// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/rti800.c
* Hardware driver for Analog Devices RTI-800/815 board
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 1998 David A. Schleef <ds@schleef.org>
*/
/*
* Driver: rti800
* Description: Analog Devices RTI-800/815
* Devices: [Analog Devices] RTI-800 (rti800), RTI-815 (rti815)
* Author: David A. Schleef <ds@schleef.org>
* Status: unknown
* Updated: Fri, 05 Sep 2008 14:50:44 +0100
*
* Configuration options:
* [0] - I/O port base address
* [1] - IRQ (not supported / unused)
* [2] - A/D mux/reference (number of channels)
* 0 = differential
* 1 = pseudodifferential (common)
* 2 = single-ended
* [3] - A/D range
* 0 = [-10,10]
* 1 = [-5,5]
* 2 = [0,10]
* [4] - A/D encoding
* 0 = two's complement
* 1 = straight binary
* [5] - DAC 0 range
* 0 = [-10,10]
* 1 = [0,10]
* [6] - DAC 0 encoding
* 0 = two's complement
* 1 = straight binary
* [7] - DAC 1 range (same as DAC 0)
* [8] - DAC 1 encoding (same as DAC 0)
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include "../comedidev.h"
/*
* Register map
*/
#define RTI800_CSR 0x00
#define RTI800_CSR_BUSY BIT(7)
#define RTI800_CSR_DONE BIT(6)
#define RTI800_CSR_OVERRUN BIT(5)
#define RTI800_CSR_TCR BIT(4)
#define RTI800_CSR_DMA_ENAB BIT(3)
#define RTI800_CSR_INTR_TC BIT(2)
#define RTI800_CSR_INTR_EC BIT(1)
#define RTI800_CSR_INTR_OVRN BIT(0)
#define RTI800_MUXGAIN 0x01
#define RTI800_CONVERT 0x02
#define RTI800_ADCLO 0x03
#define RTI800_ADCHI 0x04
#define RTI800_DAC0LO 0x05
#define RTI800_DAC0HI 0x06
#define RTI800_DAC1LO 0x07
#define RTI800_DAC1HI 0x08
#define RTI800_CLRFLAGS 0x09
#define RTI800_DI 0x0a
#define RTI800_DO 0x0b
#define RTI800_9513A_DATA 0x0c
#define RTI800_9513A_CNTRL 0x0d
#define RTI800_9513A_STATUS 0x0d
static const struct comedi_lrange range_rti800_ai_10_bipolar = {
4, {
BIP_RANGE(10),
BIP_RANGE(1),
BIP_RANGE(0.1),
BIP_RANGE(0.02)
}
};
static const struct comedi_lrange range_rti800_ai_5_bipolar = {
4, {
BIP_RANGE(5),
BIP_RANGE(0.5),
BIP_RANGE(0.05),
BIP_RANGE(0.01)
}
};
static const struct comedi_lrange range_rti800_ai_unipolar = {
4, {
UNI_RANGE(10),
UNI_RANGE(1),
UNI_RANGE(0.1),
UNI_RANGE(0.02)
}
};
static const struct comedi_lrange *const rti800_ai_ranges[] = {
&range_rti800_ai_10_bipolar,
&range_rti800_ai_5_bipolar,
&range_rti800_ai_unipolar,
};
static const struct comedi_lrange *const rti800_ao_ranges[] = {
&range_bipolar10,
&range_unipolar10,
};
struct rti800_board {
const char *name;
int has_ao;
};
static const struct rti800_board rti800_boardtypes[] = {
{
.name = "rti800",
}, {
.name = "rti815",
.has_ao = 1,
},
};
struct rti800_private {
bool adc_2comp;
bool dac_2comp[2];
const struct comedi_lrange *ao_range_type_list[2];
unsigned char muxgain_bits;
};
static int rti800_ai_eoc(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned long context)
{
unsigned char status;
status = inb(dev->iobase + RTI800_CSR);
if (status & RTI800_CSR_OVERRUN) {
outb(0, dev->iobase + RTI800_CLRFLAGS);
return -EOVERFLOW;
}
if (status & RTI800_CSR_DONE)
return 0;
return -EBUSY;
}
static int rti800_ai_insn_read(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct rti800_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
unsigned int gain = CR_RANGE(insn->chanspec);
unsigned char muxgain_bits;
int ret;
int i;
inb(dev->iobase + RTI800_ADCHI);
outb(0, dev->iobase + RTI800_CLRFLAGS);
muxgain_bits = chan | (gain << 5);
if (muxgain_bits != devpriv->muxgain_bits) {
devpriv->muxgain_bits = muxgain_bits;
outb(devpriv->muxgain_bits, dev->iobase + RTI800_MUXGAIN);
/*
* Without a delay here, the RTI_CSR_OVERRUN bit
* gets set, and you will have an error.
*/
if (insn->n > 0) {
int delay = (gain == 0) ? 10 :
(gain == 1) ? 20 :
(gain == 2) ? 40 : 80;
udelay(delay);
}
}
for (i = 0; i < insn->n; i++) {
unsigned int val;
outb(0, dev->iobase + RTI800_CONVERT);
ret = comedi_timeout(dev, s, insn, rti800_ai_eoc, 0);
if (ret)
return ret;
val = inb(dev->iobase + RTI800_ADCLO);
val |= (inb(dev->iobase + RTI800_ADCHI) & 0xf) << 8;
if (devpriv->adc_2comp)
val = comedi_offset_munge(s, val);
data[i] = val;
}
return insn->n;
}
static int rti800_ao_insn_write(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
struct rti800_private *devpriv = dev->private;
unsigned int chan = CR_CHAN(insn->chanspec);
int reg_lo = chan ? RTI800_DAC1LO : RTI800_DAC0LO;
int reg_hi = chan ? RTI800_DAC1HI : RTI800_DAC0HI;
int i;
for (i = 0; i < insn->n; i++) {
unsigned int val = data[i];
s->readback[chan] = val;
if (devpriv->dac_2comp[chan])
val = comedi_offset_munge(s, val);
outb(val & 0xff, dev->iobase + reg_lo);
outb((val >> 8) & 0xff, dev->iobase + reg_hi);
}
return insn->n;
}
static int rti800_di_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
data[1] = inb(dev->iobase + RTI800_DI);
return insn->n;
}
static int rti800_do_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data)
{
if (comedi_dio_update_state(s, data)) {
/* Outputs are inverted... */
outb(s->state ^ 0xff, dev->iobase + RTI800_DO);
}
data[1] = s->state;
return insn->n;
}
static int rti800_attach(struct comedi_device *dev, struct comedi_devconfig *it)
{
const struct rti800_board *board = dev->board_ptr;
struct rti800_private *devpriv;
struct comedi_subdevice *s;
int ret;
ret = comedi_request_region(dev, it->options[0], 0x10);
if (ret)
return ret;
outb(0, dev->iobase + RTI800_CSR);
inb(dev->iobase + RTI800_ADCHI);
outb(0, dev->iobase + RTI800_CLRFLAGS);
devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
if (!devpriv)
return -ENOMEM;
devpriv->adc_2comp = (it->options[4] == 0);
devpriv->dac_2comp[0] = (it->options[6] == 0);
devpriv->dac_2comp[1] = (it->options[8] == 0);
/* invalid, forces the MUXGAIN register to be set when first used */
devpriv->muxgain_bits = 0xff;
ret = comedi_alloc_subdevices(dev, 4);
if (ret)
return ret;
s = &dev->subdevices[0];
/* ai subdevice */
s->type = COMEDI_SUBD_AI;
s->subdev_flags = SDF_READABLE | SDF_GROUND;
s->n_chan = (it->options[2] ? 16 : 8);
s->insn_read = rti800_ai_insn_read;
s->maxdata = 0x0fff;
s->range_table = (it->options[3] < ARRAY_SIZE(rti800_ai_ranges))
? rti800_ai_ranges[it->options[3]]
: &range_unknown;
s = &dev->subdevices[1];
if (board->has_ao) {
/* ao subdevice (only on rti815) */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 2;
s->maxdata = 0x0fff;
s->range_table_list = devpriv->ao_range_type_list;
devpriv->ao_range_type_list[0] =
(it->options[5] < ARRAY_SIZE(rti800_ao_ranges))
? rti800_ao_ranges[it->options[5]]
: &range_unknown;
devpriv->ao_range_type_list[1] =
(it->options[7] < ARRAY_SIZE(rti800_ao_ranges))
? rti800_ao_ranges[it->options[7]]
: &range_unknown;
s->insn_write = rti800_ao_insn_write;
ret = comedi_alloc_subdev_readback(s);
if (ret)
return ret;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
s = &dev->subdevices[2];
/* di */
s->type = COMEDI_SUBD_DI;
s->subdev_flags = SDF_READABLE;
s->n_chan = 8;
s->insn_bits = rti800_di_insn_bits;
s->maxdata = 1;
s->range_table = &range_digital;
s = &dev->subdevices[3];
/* do */
s->type = COMEDI_SUBD_DO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = 8;
s->insn_bits = rti800_do_insn_bits;
s->maxdata = 1;
s->range_table = &range_digital;
/*
* There is also an Am9513 timer on these boards. This subdevice
* is not currently supported.
*/
return 0;
}
static struct comedi_driver rti800_driver = {
.driver_name = "rti800",
.module = THIS_MODULE,
.attach = rti800_attach,
.detach = comedi_legacy_detach,
.num_names = ARRAY_SIZE(rti800_boardtypes),
.board_name = &rti800_boardtypes[0].name,
.offset = sizeof(struct rti800_board),
};
module_comedi_driver(rti800_driver);
MODULE_DESCRIPTION("Comedi: RTI-800 Multifunction Analog/Digital board");
MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_LICENSE("GPL");