// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009 - 2018 Intel Corporation. */
#include "vf.h"
static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
u16 *duplex);
static s32 e1000_init_hw_vf(struct e1000_hw *hw);
static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
u32, u32, u32);
static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
/**
* e1000_init_mac_params_vf - Inits MAC params
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
/* VF's have no MTA Registers - PF feature only */
mac->mta_reg_count = 128;
/* VF's have no access to RAR entries */
mac->rar_entry_count = 1;
/* Function pointers */
/* reset */
mac->ops.reset_hw = e1000_reset_hw_vf;
/* hw initialization */
mac->ops.init_hw = e1000_init_hw_vf;
/* check for link */
mac->ops.check_for_link = e1000_check_for_link_vf;
/* link info */
mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
/* set mac address */
mac->ops.rar_set = e1000_rar_set_vf;
/* read mac address */
mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
/* set mac filter */
mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
/* set vlan filter table array */
mac->ops.set_vfta = e1000_set_vfta_vf;
return E1000_SUCCESS;
}
/**
* e1000_init_function_pointers_vf - Inits function pointers
* @hw: pointer to the HW structure
**/
void e1000_init_function_pointers_vf(struct e1000_hw *hw)
{
hw->mac.ops.init_params = e1000_init_mac_params_vf;
hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
}
/**
* e1000_get_link_up_info_vf - Gets link info.
* @hw: pointer to the HW structure
* @speed: pointer to 16 bit value to store link speed.
* @duplex: pointer to 16 bit value to store duplex.
*
* Since we cannot read the PHY and get accurate link info, we must rely upon
* the status register's data which is often stale and inaccurate.
**/
static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 status;
status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000)
*speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
*speed = SPEED_100;
else
*speed = SPEED_10;
if (status & E1000_STATUS_FD)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return E1000_SUCCESS;
}
/**
* e1000_reset_hw_vf - Resets the HW
* @hw: pointer to the HW structure
*
* VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
* This is all the reset we can perform on a VF.
**/
static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 timeout = E1000_VF_INIT_TIMEOUT;
u32 ret_val = -E1000_ERR_MAC_INIT;
u32 msgbuf[3];
u8 *addr = (u8 *)(&msgbuf[1]);
u32 ctrl;
/* assert VF queue/interrupt reset */
ctrl = er32(CTRL);
ew32(CTRL, ctrl | E1000_CTRL_RST);
/* we cannot initialize while the RSTI / RSTD bits are asserted */
while (!mbx->ops.check_for_rst(hw) && timeout) {
timeout--;
udelay(5);
}
if (timeout) {
/* mailbox timeout can now become active */
mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
/* notify PF of VF reset completion */
msgbuf[0] = E1000_VF_RESET;
mbx->ops.write_posted(hw, msgbuf, 1);
mdelay(10);
/* set our "perm_addr" based on info provided by PF */
ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
if (!ret_val) {
if (msgbuf[0] == (E1000_VF_RESET |
E1000_VT_MSGTYPE_ACK))
memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
else
ret_val = -E1000_ERR_MAC_INIT;
}
}
return ret_val;
}
/**
* e1000_init_hw_vf - Inits the HW
* @hw: pointer to the HW structure
*
* Not much to do here except clear the PF Reset indication if there is one.
**/
static s32 e1000_init_hw_vf(struct e1000_hw *hw)
{
/* attempt to set and restore our mac address */
e1000_rar_set_vf(hw, hw->mac.addr, 0);
return E1000_SUCCESS;
}
/**
* e1000_hash_mc_addr_vf - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value. See
* e1000_mta_set_generic()
**/
static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* The bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16)mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* e1000_update_mc_addr_list_vf - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
* @rar_used_count: the first RAR register free to program
* @rar_count: total number of supported Receive Address Registers
*
* Updates the Receive Address Registers and Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
* The parameter rar_count will usually be hw->mac.rar_entry_count
* unless there are workarounds that change this.
**/
static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count,
u32 rar_used_count, u32 rar_count)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[E1000_VFMAILBOX_SIZE];
u16 *hash_list = (u16 *)&msgbuf[1];
u32 hash_value;
u32 cnt, i;
s32 ret_val;
/* Each entry in the list uses 1 16 bit word. We have 30
* 16 bit words available in our HW msg buffer (minus 1 for the
* msg type). That's 30 hash values if we pack 'em right. If
* there are more than 30 MC addresses to add then punt the
* extras for now and then add code to handle more than 30 later.
* It would be unusual for a server to request that many multi-cast
* addresses except for in large enterprise network environments.
*/
cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
msgbuf[0] = E1000_VF_SET_MULTICAST;
msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
for (i = 0; i < cnt; i++) {
hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
hash_list[i] = hash_value & 0x0FFFF;
mc_addr_list += ETH_ALEN;
}
ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
if (!ret_val)
mbx->ops.read_posted(hw, msgbuf, 1);
}
/**
* e1000_set_vfta_vf - Set/Unset vlan filter table address
* @hw: pointer to the HW structure
* @vid: determines the vfta register and bit to set/unset
* @set: if true then set bit, else clear bit
**/
static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[2];
s32 err;
msgbuf[0] = E1000_VF_SET_VLAN;
msgbuf[1] = vid;
/* Setting the 8 bit field MSG INFO to true indicates "add" */
if (set)
msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
mbx->ops.write_posted(hw, msgbuf, 2);
err = mbx->ops.read_posted(hw, msgbuf, 2);
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
/* if nacked the vlan was rejected */
if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
err = -E1000_ERR_MAC_INIT;
return err;
}
/**
* e1000_rlpml_set_vf - Set the maximum receive packet length
* @hw: pointer to the HW structure
* @max_size: value to assign to max frame size
**/
void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[2];
s32 ret_val;
msgbuf[0] = E1000_VF_SET_LPE;
msgbuf[1] = max_size;
ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
if (!ret_val)
mbx->ops.read_posted(hw, msgbuf, 1);
}
/**
* e1000_rar_set_vf - set device MAC address
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
**/
static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[3];
u8 *msg_addr = (u8 *)(&msgbuf[1]);
s32 ret_val;
memset(msgbuf, 0, 12);
msgbuf[0] = E1000_VF_SET_MAC_ADDR;
memcpy(msg_addr, addr, ETH_ALEN);
ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
if (!ret_val)
ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
/* if nacked the address was rejected, use "perm_addr" */
if (!ret_val &&
(msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
e1000_read_mac_addr_vf(hw);
}
/**
* e1000_read_mac_addr_vf - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
{
memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
return E1000_SUCCESS;
}
/**
* e1000_set_uc_addr_vf - Set or clear unicast filters
* @hw: pointer to the HW structure
* @sub_cmd: add or clear filters
* @addr: pointer to the filter MAC address
**/
static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
{
struct e1000_mbx_info *mbx = &hw->mbx;
u32 msgbuf[3], msgbuf_chk;
u8 *msg_addr = (u8 *)(&msgbuf[1]);
s32 ret_val;
memset(msgbuf, 0, sizeof(msgbuf));
msgbuf[0] |= sub_cmd;
msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
msgbuf_chk = msgbuf[0];
if (addr)
memcpy(msg_addr, addr, ETH_ALEN);
ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
if (!ret_val)
ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
if (!ret_val) {
msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
return -ENOSPC;
}
return ret_val;
}
/**
* e1000_check_for_link_vf - Check for link for a virtual interface
* @hw: pointer to the HW structure
*
* Checks to see if the underlying PF is still talking to the VF and
* if it is then it reports the link state to the hardware, otherwise
* it reports link down and returns an error.
**/
static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
{
struct e1000_mbx_info *mbx = &hw->mbx;
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = E1000_SUCCESS;
u32 in_msg = 0;
/* We only want to run this if there has been a rst asserted.
* in this case that could mean a link change, device reset,
* or a virtual function reset
*/
/* If we were hit with a reset or timeout drop the link */
if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
mac->get_link_status = true;
if (!mac->get_link_status)
goto out;
/* if link status is down no point in checking to see if PF is up */
if (!(er32(STATUS) & E1000_STATUS_LU))
goto out;
/* if the read failed it could just be a mailbox collision, best wait
* until we are called again and don't report an error
*/
if (mbx->ops.read(hw, &in_msg, 1))
goto out;
/* if incoming message isn't clear to send we are waiting on response */
if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
/* msg is not CTS and is NACK we must have lost CTS status */
if (in_msg & E1000_VT_MSGTYPE_NACK)
ret_val = -E1000_ERR_MAC_INIT;
goto out;
}
/* the PF is talking, if we timed out in the past we reinit */
if (!mbx->timeout) {
ret_val = -E1000_ERR_MAC_INIT;
goto out;
}
/* if we passed all the tests above then the link is up and we no
* longer need to check for link
*/
mac->get_link_status = false;
out:
return ret_val;
}