Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// SPDX-License-Identifier: GPL-2.0
/*
 *  Microchip AT42QT1050 QTouch Sensor Controller
 *
 *  Copyright (C) 2019 Pengutronix, Marco Felsch <kernel@pengutronix.de>
 *
 *  Base on AT42QT1070 driver by:
 *  Bo Shen <voice.shen@atmel.com>
 *  Copyright (C) 2011 Atmel
 */

#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/regmap.h>

/* Chip ID */
#define QT1050_CHIP_ID		0x00
#define QT1050_CHIP_ID_VER	0x46

/* Firmware version */
#define QT1050_FW_VERSION	0x01

/* Detection status */
#define QT1050_DET_STATUS	0x02

/* Key status */
#define QT1050_KEY_STATUS	0x03

/* Key Signals */
#define QT1050_KEY_SIGNAL_0_MSB	0x06
#define QT1050_KEY_SIGNAL_0_LSB	0x07
#define QT1050_KEY_SIGNAL_1_MSB	0x08
#define QT1050_KEY_SIGNAL_1_LSB	0x09
#define QT1050_KEY_SIGNAL_2_MSB	0x0c
#define QT1050_KEY_SIGNAL_2_LSB	0x0d
#define QT1050_KEY_SIGNAL_3_MSB	0x0e
#define QT1050_KEY_SIGNAL_3_LSB	0x0f
#define QT1050_KEY_SIGNAL_4_MSB	0x10
#define QT1050_KEY_SIGNAL_4_LSB	0x11

/* Reference data */
#define QT1050_REF_DATA_0_MSB	0x14
#define QT1050_REF_DATA_0_LSB	0x15
#define QT1050_REF_DATA_1_MSB	0x16
#define QT1050_REF_DATA_1_LSB	0x17
#define QT1050_REF_DATA_2_MSB	0x1a
#define QT1050_REF_DATA_2_LSB	0x1b
#define QT1050_REF_DATA_3_MSB	0x1c
#define QT1050_REF_DATA_3_LSB	0x1d
#define QT1050_REF_DATA_4_MSB	0x1e
#define QT1050_REF_DATA_4_LSB	0x1f

/* Negative threshold level */
#define QT1050_NTHR_0		0x21
#define QT1050_NTHR_1		0x22
#define QT1050_NTHR_2		0x24
#define QT1050_NTHR_3		0x25
#define QT1050_NTHR_4		0x26

/* Pulse / Scale  */
#define QT1050_PULSE_SCALE_0	0x28
#define QT1050_PULSE_SCALE_1	0x29
#define QT1050_PULSE_SCALE_2	0x2b
#define QT1050_PULSE_SCALE_3	0x2c
#define QT1050_PULSE_SCALE_4	0x2d

/* Detection integrator counter / AKS */
#define QT1050_DI_AKS_0		0x2f
#define QT1050_DI_AKS_1		0x30
#define QT1050_DI_AKS_2		0x32
#define QT1050_DI_AKS_3		0x33
#define QT1050_DI_AKS_4		0x34

/* Charge Share Delay */
#define QT1050_CSD_0		0x36
#define QT1050_CSD_1		0x37
#define QT1050_CSD_2		0x39
#define QT1050_CSD_3		0x3a
#define QT1050_CSD_4		0x3b

/* Low Power Mode */
#define QT1050_LPMODE		0x3d

/* Calibration and Reset */
#define QT1050_RES_CAL		0x3f
#define QT1050_RES_CAL_RESET		BIT(7)
#define QT1050_RES_CAL_CALIBRATE	BIT(1)

#define QT1050_MAX_KEYS		5
#define QT1050_RESET_TIME	255

struct qt1050_key_regs {
	unsigned int nthr;
	unsigned int pulse_scale;
	unsigned int di_aks;
	unsigned int csd;
};

struct qt1050_key {
	u32 num;
	u32 charge_delay;
	u32 thr_cnt;
	u32 samples;
	u32 scale;
	u32 keycode;
};

struct qt1050_priv {
	struct i2c_client	*client;
	struct input_dev	*input;
	struct regmap		*regmap;
	struct qt1050_key	keys[QT1050_MAX_KEYS];
	unsigned short		keycodes[QT1050_MAX_KEYS];
	u8			reg_keys;
	u8			last_keys;
};

static const struct qt1050_key_regs qt1050_key_regs_data[] = {
	{
		.nthr = QT1050_NTHR_0,
		.pulse_scale = QT1050_PULSE_SCALE_0,
		.di_aks = QT1050_DI_AKS_0,
		.csd = QT1050_CSD_0,
	}, {
		.nthr = QT1050_NTHR_1,
		.pulse_scale = QT1050_PULSE_SCALE_1,
		.di_aks = QT1050_DI_AKS_1,
		.csd = QT1050_CSD_1,
	}, {
		.nthr = QT1050_NTHR_2,
		.pulse_scale = QT1050_PULSE_SCALE_2,
		.di_aks = QT1050_DI_AKS_2,
		.csd = QT1050_CSD_2,
	}, {
		.nthr = QT1050_NTHR_3,
		.pulse_scale = QT1050_PULSE_SCALE_3,
		.di_aks = QT1050_DI_AKS_3,
		.csd = QT1050_CSD_3,
	}, {
		.nthr = QT1050_NTHR_4,
		.pulse_scale = QT1050_PULSE_SCALE_4,
		.di_aks = QT1050_DI_AKS_4,
		.csd = QT1050_CSD_4,
	}
};

static bool qt1050_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case QT1050_DET_STATUS:
	case QT1050_KEY_STATUS:
	case QT1050_KEY_SIGNAL_0_MSB:
	case QT1050_KEY_SIGNAL_0_LSB:
	case QT1050_KEY_SIGNAL_1_MSB:
	case QT1050_KEY_SIGNAL_1_LSB:
	case QT1050_KEY_SIGNAL_2_MSB:
	case QT1050_KEY_SIGNAL_2_LSB:
	case QT1050_KEY_SIGNAL_3_MSB:
	case QT1050_KEY_SIGNAL_3_LSB:
	case QT1050_KEY_SIGNAL_4_MSB:
	case QT1050_KEY_SIGNAL_4_LSB:
		return true;
	default:
		return false;
	}
}

static const struct regmap_range qt1050_readable_ranges[] = {
	regmap_reg_range(QT1050_CHIP_ID, QT1050_KEY_STATUS),
	regmap_reg_range(QT1050_KEY_SIGNAL_0_MSB, QT1050_KEY_SIGNAL_1_LSB),
	regmap_reg_range(QT1050_KEY_SIGNAL_2_MSB, QT1050_KEY_SIGNAL_4_LSB),
	regmap_reg_range(QT1050_REF_DATA_0_MSB, QT1050_REF_DATA_1_LSB),
	regmap_reg_range(QT1050_REF_DATA_2_MSB, QT1050_REF_DATA_4_LSB),
	regmap_reg_range(QT1050_NTHR_0, QT1050_NTHR_1),
	regmap_reg_range(QT1050_NTHR_2, QT1050_NTHR_4),
	regmap_reg_range(QT1050_PULSE_SCALE_0, QT1050_PULSE_SCALE_1),
	regmap_reg_range(QT1050_PULSE_SCALE_2, QT1050_PULSE_SCALE_4),
	regmap_reg_range(QT1050_DI_AKS_0, QT1050_DI_AKS_1),
	regmap_reg_range(QT1050_DI_AKS_2, QT1050_DI_AKS_4),
	regmap_reg_range(QT1050_CSD_0, QT1050_CSD_1),
	regmap_reg_range(QT1050_CSD_2, QT1050_RES_CAL),
};

static const struct regmap_access_table qt1050_readable_table = {
	.yes_ranges = qt1050_readable_ranges,
	.n_yes_ranges = ARRAY_SIZE(qt1050_readable_ranges),
};

static const struct regmap_range qt1050_writeable_ranges[] = {
	regmap_reg_range(QT1050_NTHR_0, QT1050_NTHR_1),
	regmap_reg_range(QT1050_NTHR_2, QT1050_NTHR_4),
	regmap_reg_range(QT1050_PULSE_SCALE_0, QT1050_PULSE_SCALE_1),
	regmap_reg_range(QT1050_PULSE_SCALE_2, QT1050_PULSE_SCALE_4),
	regmap_reg_range(QT1050_DI_AKS_0, QT1050_DI_AKS_1),
	regmap_reg_range(QT1050_DI_AKS_2, QT1050_DI_AKS_4),
	regmap_reg_range(QT1050_CSD_0, QT1050_CSD_1),
	regmap_reg_range(QT1050_CSD_2, QT1050_RES_CAL),
};

static const struct regmap_access_table qt1050_writeable_table = {
	.yes_ranges = qt1050_writeable_ranges,
	.n_yes_ranges = ARRAY_SIZE(qt1050_writeable_ranges),
};

static struct regmap_config qt1050_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = QT1050_RES_CAL,

	.cache_type = REGCACHE_RBTREE,

	.wr_table = &qt1050_writeable_table,
	.rd_table = &qt1050_readable_table,
	.volatile_reg = qt1050_volatile_reg,
};

static bool qt1050_identify(struct qt1050_priv *ts)
{
	unsigned int val;
	int err;

	/* Read Chip ID */
	regmap_read(ts->regmap, QT1050_CHIP_ID, &val);
	if (val != QT1050_CHIP_ID_VER) {
		dev_err(&ts->client->dev, "ID %d not supported\n", val);
		return false;
	}

	/* Read firmware version */
	err = regmap_read(ts->regmap, QT1050_FW_VERSION, &val);
	if (err) {
		dev_err(&ts->client->dev, "could not read the firmware version\n");
		return false;
	}

	dev_info(&ts->client->dev, "AT42QT1050 firmware version %1d.%1d\n",
		 val >> 4, val & 0xf);

	return true;
}

static irqreturn_t qt1050_irq_threaded(int irq, void *dev_id)
{
	struct qt1050_priv *ts = dev_id;
	struct input_dev *input = ts->input;
	unsigned long new_keys, changed;
	unsigned int val;
	int i, err;

	/* Read the detected status register, thus clearing interrupt */
	err = regmap_read(ts->regmap, QT1050_DET_STATUS, &val);
	if (err) {
		dev_err(&ts->client->dev, "Fail to read detection status: %d\n",
			err);
		return IRQ_NONE;
	}

	/* Read which key changed, keys are not continuous */
	err = regmap_read(ts->regmap, QT1050_KEY_STATUS, &val);
	if (err) {
		dev_err(&ts->client->dev,
			"Fail to determine the key status: %d\n", err);
		return IRQ_NONE;
	}
	new_keys = (val & 0x70) >> 2 | (val & 0x6) >> 1;
	changed = ts->last_keys ^ new_keys;
	/* Report registered keys only */
	changed &= ts->reg_keys;

	for_each_set_bit(i, &changed, QT1050_MAX_KEYS)
		input_report_key(input, ts->keys[i].keycode,
				 test_bit(i, &new_keys));

	ts->last_keys = new_keys;
	input_sync(input);

	return IRQ_HANDLED;
}

static const struct qt1050_key_regs *qt1050_get_key_regs(int key_num)
{
	return &qt1050_key_regs_data[key_num];
}

static int qt1050_set_key(struct regmap *map, int number, int on)
{
	const struct qt1050_key_regs *key_regs;

	key_regs = qt1050_get_key_regs(number);

	return regmap_update_bits(map, key_regs->di_aks, 0xfc,
				  on ? BIT(4) : 0x00);
}

static int qt1050_apply_fw_data(struct qt1050_priv *ts)
{
	struct regmap *map = ts->regmap;
	struct qt1050_key *button = &ts->keys[0];
	const struct qt1050_key_regs *key_regs;
	int i, err;

	/* Disable all keys and enable only the specified ones */
	for (i = 0; i < QT1050_MAX_KEYS; i++) {
		err = qt1050_set_key(map, i, 0);
		if (err)
			return err;
	}

	for (i = 0; i < QT1050_MAX_KEYS; i++, button++) {
		/* Keep KEY_RESERVED keys off */
		if (button->keycode == KEY_RESERVED)
			continue;

		err = qt1050_set_key(map, button->num, 1);
		if (err)
			return err;

		key_regs = qt1050_get_key_regs(button->num);

		err = regmap_write(map, key_regs->pulse_scale,
				   (button->samples << 4) | (button->scale));
		if (err)
			return err;
		err = regmap_write(map, key_regs->csd, button->charge_delay);
		if (err)
			return err;
		err = regmap_write(map, key_regs->nthr, button->thr_cnt);
		if (err)
			return err;
	}

	return 0;
}

static int qt1050_parse_fw(struct qt1050_priv *ts)
{
	struct device *dev = &ts->client->dev;
	struct fwnode_handle *child;
	int nbuttons;

	nbuttons = device_get_child_node_count(dev);
	if (nbuttons == 0 || nbuttons > QT1050_MAX_KEYS)
		return -ENODEV;

	device_for_each_child_node(dev, child) {
		struct qt1050_key button;

		/* Required properties */
		if (fwnode_property_read_u32(child, "linux,code",
					     &button.keycode)) {
			dev_err(dev, "Button without keycode\n");
			goto err;
		}
		if (button.keycode >= KEY_MAX) {
			dev_err(dev, "Invalid keycode 0x%x\n",
				button.keycode);
			goto err;
		}

		if (fwnode_property_read_u32(child, "reg",
					     &button.num)) {
			dev_err(dev, "Button without pad number\n");
			goto err;
		}
		if (button.num < 0 || button.num > QT1050_MAX_KEYS - 1)
			goto err;

		ts->reg_keys |= BIT(button.num);

		/* Optional properties */
		if (fwnode_property_read_u32(child,
					     "microchip,pre-charge-time-ns",
					     &button.charge_delay)) {
			button.charge_delay = 0;
		} else {
			if (button.charge_delay % 2500 == 0)
				button.charge_delay =
					button.charge_delay / 2500;
			else
				button.charge_delay = 0;
		}

		if (fwnode_property_read_u32(child, "microchip,average-samples",
					 &button.samples)) {
			button.samples = 0;
		} else {
			if (is_power_of_2(button.samples))
				button.samples = ilog2(button.samples);
			else
				button.samples = 0;
		}

		if (fwnode_property_read_u32(child, "microchip,average-scaling",
					     &button.scale)) {
			button.scale = 0;
		} else {
			if (is_power_of_2(button.scale))
				button.scale = ilog2(button.scale);
			else
				button.scale = 0;

		}

		if (fwnode_property_read_u32(child, "microchip,threshold",
					 &button.thr_cnt)) {
			button.thr_cnt = 20;
		} else {
			if (button.thr_cnt > 255)
				button.thr_cnt = 20;
		}

		ts->keys[button.num] = button;
	}

	return 0;

err:
	fwnode_handle_put(child);
	return -EINVAL;
}

static int qt1050_probe(struct i2c_client *client)
{
	struct qt1050_priv *ts;
	struct input_dev *input;
	struct device *dev = &client->dev;
	struct regmap *map;
	unsigned int status, i;
	int err;

	/* Check basic functionality */
	err = i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE);
	if (!err) {
		dev_err(&client->dev, "%s adapter not supported\n",
			dev_driver_string(&client->adapter->dev));
		return -ENODEV;
	}

	if (!client->irq) {
		dev_err(dev, "assign a irq line to this device\n");
		return -EINVAL;
	}

	ts = devm_kzalloc(dev, sizeof(*ts), GFP_KERNEL);
	if (!ts)
		return -ENOMEM;

	input = devm_input_allocate_device(dev);
	if (!input)
		return -ENOMEM;

	map = devm_regmap_init_i2c(client, &qt1050_regmap_config);
	if (IS_ERR(map))
		return PTR_ERR(map);

	ts->client = client;
	ts->input = input;
	ts->regmap = map;

	i2c_set_clientdata(client, ts);

	/* Identify the qt1050 chip */
	if (!qt1050_identify(ts))
		return -ENODEV;

	/* Get pdata */
	err = qt1050_parse_fw(ts);
	if (err) {
		dev_err(dev, "Failed to parse firmware: %d\n", err);
		return err;
	}

	input->name = "AT42QT1050 QTouch Sensor";
	input->dev.parent = &client->dev;
	input->id.bustype = BUS_I2C;

	/* Add the keycode */
	input->keycode = ts->keycodes;
	input->keycodesize = sizeof(ts->keycodes[0]);
	input->keycodemax = QT1050_MAX_KEYS;

	__set_bit(EV_KEY, input->evbit);
	for (i = 0; i < QT1050_MAX_KEYS; i++) {
		ts->keycodes[i] = ts->keys[i].keycode;
		__set_bit(ts->keycodes[i], input->keybit);
	}

	/* Trigger re-calibration */
	err = regmap_update_bits(ts->regmap, QT1050_RES_CAL, 0x7f,
				 QT1050_RES_CAL_CALIBRATE);
	if (err) {
		dev_err(dev, "Trigger calibration failed: %d\n", err);
		return err;
	}
	err = regmap_read_poll_timeout(ts->regmap, QT1050_DET_STATUS, status,
				 status >> 7 == 1, 10000, 200000);
	if (err) {
		dev_err(dev, "Calibration failed: %d\n", err);
		return err;
	}

	/* Soft reset to set defaults */
	err = regmap_update_bits(ts->regmap, QT1050_RES_CAL,
				 QT1050_RES_CAL_RESET, QT1050_RES_CAL_RESET);
	if (err) {
		dev_err(dev, "Trigger soft reset failed: %d\n", err);
		return err;
	}
	msleep(QT1050_RESET_TIME);

	/* Set pdata */
	err = qt1050_apply_fw_data(ts);
	if (err) {
		dev_err(dev, "Failed to set firmware data: %d\n", err);
		return err;
	}

	err = devm_request_threaded_irq(dev, client->irq, NULL,
					qt1050_irq_threaded, IRQF_ONESHOT,
					"qt1050", ts);
	if (err) {
		dev_err(&client->dev, "Failed to request irq: %d\n", err);
		return err;
	}

	/* Clear #CHANGE line */
	err = regmap_read(ts->regmap, QT1050_DET_STATUS, &status);
	if (err) {
		dev_err(dev, "Failed to clear #CHANGE line level: %d\n", err);
		return err;
	}

	/* Register the input device */
	err = input_register_device(ts->input);
	if (err) {
		dev_err(&client->dev, "Failed to register input device: %d\n",
			err);
		return err;
	}

	return 0;
}

static int __maybe_unused qt1050_suspend(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct qt1050_priv *ts = i2c_get_clientdata(client);

	disable_irq(client->irq);

	/*
	 * Set measurement interval to 1s (125 x 8ms) if wakeup is allowed
	 * else turn off. The 1s interval seems to be a good compromise between
	 * low power and response time.
	 */
	return regmap_write(ts->regmap, QT1050_LPMODE,
			    device_may_wakeup(dev) ? 125 : 0);
}

static int __maybe_unused qt1050_resume(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct qt1050_priv *ts = i2c_get_clientdata(client);

	enable_irq(client->irq);

	/* Set measurement interval back to 16ms (2 x 8ms) */
	return regmap_write(ts->regmap, QT1050_LPMODE, 2);
}

static SIMPLE_DEV_PM_OPS(qt1050_pm_ops, qt1050_suspend, qt1050_resume);

static const struct of_device_id __maybe_unused qt1050_of_match[] = {
	{ .compatible = "microchip,qt1050", },
	{ },
};
MODULE_DEVICE_TABLE(of, qt1050_of_match);

static struct i2c_driver qt1050_driver = {
	.driver	= {
		.name = "qt1050",
		.of_match_table = of_match_ptr(qt1050_of_match),
		.pm = &qt1050_pm_ops,
	},
	.probe_new = qt1050_probe,
};

module_i2c_driver(qt1050_driver);

MODULE_AUTHOR("Marco Felsch <kernel@pengutronix.de");
MODULE_DESCRIPTION("Driver for AT42QT1050 QTouch sensor");
MODULE_LICENSE("GPL v2");