdr->hdr_offset;
	acr_data = acr_image + hsbin_hdr->data_offset;

	/* Patch descriptor with WPR information? */
	if (patch) {
		struct hsflcn_acr_desc *desc;

		desc = acr_data + load_hdr->data_dma_base;
		acr->func->fixup_hs_desc(acr, sb, desc);
	}

	if (load_hdr->num_apps > ACR_R352_MAX_APPS) {
		nvkm_error(subdev, "more apps (%d) than supported (%d)!",
			   load_hdr->num_apps, ACR_R352_MAX_APPS);
		ret = -EINVAL;
		goto cleanup;
	}
	memcpy(load_header, load_hdr, sizeof(*load_header) +
			  (sizeof(load_hdr->apps[0]) * 2 * load_hdr->num_apps));

	/* Create ACR blob and copy HS data to it */
	ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
			      0x1000, false, NULL, blob);
	if (ret)
		goto cleanup;

	nvkm_kmap(*blob);
	nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
	nvkm_done(*blob);

cleanup:
	kfree(acr_image);

	return ret;
}

/**
 * acr_r352_load_blobs - load blobs common to all ACR V1 versions.
 *
 * This includes the LS blob, HS ucode loading blob, and HS bootloader.
 *
 * The HS ucode unload blob is only used on dGPU if the WPR region is variable.
 */
int
acr_r352_load_blobs(struct acr_r352 *acr, struct nvkm_secboot *sb)
{
	struct nvkm_subdev *subdev = &sb->subdev;
	int ret;

	/* Firmware already loaded? */
	if (acr->firmware_ok)
		return 0;

	/* Load and prepare the managed falcon's firmwares */
	ret = acr_r352_prepare_ls_blob(acr, sb);
	if (ret)
		return ret;

	/* Load the HS firmware that will load the LS firmwares */
	if (!acr->load_blob) {
		ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_load",
					       &acr->load_blob,
					       &acr->load_bl_header, true);
		if (ret)
			return ret;
	}

	/* If the ACR region is dynamically programmed, we need an unload FW */
	if (sb->wpr_size == 0) {
		ret = acr_r352_prepare_hs_blob(acr, sb, "acr/ucode_unload",
					       &acr->unload_blob,
					       &acr->unload_bl_header, false);
		if (ret)
			return ret;
	}

	/* Load the HS firmware bootloader */
	if (!acr->hsbl_blob) {
		acr->hsbl_blob = nvkm_acr_load_firmware(subdev, "acr/bl", 0);
		if (IS_ERR(acr->hsbl_blob)) {
			ret = PTR_ERR(acr->hsbl_blob);
			acr->hsbl_blob = NULL;
			return ret;
		}

		if (acr->base.boot_falcon != NVKM_SECBOOT_FALCON_PMU) {
			acr->hsbl_unload_blob = nvkm_acr_load_firmware(subdev,
							    "acr/unload_bl", 0);
			if (IS_ERR(acr->hsbl_unload_blob)) {
				ret = PTR_ERR(acr->hsbl_unload_blob);
				acr->hsbl_unload_blob = NULL;
				return ret;
			}
		} else {
			acr->hsbl_unload_blob = acr->hsbl_blob;
		}
	}

	acr->firmware_ok = true;
	nvkm_debug(&sb->subdev, "LS blob successfully created\n");

	return 0;
}

/**
 * acr_r352_load() - prepare HS falcon to run the specified blob, mapped.
 *
 * Returns the start address to use, or a negative error value.
 */
static int
acr_r352_load(struct nvkm_acr *_acr, struct nvkm_falcon *falcon,
	      struct nvkm_gpuobj *blob, u64 offset)
{
	struct acr_r352 *acr = acr_r352(_acr);
	const u32 bl_desc_size = acr->func->hs_bl_desc_size;
	const struct hsf_load_header *load_hdr;
	struct fw_bin_header *bl_hdr;
	struct fw_bl_desc *hsbl_desc;
	void *bl, *blob_data, *hsbl_code, *hsbl_data;
	u32 code_size;
	u8 *bl_desc;

	bl_desc = kzalloc(bl_desc_size, GFP_KERNEL);
	if (!bl_desc)
		return -ENOMEM;

	/* Find the bootloader descriptor for our blob and copy it */
	if (blob == acr->load_blob) {
		load_hdr = &acr->load_bl_header;
		bl = acr->hsbl_blob;
	} else if (blob == acr->unload_blob) {
		load_hdr = &acr->unload_bl_header;
		bl = acr->hsbl_unload_blob;
	} else {
		nvkm_error(_acr->subdev, "invalid secure boot blob!\n");
		kfree(bl_desc);
		return -EINVAL;
	}

	bl_hdr = bl;
	hsbl_desc = bl + bl_hdr->header_offset;
	blob_data = bl + bl_hdr->data_offset;
	hsbl_code = blob_data + hsbl_desc->code_off;
	hsbl_data = blob_data + hsbl_desc->data_off;
	code_size = ALIGN(hsbl_desc->code_size, 256);

	/*
	 * Copy HS bootloader data
	 */
	nvkm_falcon_load_dmem(falcon, hsbl_data, 0x0, hsbl_desc->data_size, 0);

	/* Copy HS bootloader code to end of IMEM */
	nvkm_falcon_load_imem(falcon, hsbl_code, falcon->code.limit - code_size,
			      code_size, hsbl_desc->start_tag, 0, false);

	/* Generate the BL header */
	acr->func->generate_hs_bl_desc(load_hdr, bl_desc, offset);

	/*
	 * Copy HS BL header where the HS descriptor expects it to be
	 */
	nvkm_falcon_load_dmem(falcon, bl_desc, hsbl_desc->dmem_load_off,
			      bl_desc_size, 0);

	kfree(bl_desc);
	return hsbl_desc->start_tag << 8;
}

static int
acr_r352_shutdown(struct acr_r352 *acr, struct nvkm_secboot *sb)
{
	struct nvkm_subdev *subdev = &sb->subdev;
	int i;

	/* Run the unload blob to unprotect the WPR region */
	if (acr->unload_blob && sb->wpr_set) {
		int ret;

		nvkm_debug(subdev, "running HS unload blob\n");
		ret = sb->func->run_blob(sb, acr->unload_blob, sb->halt_falcon);
		if (ret < 0)
			return ret;
		/*
		 * Unload blob will return this error code - it is not an error
		 * and the expected behavior on RM as well
		 */
		if (ret && ret != 0x1d) {
			nvkm_error(subdev, "HS unload failed, ret 0x%08x\n", ret);
			return -EINVAL;
		}
		nvkm_debug(subdev, "HS unload blob completed\n");
	}

	for (i = 0; i < NVKM_SECBOOT_FALCON_END; i++)
		acr->falcon_state[i] = NON_SECURE;

	sb->wpr_set = false;

	return 0;
}

/**
 * Check if the WPR region has been indeed set by the ACR firmware, and
 * matches where it should be.
 */
static bool
acr_r352_wpr_is_set(const struct acr_r352 *acr, const struct nvkm_secboot *sb)
{
	const struct nvkm_subdev *subdev = &sb->subdev;
	const struct nvkm_device *device = subdev->device;
	u64 wpr_lo, wpr_hi;
	u64 wpr_range_lo, wpr_range_hi;

	nvkm_wr32(device, 0x100cd4, 0x2);
	wpr_lo = (nvkm_rd32(device, 0x100cd4) & ~0xff);
	wpr_lo <<= 8;
	nvkm_wr32(device, 0x100cd4, 0x3);
	wpr_hi = (nvkm_rd32(device, 0x100cd4) & ~0xff);
	wpr_hi <<= 8;

	if (sb->wpr_size != 0) {
		wpr_range_lo = sb->wpr_addr;
		wpr_range_hi = wpr_range_lo + sb->wpr_size;
	} else {
		wpr_range_lo = acr->ls_blob->addr;
		wpr_range_hi = wpr_range_lo + acr->ls_blob->size;
	}

	return (wpr_lo >= wpr_range_lo && wpr_lo < wpr_range_hi &&
		wpr_hi > wpr_range_lo && wpr_hi <= wpr_range_hi);
}

static int
acr_r352_bootstrap(struct acr_r352 *acr, struct nvkm_secboot *sb)
{
	const struct nvkm_subdev *subdev = &sb->subdev;
	unsigned long managed_falcons = acr->base.managed_falcons;
	int falcon_id;
	int ret;

	if (sb->wpr_set)
		return 0;

	/* Make sure all blobs are ready */
	ret = acr_r352_load_blobs(acr, sb);
	if (ret)
		return ret;

	nvkm_debug(subdev, "running HS load blob\n");
	ret = sb->func->run_blob(sb, acr->load_blob, sb->boot_falcon);
	/* clear halt interrupt */
	nvkm_falcon_clear_interrupt(sb->boot_falcon, 0x10);
	sb->wpr_set = acr_r352_wpr_is_set(acr, sb);
	if (ret < 0) {
		return ret;
	} else if (ret > 0) {
		nvkm_error(subdev, "HS load failed, ret 0x%08x\n", ret);
		return -EINVAL;
	}
	nvkm_debug(subdev, "HS load blob completed\n");
	/* WPR must be set at this point */
	if (!sb->wpr_set) {
		nvkm_error(subdev, "ACR blob completed but WPR not set!\n");
		return -EINVAL;
	}

	/* Run LS firmwares post_run hooks */
	for_each_set_bit(falcon_id, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
		const struct acr_r352_ls_func *func =
						  acr->func->ls_func[falcon_id];

		if (func->post_run) {
			ret = func->post_run(&acr->base, sb);
			if (ret)
				return ret;
		}
	}

	return 0;
}

/**
 * acr_r352_reset_nopmu - dummy reset method when no PMU firmware is loaded
 *
 * Reset is done by re-executing secure boot from scratch, with lazy bootstrap
 * disabled. This has the effect of making all managed falcons ready-to-run.
 */
static int
acr_r352_reset_nopmu(struct acr_r352 *acr, struct nvkm_secboot *sb,
		     unsigned long falcon_mask)
{
	int falcon;
	int ret;

	/*
	 * Perform secure boot each time we are called on FECS. Since only FECS
	 * and GPCCS are managed and started together, this ought to be safe.
	 */
	if (!(falcon_mask & BIT(NVKM_SECBOOT_FALCON_FECS)))
		goto end;

	ret = acr_r352_shutdown(acr, sb);
	if (ret)
		return ret;

	ret = acr_r352_bootstrap(acr, sb);
	if (ret)
		return ret;

end:
	for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END) {
		acr->falcon_state[falcon] = RESET;
	}
	return 0;
}

/*
 * acr_r352_reset() - execute secure boot from the prepared state
 *
 * Load the HS bootloader and ask the falcon to run it. This will in turn
 * load the HS firmware and run it, so once the falcon stops all the managed
 * falcons should have their LS firmware loaded and be ready to run.
 */
static int
acr_r352_reset(struct nvkm_acr *_acr, struct nvkm_secboot *sb,
	       unsigned long falcon_mask)
{
	struct acr_r352 *acr = acr_r352(_acr);
	struct nvkm_msgqueue *queue;
	int falcon;
	bool wpr_already_set = sb->wpr_set;
	int ret;

	/* Make sure secure boot is performed */
	ret = acr_r352_bootstrap(acr, sb);
	if (ret)
		return ret;

	/* No PMU interface? */
	if (!nvkm_secboot_is_managed(sb, _acr->boot_falcon)) {
		/* Redo secure boot entirely if it was already done */
		if (wpr_already_set)
			return acr_r352_reset_nopmu(acr, sb, falcon_mask);
		/* Else return the result of the initial invokation */
		else
			return ret;
	}

	switch (_acr->boot_falcon) {
	case NVKM_SECBOOT_FALCON_PMU:
		queue = sb->subdev.device->pmu->queue;
		break;
	case NVKM_SECBOOT_FALCON_SEC2:
		queue = sb->subdev.device->sec2->queue;
		break;
	default:
		return -EINVAL;
	}

	/* Otherwise just ask the LS firmware to reset the falcon */
	for_each_set_bit(falcon, &falcon_mask, NVKM_SECBOOT_FALCON_END)
		nvkm_debug(&sb->subdev, "resetting %s falcon\n",
			   nvkm_secboot_falcon_name[falcon]);
	ret = nvkm_msgqueue_acr_boot_falcons(queue, falcon_mask);
	if (ret) {
		nvkm_error(&sb->subdev, "error during falcon reset: %d\n", ret);
		return ret;
	}
	nvkm_debug(&sb->subdev, "falcon reset done\n");

	return 0;
}

static int
acr_r352_fini(struct nvkm_acr *_acr, struct nvkm_secboot *sb, bool suspend)
{
	struct acr_r352 *acr = acr_r352(_acr);

	return acr_r352_shutdown(acr, sb);
}

static void
acr_r352_dtor(struct nvkm_acr *_acr)
{
	struct acr_r352 *acr = acr_r352(_acr);

	nvkm_gpuobj_del(&acr->unload_blob);

	if (_acr->boot_falcon != NVKM_SECBOOT_FALCON_PMU)
		kfree(acr->hsbl_unload_blob);
	kfree(acr->hsbl_blob);
	nvkm_gpuobj_del(&acr->load_blob);
	nvkm_gpuobj_del(&acr->ls_blob);

	kfree(acr);
}

static const struct acr_r352_lsf_func
acr_r352_ls_fecs_func_0 = {
	.generate_bl_desc = acr_r352_generate_flcn_bl_desc,
	.bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
};

const struct acr_r352_ls_func
acr_r352_ls_fecs_func = {
	.load = acr_ls_ucode_load_fecs,
	.version_max = 0,
	.version = {
		&acr_r352_ls_fecs_func_0,
	}
};

static const struct acr_r352_lsf_func
acr_r352_ls_gpccs_func_0 = {
	.generate_bl_desc = acr_r352_generate_flcn_bl_desc,
	.bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
	/* GPCCS will be loaded using PRI */
	.lhdr_flags = LSF_FLAG_FORCE_PRIV_LOAD,
};

static const struct acr_r352_ls_func
acr_r352_ls_gpccs_func = {
	.load = acr_ls_ucode_load_gpccs,
	.version_max = 0,
	.version = {
		&acr_r352_ls_gpccs_func_0,
	}
};



/**
 * struct acr_r352_pmu_bl_desc - PMU DMEM bootloader descriptor
 * @dma_idx:		DMA context to be used by BL while loading code/data
 * @code_dma_base:	256B-aligned Physical FB Address where code is located
 * @total_code_size:	total size of the code part in the ucode
 * @code_size_to_load:	size of the code part to load in PMU IMEM.
 * @code_entry_point:	entry point in the code.
 * @data_dma_base:	Physical FB address where data part of ucode is located
 * @data_size:		Total size of the data portion.
 * @overlay_dma_base:	Physical Fb address for resident code present in ucode
 * @argc:		Total number of args
 * @argv:		offset where args are copied into PMU's DMEM.
 *
 * Structure used by the PMU bootloader to load the rest of the code
 */
struct acr_r352_pmu_bl_desc {
	u32 dma_idx;
	u32 code_dma_base;
	u32 code_size_total;
	u32 code_size_to_load;
	u32 code_entry_point;
	u32 data_dma_base;
	u32 data_size;
	u32 overlay_dma_base;
	u32 argc;
	u32 argv;
	u16 code_dma_base1;
	u16 data_dma_base1;
	u16 overlay_dma_base1;
};

/**
 * acr_r352_generate_pmu_bl_desc() - populate a DMEM BL descriptor for PMU LS image
 *
 */
static void
acr_r352_generate_pmu_bl_desc(const struct nvkm_acr *acr,
			      const struct ls_ucode_img *img, u64 wpr_addr,
			      void *_desc)
{
	const struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
	const struct nvkm_pmu *pmu = acr->subdev->device->pmu;
	struct acr_r352_pmu_bl_desc *desc = _desc;
	u64 base;
	u64 addr_code;
	u64 addr_data;
	u32 addr_args;

	base = wpr_addr + img->ucode_off + pdesc->app_start_offset;
	addr_code = (base + pdesc->app_resident_code_offset) >> 8;
	addr_data = (base + pdesc->app_resident_data_offset) >> 8;
	addr_args = pmu->falcon->data.limit;
	addr_args -= NVKM_MSGQUEUE_CMDLINE_SIZE;

	desc->dma_idx = FALCON_DMAIDX_UCODE;
	desc->code_dma_base = lower_32_bits(addr_code);
	desc->code_dma_base1 = upper_32_bits(addr_code);
	desc->code_size_total = pdesc->app_size;
	desc->code_size_to_load = pdesc->app_resident_code_size;
	desc->code_entry_point = pdesc->app_imem_entry;
	desc->data_dma_base = lower_32_bits(addr_data);
	desc->data_dma_base1 = upper_32_bits(addr_data);
	desc->data_size = pdesc->app_resident_data_size;
	desc->overlay_dma_base = lower_32_bits(addr_code);
	desc->overlay_dma_base1 = upper_32_bits(addr_code);
	desc->argc = 1;
	desc->argv = addr_args;
}

static const struct acr_r352_lsf_func
acr_r352_ls_pmu_func_0 = {
	.generate_bl_desc = acr_r352_generate_pmu_bl_desc,
	.bl_desc_size = sizeof(struct acr_r352_pmu_bl_desc),
};

static const struct acr_r352_ls_func
acr_r352_ls_pmu_func = {
	.load = acr_ls_ucode_load_pmu,
	.post_run = acr_ls_pmu_post_run,
	.version_max = 0,
	.version = {
		&acr_r352_ls_pmu_func_0,
	}
};

const struct acr_r352_func
acr_r352_func = {
	.fixup_hs_desc = acr_r352_fixup_hs_desc,
	.generate_hs_bl_desc = acr_r352_generate_hs_bl_desc,
	.hs_bl_desc_size = sizeof(struct acr_r352_flcn_bl_desc),
	.ls_ucode_img_load = acr_r352_ls_ucode_img_load,
	.ls_fill_headers = acr_r352_ls_fill_headers,
	.ls_write_wpr = acr_r352_ls_write_wpr,
	.ls_func = {
		[NVKM_SECBOOT_FALCON_FECS] = &acr_r352_ls_fecs_func,
		[NVKM_SECBOOT_FALCON_GPCCS] = &acr_r352_ls_gpccs_func,
		[NVKM_SECBOOT_FALCON_PMU] = &acr_r352_ls_pmu_func,
	},
};

static const struct nvkm_acr_func
acr_r352_base_func = {
	.dtor = acr_r352_dtor,
	.fini = acr_r352_fini,
	.load = acr_r352_load,
	.reset = acr_r352_reset,
};

struct nvkm_acr *
acr_r352_new_(const struct acr_r352_func *func,
	      enum nvkm_secboot_falcon boot_falcon,
	      unsigned long managed_falcons)
{
	struct acr_r352 *acr;
	int i;

	/* Check that all requested falcons are supported */
	for_each_set_bit(i, &managed_falcons, NVKM_SECBOOT_FALCON_END) {
		if (!func->ls_func[i])
			return ERR_PTR(-ENOTSUPP);
	}

	acr = kzalloc(sizeof(*acr), GFP_KERNEL);
	if (!acr)
		return ERR_PTR(-ENOMEM);

	acr->base.boot_falcon = boot_falcon;
	acr->base.managed_falcons = managed_falcons;
	acr->base.func = &acr_r352_base_func;
	acr->func = func;

	return &acr->base;
}

struct nvkm_acr *
acr_r352_new(unsigned long managed_falcons)
{
	return acr_r352_new_(&acr_r352_func, NVKM_SECBOOT_FALCON_PMU,
			     managed_falcons);
}