// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2016 Synaptics Incorporated
*/
#include <linux/kernel.h>
#include <linux/rmi.h>
#include <linux/input.h>
#include <linux/slab.h>
#include "rmi_driver.h"
#define RMI_F30_QUERY_SIZE 2
/* Defs for Query 0 */
#define RMI_F30_EXTENDED_PATTERNS 0x01
#define RMI_F30_HAS_MAPPABLE_BUTTONS BIT(1)
#define RMI_F30_HAS_LED BIT(2)
#define RMI_F30_HAS_GPIO BIT(3)
#define RMI_F30_HAS_HAPTIC BIT(4)
#define RMI_F30_HAS_GPIO_DRV_CTL BIT(5)
#define RMI_F30_HAS_MECH_MOUSE_BTNS BIT(6)
/* Defs for Query 1 */
#define RMI_F30_GPIO_LED_COUNT 0x1F
/* Defs for Control Registers */
#define RMI_F30_CTRL_1_GPIO_DEBOUNCE 0x01
#define RMI_F30_CTRL_1_HALT BIT(4)
#define RMI_F30_CTRL_1_HALTED BIT(5)
#define RMI_F30_CTRL_10_NUM_MECH_MOUSE_BTNS 0x03
#define RMI_F30_CTRL_MAX_REGS 32
#define RMI_F30_CTRL_MAX_BYTES DIV_ROUND_UP(RMI_F30_CTRL_MAX_REGS, 8)
#define RMI_F30_CTRL_MAX_REG_BLOCKS 11
#define RMI_F30_CTRL_REGS_MAX_SIZE (RMI_F30_CTRL_MAX_BYTES \
+ 1 \
+ RMI_F30_CTRL_MAX_BYTES \
+ RMI_F30_CTRL_MAX_BYTES \
+ RMI_F30_CTRL_MAX_BYTES \
+ 6 \
+ RMI_F30_CTRL_MAX_REGS \
+ RMI_F30_CTRL_MAX_REGS \
+ RMI_F30_CTRL_MAX_BYTES \
+ 1 \
+ 1)
#define TRACKSTICK_RANGE_START 3
#define TRACKSTICK_RANGE_END 6
struct rmi_f30_ctrl_data {
int address;
int length;
u8 *regs;
};
struct f30_data {
/* Query Data */
bool has_extended_pattern;
bool has_mappable_buttons;
bool has_led;
bool has_gpio;
bool has_haptic;
bool has_gpio_driver_control;
bool has_mech_mouse_btns;
u8 gpioled_count;
u8 register_count;
/* Control Register Data */
struct rmi_f30_ctrl_data ctrl[RMI_F30_CTRL_MAX_REG_BLOCKS];
u8 ctrl_regs[RMI_F30_CTRL_REGS_MAX_SIZE];
u32 ctrl_regs_size;
u8 data_regs[RMI_F30_CTRL_MAX_BYTES];
u16 *gpioled_key_map;
struct input_dev *input;
struct rmi_function *f03;
bool trackstick_buttons;
};
static int rmi_f30_read_control_parameters(struct rmi_function *fn,
struct f30_data *f30)
{
int error;
error = rmi_read_block(fn->rmi_dev, fn->fd.control_base_addr,
f30->ctrl_regs, f30->ctrl_regs_size);
if (error) {
dev_err(&fn->dev,
"%s: Could not read control registers at 0x%x: %d\n",
__func__, fn->fd.control_base_addr, error);
return error;
}
return 0;
}
static void rmi_f30_report_button(struct rmi_function *fn,
struct f30_data *f30, unsigned int button)
{
unsigned int reg_num = button >> 3;
unsigned int bit_num = button & 0x07;
u16 key_code = f30->gpioled_key_map[button];
bool key_down = !(f30->data_regs[reg_num] & BIT(bit_num));
if (f30->trackstick_buttons &&
button >= TRACKSTICK_RANGE_START &&
button <= TRACKSTICK_RANGE_END) {
rmi_f03_overwrite_button(f30->f03, key_code, key_down);
} else {
rmi_dbg(RMI_DEBUG_FN, &fn->dev,
"%s: call input report key (0x%04x) value (0x%02x)",
__func__, key_code, key_down);
input_report_key(f30->input, key_code, key_down);
}
}
static irqreturn_t rmi_f30_attention(int irq, void *ctx)
{
struct rmi_function *fn = ctx;
struct f30_data *f30 = dev_get_drvdata(&fn->dev);
struct rmi_driver_data *drvdata = dev_get_drvdata(&fn->rmi_dev->dev);
int error;
int i;
/* Read the gpi led data. */
if (drvdata->attn_data.data) {
if (drvdata->attn_data.size < f30->register_count) {
dev_warn(&fn->dev,
"F30 interrupted, but data is missing\n");
return IRQ_HANDLED;
}
memcpy(f30->data_regs, drvdata->attn_data.data,
f30->register_count);
drvdata->attn_data.data += f30->register_count;
drvdata->attn_data.size -= f30->register_count;
} else {
error = rmi_read_block(fn->rmi_dev, fn->fd.data_base_addr,
f30->data_regs, f30->register_count);
if (error) {
dev_err(&fn->dev,
"%s: Failed to read F30 data registers: %d\n",
__func__, error);
return IRQ_RETVAL(error);
}
}
if (f30->has_gpio) {
for (i = 0; i < f30->gpioled_count; i++)
if (f30->gpioled_key_map[i] != KEY_RESERVED)
rmi_f30_report_button(fn, f30, i);
if (f30->trackstick_buttons)
rmi_f03_commit_buttons(f30->f03);
}
return IRQ_HANDLED;
}
static int rmi_f30_config(struct rmi_function *fn)
{
struct f30_data *f30 = dev_get_drvdata(&fn->dev);
struct rmi_driver *drv = fn->rmi_dev->driver;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(fn->rmi_dev);
int error;
/* can happen if f30_data.disable is set */
if (!f30)
return 0;
if (pdata->f30_data.trackstick_buttons) {
/* Try [re-]establish link to F03. */
f30->f03 = rmi_find_function(fn->rmi_dev, 0x03);
f30->trackstick_buttons = f30->f03 != NULL;
}
if (pdata->f30_data.disable) {
drv->clear_irq_bits(fn->rmi_dev, fn->irq_mask);
} else {
/* Write Control Register values back to device */
error = rmi_write_block(fn->rmi_dev, fn->fd.control_base_addr,
f30->ctrl_regs, f30->ctrl_regs_size);
if (error) {
dev_err(&fn->dev,
"%s: Could not write control registers at 0x%x: %d\n",
__func__, fn->fd.control_base_addr, error);
return error;
}
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
}
return 0;
}
static void rmi_f30_set_ctrl_data(struct rmi_f30_ctrl_data *ctrl,
int *ctrl_addr, int len, u8 **reg)
{
ctrl->address = *ctrl_addr;
ctrl->length = len;
ctrl->regs = *reg;
*ctrl_addr += len;
*reg += len;
}
static bool rmi_f30_is_valid_button(int button, struct rmi_f30_ctrl_data *ctrl)
{
int byte_position = button >> 3;
int bit_position = button & 0x07;
/*
* ctrl2 -> dir == 0 -> input mode
* ctrl3 -> data == 1 -> actual button
*/
return !(ctrl[2].regs[byte_position] & BIT(bit_position)) &&
(ctrl[3].regs[byte_position] & BIT(bit_position));
}
static int rmi_f30_map_gpios(struct rmi_function *fn,
struct f30_data *f30)
{
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(fn->rmi_dev);
struct input_dev *input = f30->input;
unsigned int button = BTN_LEFT;
unsigned int trackstick_button = BTN_LEFT;
bool button_mapped = false;
int i;
int button_count = min_t(u8, f30->gpioled_count, TRACKSTICK_RANGE_END);
f30->gpioled_key_map = devm_kcalloc(&fn->dev,
button_count,
sizeof(f30->gpioled_key_map[0]),
GFP_KERNEL);
if (!f30->gpioled_key_map) {
dev_err(&fn->dev, "Failed to allocate gpioled map memory.\n");
return -ENOMEM;
}
for (i = 0; i < button_count; i++) {
if (!rmi_f30_is_valid_button(i, f30->ctrl))
continue;
if (pdata->f30_data.trackstick_buttons &&
i >= TRACKSTICK_RANGE_START && i < TRACKSTICK_RANGE_END) {
f30->gpioled_key_map[i] = trackstick_button++;
} else if (!pdata->f30_data.buttonpad || !button_mapped) {
f30->gpioled_key_map[i] = button;
input_set_capability(input, EV_KEY, button++);
button_mapped = true;
}
}
input->keycode = f30->gpioled_key_map;
input->keycodesize = sizeof(f30->gpioled_key_map[0]);
input->keycodemax = f30->gpioled_count;
/*
* Buttonpad could be also inferred from f30->has_mech_mouse_btns,
* but I am not sure, so use only the pdata info and the number of
* mapped buttons.
*/
if (pdata->f30_data.buttonpad || (button - BTN_LEFT == 1))
__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
return 0;
}
static int rmi_f30_initialize(struct rmi_function *fn, struct f30_data *f30)
{
u8 *ctrl_reg = f30->ctrl_regs;
int control_address = fn->fd.control_base_addr;
u8 buf[RMI_F30_QUERY_SIZE];
int error;
error = rmi_read_block(fn->rmi_dev, fn->fd.query_base_addr,
buf, RMI_F30_QUERY_SIZE);
if (error) {
dev_err(&fn->dev, "Failed to read query register\n");
return error;
}
f30->has_extended_pattern = buf[0] & RMI_F30_EXTENDED_PATTERNS;
f30->has_mappable_buttons = buf[0] & RMI_F30_HAS_MAPPABLE_BUTTONS;
f30->has_led = buf[0] & RMI_F30_HAS_LED;
f30->has_gpio = buf[0] & RMI_F30_HAS_GPIO;
f30->has_haptic = buf[0] & RMI_F30_HAS_HAPTIC;
f30->has_gpio_driver_control = buf[0] & RMI_F30_HAS_GPIO_DRV_CTL;
f30->has_mech_mouse_btns = buf[0] & RMI_F30_HAS_MECH_MOUSE_BTNS;
f30->gpioled_count = buf[1] & RMI_F30_GPIO_LED_COUNT;
f30->register_count = DIV_ROUND_UP(f30->gpioled_count, 8);
if (f30->has_gpio && f30->has_led)
rmi_f30_set_ctrl_data(&f30->ctrl[0], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[1], &control_address,
sizeof(u8), &ctrl_reg);
if (f30->has_gpio) {
rmi_f30_set_ctrl_data(&f30->ctrl[2], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[3], &control_address,
f30->register_count, &ctrl_reg);
}
if (f30->has_led) {
rmi_f30_set_ctrl_data(&f30->ctrl[4], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[5], &control_address,
f30->has_extended_pattern ? 6 : 2,
&ctrl_reg);
}
if (f30->has_led || f30->has_gpio_driver_control) {
/* control 6 uses a byte per gpio/led */
rmi_f30_set_ctrl_data(&f30->ctrl[6], &control_address,
f30->gpioled_count, &ctrl_reg);
}
if (f30->has_mappable_buttons) {
/* control 7 uses a byte per gpio/led */
rmi_f30_set_ctrl_data(&f30->ctrl[7], &control_address,
f30->gpioled_count, &ctrl_reg);
}
if (f30->has_haptic) {
rmi_f30_set_ctrl_data(&f30->ctrl[8], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[9], &control_address,
sizeof(u8), &ctrl_reg);
}
if (f30->has_mech_mouse_btns)
rmi_f30_set_ctrl_data(&f30->ctrl[10], &control_address,
sizeof(u8), &ctrl_reg);
f30->ctrl_regs_size = ctrl_reg -
f30->ctrl_regs ?: RMI_F30_CTRL_REGS_MAX_SIZE;
error = rmi_f30_read_control_parameters(fn, f30);
if (error) {
dev_err(&fn->dev,
"Failed to initialize F30 control params: %d\n",
error);
return error;
}
if (f30->has_gpio) {
error = rmi_f30_map_gpios(fn, f30);
if (error)
return error;
}
return 0;
}
static int rmi_f30_probe(struct rmi_function *fn)
{
struct rmi_device *rmi_dev = fn->rmi_dev;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *drv_data = dev_get_drvdata(&rmi_dev->dev);
struct f30_data *f30;
int error;
if (pdata->f30_data.disable)
return 0;
if (!drv_data->input) {
dev_info(&fn->dev, "F30: no input device found, ignoring\n");
return -ENXIO;
}
f30 = devm_kzalloc(&fn->dev, sizeof(*f30), GFP_KERNEL);
if (!f30)
return -ENOMEM;
f30->input = drv_data->input;
error = rmi_f30_initialize(fn, f30);
if (error)
return error;
dev_set_drvdata(&fn->dev, f30);
return 0;
}
struct rmi_function_handler rmi_f30_handler = {
.driver = {
.name = "rmi4_f30",
},
.func = 0x30,
.probe = rmi_f30_probe,
.config = rmi_f30_config,
.attention = rmi_f30_attention,
};