// SPDX-License-Identifier: GPL-2.0+
/*
* V4L2 Capture CSI Subdev for Freescale i.MX5/6 SOC
*
* Copyright (c) 2014-2017 Mentor Graphics Inc.
* Copyright (C) 2017 Pengutronix, Philipp Zabel <kernel@pengutronix.de>
*/
#include <linux/delay.h>
#include <linux/gcd.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <video/imx-ipu-v3.h>
#include <media/imx.h>
#include "imx-media.h"
/*
* Min/Max supported width and heights.
*
* We allow planar output, so we have to align width by 16 pixels
* to meet IDMAC alignment requirements.
*
* TODO: move this into pad format negotiation, if capture device
* has not requested planar formats, we should allow 8 pixel
* alignment.
*/
#define MIN_W 176
#define MIN_H 144
#define MAX_W 4096
#define MAX_H 4096
#define W_ALIGN 1 /* multiple of 2 pixels */
#define H_ALIGN 1 /* multiple of 2 lines */
#define S_ALIGN 1 /* multiple of 2 */
/*
* struct csi_skip_desc - CSI frame skipping descriptor
* @keep - number of frames kept per max_ratio frames
* @max_ratio - width of skip_smfc, written to MAX_RATIO bitfield
* @skip_smfc - skip pattern written to the SKIP_SMFC bitfield
*/
struct csi_skip_desc {
u8 keep;
u8 max_ratio;
u8 skip_smfc;
};
struct csi_priv {
struct device *dev;
struct ipu_soc *ipu;
struct v4l2_subdev sd;
struct media_pad pad[CSI_NUM_PADS];
/* the video device at IDMAC output pad */
struct imx_media_video_dev *vdev;
struct imx_media_fim *fim;
int csi_id;
int smfc_id;
/* lock to protect all members below */
struct mutex lock;
int active_output_pad;
struct ipuv3_channel *idmac_ch;
struct ipu_smfc *smfc;
struct ipu_csi *csi;
struct v4l2_mbus_framefmt format_mbus[CSI_NUM_PADS];
const struct imx_media_pixfmt *cc[CSI_NUM_PADS];
struct v4l2_fract frame_interval[CSI_NUM_PADS];
struct v4l2_rect crop;
struct v4l2_rect compose;
const struct csi_skip_desc *skip;
/* active vb2 buffers to send to video dev sink */
struct imx_media_buffer *active_vb2_buf[2];
struct imx_media_dma_buf underrun_buf;
int ipu_buf_num; /* ipu double buffer index: 0-1 */
/* the sink for the captured frames */
struct media_entity *sink;
enum ipu_csi_dest dest;
/* the source subdev */
struct v4l2_subdev *src_sd;
/* the mipi virtual channel number at link validate */
int vc_num;
/* the upstream endpoint CSI is receiving from */
struct v4l2_fwnode_endpoint upstream_ep;
spinlock_t irqlock; /* protect eof_irq handler */
struct timer_list eof_timeout_timer;
int eof_irq;
int nfb4eof_irq;
struct v4l2_ctrl_handler ctrl_hdlr;
int stream_count; /* streaming counter */
u32 frame_sequence; /* frame sequence counter */
bool last_eof; /* waiting for last EOF at stream off */
bool nfb4eof; /* NFB4EOF encountered during streaming */
bool interweave_swap; /* swap top/bottom lines when interweaving */
struct completion last_eof_comp;
};
static inline struct csi_priv *sd_to_dev(struct v4l2_subdev *sdev)
{
return container_of(sdev, struct csi_priv, sd);
}
static inline bool is_parallel_bus(struct v4l2_fwnode_endpoint *ep)
{
return ep->bus_type != V4L2_MBUS_CSI2_DPHY;
}
static inline bool is_parallel_16bit_bus(struct v4l2_fwnode_endpoint *ep)
{
return is_parallel_bus(ep) && ep->bus.parallel.bus_width >= 16;
}
/*
* Check for conditions that require the IPU to handle the
* data internally as generic data, aka passthrough mode:
* - raw bayer media bus formats, or
* - the CSI is receiving from a 16-bit parallel bus, or
* - the CSI is receiving from an 8-bit parallel bus and the incoming
* media bus format is other than UYVY8_2X8/YUYV8_2X8.
*/
static inline bool requires_passthrough(struct v4l2_fwnode_endpoint *ep,
struct v4l2_mbus_framefmt *infmt,
const struct imx_media_pixfmt *incc)
{
return incc->bayer || is_parallel_16bit_bus(ep) ||
(is_parallel_bus(ep) &&
infmt->code != MEDIA_BUS_FMT_UYVY8_2X8 &&
infmt->code != MEDIA_BUS_FMT_YUYV8_2X8);
}
/*
* Parses the fwnode endpoint from the source pad of the entity
* connected to this CSI. This will either be the entity directly
* upstream from the CSI-2 receiver, directly upstream from the
* video mux, or directly upstream from the CSI itself. The endpoint
* is needed to determine the bus type and bus config coming into
* the CSI.
*/
static int csi_get_upstream_endpoint(struct csi_priv *priv,
struct v4l2_fwnode_endpoint *ep)
{
struct device_node *endpoint, *port;
struct media_entity *src;
struct v4l2_subdev *sd;
struct media_pad *pad;
if (!IS_ENABLED([31mCONFIG_OF[0m))
return -ENXIO;
if (!priv->src_sd)
return -EPIPE;
sd = priv->src_sd;
src = &sd->entity;
if (src->function == MEDIA_ENT_F_VID_MUX) {
/*
* CSI is connected directly to video mux, skip up to
* CSI-2 receiver if it is in the path, otherwise stay
* with video mux.
*/
sd = imx_media_pipeline_subdev(src, IMX_MEDIA_GRP_ID_CSI2,
true);
if (!IS_ERR(sd))
src = &sd->entity;
}
/*
* If the source is neither the video mux nor the CSI-2 receiver,
* get the source pad directly upstream from CSI itself.
*/
if (src->function != MEDIA_ENT_F_VID_MUX &&
sd->grp_id != IMX_MEDIA_GRP_ID_CSI2)
src = &priv->sd.entity;
/* get source pad of entity directly upstream from src */
pad = imx_media_pipeline_pad(src, 0, 0, true);
if (!pad)
return -ENODEV;
sd = media_entity_to_v4l2_subdev(pad->entity);
/*
* NOTE: this assumes an OF-graph port id is the same as a
* media pad index.
*/
port = of_graph_get_port_by_id(sd->dev->of_node, pad->index);
if (!port)
return -ENODEV;
endpoint = of_get_next_child(port, NULL);
of_node_put(port);
if (!endpoint)
return -ENODEV;
v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), ep);
of_node_put(endpoint);
return 0;
}
static void csi_idmac_put_ipu_resources(struct csi_priv *priv)
{
if (priv->idmac_ch)
ipu_idmac_put(priv->idmac_ch);
priv->idmac_ch = NULL;
if (priv->smfc)
ipu_smfc_put(priv->smfc);
priv->smfc = NULL;
}
static int csi_idmac_get_ipu_resources(struct csi_priv *priv)
{
int ch_num, ret;
struct ipu_smfc *smfc;
struct ipuv3_channel *idmac_ch;
ch_num = IPUV3_CHANNEL_CSI0 + priv->smfc_id;
smfc = ipu_smfc_get(priv->ipu, ch_num);
if (IS_ERR(smfc)) {
v4l2_err(&priv->sd, "failed to get SMFC\n");
ret = PTR_ERR(smfc);
goto out;
}
priv->smfc = smfc;
idmac_ch = ipu_idmac_get(priv->ipu, ch_num);
if (IS_ERR(idmac_ch)) {
v4l2_err(&priv->sd, "could not get IDMAC channel %u\n",
ch_num);
ret = PTR_ERR(idmac_ch);
goto out;
}
priv->idmac_ch = idmac_ch;
return 0;
out:
csi_idmac_put_ipu_resources(priv);
return ret;
}
static void csi_vb2_buf_done(struct csi_priv *priv)
{
struct imx_media_video_dev *vdev = priv->vdev;
struct imx_media_buffer *done, *next;
struct vb2_buffer *vb;
dma_addr_t phys;
done = priv->active_vb2_buf[priv->ipu_buf_num];
if (done) {
done->vbuf.field = vdev->fmt.fmt.pix.field;
done->vbuf.sequence = priv->frame_sequence;
vb = &done->vbuf.vb2_buf;
vb->timestamp = ktime_get_ns();
vb2_buffer_done(vb, priv->nfb4eof ?
VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
}
priv->frame_sequence++;
priv->nfb4eof = false;
/* get next queued buffer */
next = imx_media_capture_device_next_buf(vdev);
if (next) {
phys = vb2_dma_contig_plane_dma_addr(&next->vbuf.vb2_buf, 0);
priv->active_vb2_buf[priv->ipu_buf_num] = next;
} else {
phys = priv->underrun_buf.phys;
priv->active_vb2_buf[priv->ipu_buf_num] = NULL;
}
if (ipu_idmac_buffer_is_ready(priv->idmac_ch, priv->ipu_buf_num))
ipu_idmac_clear_buffer(priv->idmac_ch, priv->ipu_buf_num);
if (priv->interweave_swap)
phys += vdev->fmt.fmt.pix.bytesperline;
ipu_cpmem_set_buffer(priv->idmac_ch, priv->ipu_buf_num, phys);
}
static irqreturn_t csi_idmac_eof_interrupt(int irq, void *dev_id)
{
struct csi_priv *priv = dev_id;
spin_lock(&priv->irqlock);
if (priv->last_eof) {
complete(&priv->last_eof_comp);
priv->last_eof = false;
goto unlock;
}
if (priv->fim)
/* call frame interval monitor */
imx_media_fim_eof_monitor(priv->fim, ktime_get());
csi_vb2_buf_done(priv);
/* select new IPU buf */
ipu_idmac_select_buffer(priv->idmac_ch, priv->ipu_buf_num);
/* toggle IPU double-buffer index */
priv->ipu_buf_num ^= 1;
/* bump the EOF timeout timer */
mod_timer(&priv->eof_timeout_timer,
jiffies + msecs_to_jiffies(IMX_MEDIA_EOF_TIMEOUT));
unlock:
spin_unlock(&priv->irqlock);
return IRQ_HANDLED;
}
static irqreturn_t csi_idmac_nfb4eof_interrupt(int irq, void *dev_id)
{
struct csi_priv *priv = dev_id;
spin_lock(&priv->irqlock);
/*
* this is not an unrecoverable error, just mark
* the next captured frame with vb2 error flag.
*/
priv->nfb4eof = true;
v4l2_err(&priv->sd, "NFB4EOF\n");
spin_unlock(&priv->irqlock);
return IRQ_HANDLED;
}
/*
* EOF timeout timer function. This is an unrecoverable condition
* without a stream restart.
*/
static void csi_idmac_eof_timeout(struct timer_list *t)
{
struct csi_priv *priv = from_timer(priv, t, eof_timeout_timer);
struct imx_media_video_dev *vdev = priv->vdev;
v4l2_err(&priv->sd, "EOF timeout\n");
/* signal a fatal error to capture device */
imx_media_capture_device_error(vdev);
}
static void csi_idmac_setup_vb2_buf(struct csi_priv *priv, dma_addr_t *phys)
{
struct imx_media_video_dev *vdev = priv->vdev;
struct imx_media_buffer *buf;
int i;
for (i = 0; i < 2; i++) {
buf = imx_media_capture_device_next_buf(vdev);
if (buf) {
priv->active_vb2_buf[i] = buf;
phys[i] = vb2_dma_contig_plane_dma_addr(
&buf->vbuf.vb2_buf, 0);
} else {
priv->active_vb2_buf[i] = NULL;
phys[i] = priv->underrun_buf.phys;
}
}
}
static void csi_idmac_unsetup_vb2_buf(struct csi_priv *priv,
enum vb2_buffer_state return_status)
{
struct imx_media_buffer *buf;
int i;
/* return any remaining active frames with return_status */
for (i = 0; i < 2; i++) {
buf = priv->active_vb2_buf[i];
if (buf) {
struct vb2_buffer *vb = &buf->vbuf.vb2_buf;
vb->timestamp = ktime_get_ns();
vb2_buffer_done(vb, return_status);
}
}
}
/* init the SMFC IDMAC channel */
static int csi_idmac_setup_channel(struct csi_priv *priv)
{
struct imx_media_video_dev *vdev = priv->vdev;
const struct imx_media_pixfmt *incc;
struct v4l2_mbus_framefmt *infmt;
struct v4l2_mbus_framefmt *outfmt;
bool passthrough, interweave;
struct ipu_image image;
u32 passthrough_bits;
u32 passthrough_cycles;
dma_addr_t phys[2];
u32 burst_size;
int ret;
infmt = &priv->format_mbus[CSI_SINK_PAD];
incc = priv->cc[CSI_SINK_PAD];
outfmt = &priv->format_mbus[CSI_SRC_PAD_IDMAC];
ipu_cpmem_zero(priv->idmac_ch);
memset(&image, 0, sizeof(image));
image.pix = vdev->fmt.fmt.pix;
image.rect = vdev->compose;
csi_idmac_setup_vb2_buf(priv, phys);
image.phys0 = phys[0];
image.phys1 = phys[1];
passthrough = requires_passthrough(&priv->upstream_ep, infmt, incc);
passthrough_cycles = 1;
/*
* If the field type at capture interface is interlaced, and
* the output IDMAC pad is sequential, enable interweave at
* the IDMAC output channel.
*/
interweave = V4L2_FIELD_IS_INTERLACED(image.pix.field) &&
V4L2_FIELD_IS_SEQUENTIAL(outfmt->field);
priv->interweave_swap = interweave &&
image.pix.field == V4L2_FIELD_INTERLACED_BT;
switch (image.pix.pixelformat) {
case V4L2_PIX_FMT_SBGGR8:
case V4L2_PIX_FMT_SGBRG8:
case V4L2_PIX_FMT_SGRBG8:
case V4L2_PIX_FMT_SRGGB8:
case V4L2_PIX_FMT_GREY:
burst_size = 16;
passthrough_bits = 8;
break;
case V4L2_PIX_FMT_SBGGR16:
case V4L2_PIX_FMT_SGBRG16:
case V4L2_PIX_FMT_SGRBG16:
case V4L2_PIX_FMT_SRGGB16:
case V4L2_PIX_FMT_Y16:
burst_size = 8;
passthrough_bits = 16;
break;
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_NV12:
burst_size = (image.pix.width & 0x3f) ?
((image.pix.width & 0x1f) ?
((image.pix.width & 0xf) ? 8 : 16) : 32) : 64;
passthrough_bits = 16;
/*
* Skip writing U and V components to odd rows (but not
* when enabling IDMAC interweaving, they are incompatible).
*/
if (!interweave)
ipu_cpmem_skip_odd_chroma_rows(priv->idmac_ch);
break;
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
burst_size = (image.pix.width & 0x1f) ?
((image.pix.width & 0xf) ? 8 : 16) : 32;
passthrough_bits = 16;
break;
case V4L2_PIX_FMT_RGB565:
if (passthrough) {
burst_size = 16;
passthrough_bits = 8;
passthrough_cycles = incc->cycles;
break;
}
/* fallthrough - non-passthrough RGB565 (CSI-2 bus) */
default:
burst_size = (image.pix.width & 0xf) ? 8 : 16;
passthrough_bits = 16;
break;
}
if (passthrough) {
if (priv->interweave_swap) {
/* start interweave scan at 1st top line (2nd line) */
image.phys0 += image.pix.bytesperline;
image.phys1 += image.pix.bytesperline;
}
ipu_cpmem_set_resolution(priv->idmac_ch,
image.rect.width * passthrough_cycles,
image.rect.height);
ipu_cpmem_set_stride(priv->idmac_ch, image.pix.bytesperline);
ipu_cpmem_set_buffer(priv->idmac_ch, 0, image.phys0);
ipu_cpmem_set_buffer(priv->idmac_ch, 1, image.phys1);
ipu_cpmem_set_format_passthrough(priv->idmac_ch,
passthrough_bits);
} else {
if (priv->interweave_swap) {
/* start interweave scan at 1st top line (2nd line) */
image.rect.top = 1;
}
ret = ipu_cpmem_set_image(priv->idmac_ch, &image);
if (ret)
goto unsetup_vb2;
}
ipu_cpmem_set_burstsize(priv->idmac_ch, burst_size);
/*
* Set the channel for the direct CSI-->memory via SMFC
* use-case to very high priority, by enabling the watermark
* signal in the SMFC, enabling WM in the channel, and setting
* the channel priority to high.
*
* Refer to the i.mx6 rev. D TRM Table 36-8: Calculated priority
* value.
*
* The WM's are set very low by intention here to ensure that
* the SMFC FIFOs do not overflow.
*/
ipu_smfc_set_watermark(priv->smfc, 0x02, 0x01);
ipu_cpmem_set_high_priority(priv->idmac_ch);
ipu_idmac_enable_watermark(priv->idmac_ch, true);
ipu_cpmem_set_axi_id(priv->idmac_ch, 0);
burst_size = passthrough ?
(burst_size >> 3) - 1 : (burst_size >> 2) - 1;
ipu_smfc_set_burstsize(priv->smfc, burst_size);
if (interweave)
ipu_cpmem_interlaced_scan(priv->idmac_ch,
priv->interweave_swap ?
-image.pix.bytesperline :
image.pix.bytesperline,
image.pix.pixelformat);
ipu_idmac_set_double_buffer(priv->idmac_ch, true);
return 0;
unsetup_vb2:
csi_idmac_unsetup_vb2_buf(priv, VB2_BUF_STATE_QUEUED);
return ret;
}
static void csi_idmac_unsetup(struct csi_priv *priv,
enum vb2_buffer_state state)
{
ipu_idmac_disable_channel(priv->idmac_ch);
ipu_smfc_disable(priv->smfc);
csi_idmac_unsetup_vb2_buf(priv, state);
}
static int csi_idmac_setup(struct csi_priv *priv)
{
int ret;
ret = csi_idmac_setup_channel(priv);
if (ret)
return ret;
ipu_cpmem_dump(priv->idmac_ch);
ipu_dump(priv->ipu);
ipu_smfc_enable(priv->smfc);
/* set buffers ready */
ipu_idmac_select_buffer(priv->idmac_ch, 0);
ipu_idmac_select_buffer(priv->idmac_ch, 1);
/* enable the channels */
ipu_idmac_enable_channel(priv->idmac_ch);
return 0;
}
static int csi_idmac_start(struct csi_priv *priv)
{
struct imx_media_video_dev *vdev = priv->vdev;
struct v4l2_pix_format *outfmt;
int ret;
ret = csi_idmac_get_ipu_resources(priv);
if (ret)
return ret;
ipu_smfc_map_channel(priv->smfc, priv->csi_id, priv->vc_num);
outfmt = &vdev->fmt.fmt.pix;
ret = imx_media_alloc_dma_buf(priv->dev, &priv->underrun_buf,
outfmt->sizeimage);
if (ret)
goto out_put_ipu;
priv->ipu_buf_num = 0;
/* init EOF completion waitq */
init_completion(&priv->last_eof_comp);
priv->frame_sequence = 0;
priv->last_eof = false;
priv->nfb4eof = false;
ret = csi_idmac_setup(priv);
if (ret) {
v4l2_err(&priv->sd, "csi_idmac_setup failed: %d\n", ret);
goto out_free_dma_buf;
}
priv->nfb4eof_irq = ipu_idmac_channel_irq(priv->ipu,
priv->idmac_ch,
IPU_IRQ_NFB4EOF);
ret = devm_request_irq(priv->dev, priv->nfb4eof_irq,
csi_idmac_nfb4eof_interrupt, 0,
"imx-smfc-nfb4eof", priv);
if (ret) {
v4l2_err(&priv->sd,
"Error registering NFB4EOF irq: %d\n", ret);
goto out_unsetup;
}
priv->eof_irq = ipu_idmac_channel_irq(priv->ipu, priv->idmac_ch,
IPU_IRQ_EOF);
ret = devm_request_irq(priv->dev, priv->eof_irq,
csi_idmac_eof_interrupt, 0,
"imx-smfc-eof", priv);
if (ret) {
v4l2_err(&priv->sd,
"Error registering eof irq: %d\n", ret);
goto out_free_nfb4eof_irq;
}
/* start the EOF timeout timer */
mod_timer(&priv->eof_timeout_timer,
jiffies + msecs_to_jiffies(IMX_MEDIA_EOF_TIMEOUT));
return 0;
out_free_nfb4eof_irq:
devm_free_irq(priv->dev, priv->nfb4eof_irq, priv);
out_unsetup:
csi_idmac_unsetup(priv, VB2_BUF_STATE_QUEUED);
out_free_dma_buf:
imx_media_free_dma_buf(priv->dev, &priv->underrun_buf);
out_put_ipu:
csi_idmac_put_ipu_resources(priv);
return ret;
}
static void csi_idmac_wait_last_eof(struct csi_priv *priv)
{
unsigned long flags;
int ret;
/* mark next EOF interrupt as the last before stream off */
spin_lock_irqsave(&priv->irqlock, flags);
priv->last_eof = true;
spin_unlock_irqrestore(&priv->irqlock, flags);
/*
* and then wait for interrupt handler to mark completion.
*/
ret = wait_for_completion_timeout(
&priv->last_eof_comp, msecs_to_jiffies(IMX_MEDIA_EOF_TIMEOUT));
if (ret == 0)
v4l2_warn(&priv->sd, "wait last EOF timeout\n");
}
static void csi_idmac_stop(struct csi_priv *priv)
{
devm_free_irq(priv->dev, priv->eof_irq, priv);
devm_free_irq(priv->dev, priv->nfb4eof_irq, priv);
csi_idmac_unsetup(priv, VB2_BUF_STATE_ERROR);
imx_media_free_dma_buf(priv->dev, &priv->underrun_buf);
/* cancel the EOF timeout timer */
del_timer_sync(&priv->eof_timeout_timer);
csi_idmac_put_ipu_resources(priv);
}
/* Update the CSI whole sensor and active windows */
static int csi_setup(struct csi_priv *priv)
{
struct v4l2_mbus_framefmt *infmt, *outfmt;
const struct imx_media_pixfmt *incc;
struct v4l2_mbus_config mbus_cfg;
struct v4l2_mbus_framefmt if_fmt;
struct v4l2_rect crop;
infmt = &priv->format_mbus[CSI_SINK_PAD];
incc = priv->cc[CSI_SINK_PAD];
outfmt = &priv->format_mbus[priv->active_output_pad];
/* compose mbus_config from the upstream endpoint */
mbus_cfg.type = priv->upstream_ep.bus_type;
mbus_cfg.flags = is_parallel_bus(&priv->upstream_ep) ?
priv->upstream_ep.bus.parallel.flags :
priv->upstream_ep.bus.mipi_csi2.flags;
if_fmt = *infmt;
crop = priv->crop;
/*
* if cycles is set, we need to handle this over multiple cycles as
* generic/bayer data
*/
if (is_parallel_bus(&priv->upstream_ep) && incc->cycles) {
if_fmt.width *= incc->cycles;
crop.width *= incc->cycles;
}
ipu_csi_set_window(priv->csi, &crop);
ipu_csi_set_downsize(priv->csi,
priv->crop.width == 2 * priv->compose.width,
priv->crop.height == 2 * priv->compose.height);
ipu_csi_init_interface(priv->csi, &mbus_cfg, &if_fmt, outfmt);
ipu_csi_set_dest(priv->csi, priv->dest);
if (priv->dest == IPU_CSI_DEST_IDMAC)
ipu_csi_set_skip_smfc(priv->csi, priv->skip->skip_smfc,
priv->skip->max_ratio - 1, 0);
ipu_csi_dump(priv->csi);
return 0;
}
static int csi_start(struct csi_priv *priv)
{
struct v4l2_fract *output_fi;
int ret;
output_fi = &priv->frame_interval[priv->active_output_pad];
/* start upstream */
ret = v4l2_subdev_call(priv->src_sd, video, s_stream, 1);
ret = (ret && ret != -ENOIOCTLCMD) ? ret : 0;
if (ret)
return ret;
if (priv->dest == IPU_CSI_DEST_IDMAC) {
ret = csi_idmac_start(priv);
if (ret)
goto stop_upstream;
}
ret = csi_setup(priv);
if (ret)
goto idmac_stop;
/* start the frame interval monitor */
if (priv->fim && priv->dest == IPU_CSI_DEST_IDMAC) {
ret = imx_media_fim_set_stream(priv->fim, output_fi, true);
if (ret)
goto idmac_stop;
}
ret = ipu_csi_enable(priv->csi);
if (ret) {
v4l2_err(&priv->sd, "CSI enable error: %d\n", ret);
goto fim_off;
}
return 0;
fim_off:
if (priv->fim && priv->dest == IPU_CSI_DEST_IDMAC)
imx_media_fim_set_stream(priv->fim, NULL, false);
idmac_stop:
if (priv->dest == IPU_CSI_DEST_IDMAC)
csi_idmac_stop(priv);
stop_upstream:
v4l2_subdev_call(priv->src_sd, video, s_stream, 0);
return ret;
}
static void csi_stop(struct csi_priv *priv)
{
if (priv->dest == IPU_CSI_DEST_IDMAC)
csi_idmac_wait_last_eof(priv);
/*
* Disable the CSI asap, after syncing with the last EOF.
* Doing so after the IDMA channel is disabled has shown to
* create hard system-wide hangs.
*/
ipu_csi_disable(priv->csi);
/* stop upstream */
v4l2_subdev_call(priv->src_sd, video, s_stream, 0);
if (priv->dest == IPU_CSI_DEST_IDMAC) {
csi_idmac_stop(priv);
/* stop the frame interval monitor */
if (priv->fim)
imx_media_fim_set_stream(priv->fim, NULL, false);
}
}
static const struct csi_skip_desc csi_skip[12] = {
{ 1, 1, 0x00 }, /* Keep all frames */
{ 5, 6, 0x10 }, /* Skip every sixth frame */
{ 4, 5, 0x08 }, /* Skip every fifth frame */
{ 3, 4, 0x04 }, /* Skip every fourth frame */
{ 2, 3, 0x02 }, /* Skip every third frame */
{ 3, 5, 0x0a }, /* Skip frames 1 and 3 of every 5 */
{ 1, 2, 0x01 }, /* Skip every second frame */
{ 2, 5, 0x0b }, /* Keep frames 1 and 4 of every 5 */
{ 1, 3, 0x03 }, /* Keep one in three frames */
{ 1, 4, 0x07 }, /* Keep one in four frames */
{ 1, 5, 0x0f }, /* Keep one in five frames */
{ 1, 6, 0x1f }, /* Keep one in six frames */
};
static void csi_apply_skip_interval(const struct csi_skip_desc *skip,
struct v4l2_fract *interval)
{
unsigned int div;
interval->numerator *= skip->max_ratio;
interval->denominator *= skip->keep;
/* Reduce fraction to lowest terms */
div = gcd(interval->numerator, interval->denominator);
if (div > 1) {
interval->numerator /= div;
interval->denominator /= div;
}
}
/*
* Find the skip pattern to produce the output frame interval closest to the
* requested one, for the given input frame interval. Updates the output frame
* interval to the exact value.
*/
static const struct csi_skip_desc *csi_find_best_skip(struct v4l2_fract *in,
struct v4l2_fract *out)
{
const struct csi_skip_desc *skip = &csi_skip[0], *best_skip = skip;
u32 min_err = UINT_MAX;
u64 want_us;
int i;
/* Default to 1:1 ratio */
if (out->numerator == 0 || out->denominator == 0 ||
in->numerator == 0 || in->denominator == 0) {
*out = *in;
return best_skip;
}
want_us = div_u64((u64)USEC_PER_SEC * out->numerator, out->denominator);
/* Find the reduction closest to the requested time per frame */
for (i = 0; i < ARRAY_SIZE(csi_skip); i++, skip++) {
u64 tmp, err;
tmp = div_u64((u64)USEC_PER_SEC * in->numerator *
skip->max_ratio, in->denominator * skip->keep);
err = abs((s64)tmp - want_us);
if (err < min_err) {
min_err = err;
best_skip = skip;
}
}
*out = *in;
csi_apply_skip_interval(best_skip, out);
return best_skip;
}
/*
* V4L2 subdev operations.
*/
static int csi_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
if (fi->pad >= CSI_NUM_PADS)
return -EINVAL;
mutex_lock(&priv->lock);
fi->interval = priv->frame_interval[fi->pad];
mutex_unlock(&priv->lock);
return 0;
}
static int csi_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fract *input_fi;
int ret = 0;
mutex_lock(&priv->lock);
input_fi = &priv->frame_interval[CSI_SINK_PAD];
switch (fi->pad) {
case CSI_SINK_PAD:
/* No limits on valid input frame intervals */
if (fi->interval.numerator == 0 ||
fi->interval.denominator == 0)
fi->interval = *input_fi;
/* Reset output intervals and frame skipping ratio to 1:1 */
priv->frame_interval[CSI_SRC_PAD_IDMAC] = fi->interval;
priv->frame_interval[CSI_SRC_PAD_DIRECT] = fi->interval;
priv->skip = &csi_skip[0];
break;
case CSI_SRC_PAD_IDMAC:
/*
* frame interval at IDMAC output pad depends on input
* interval, modified by frame skipping.
*/
priv->skip = csi_find_best_skip(input_fi, &fi->interval);
break;
case CSI_SRC_PAD_DIRECT:
/*
* frame interval at DIRECT output pad is same as input
* interval.
*/
fi->interval = *input_fi;
break;
default:
ret = -EINVAL;
goto out;
}
priv->frame_interval[fi->pad] = fi->interval;
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_s_stream(struct v4l2_subdev *sd, int enable)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
int ret = 0;
mutex_lock(&priv->lock);
if (!priv->src_sd || !priv->sink) {
ret = -EPIPE;
goto out;
}
/*
* enable/disable streaming only if stream_count is
* going from 0 to 1 / 1 to 0.
*/
if (priv->stream_count != !enable)
goto update_count;
if (enable) {
dev_dbg(priv->dev, "stream ON\n");
ret = csi_start(priv);
if (ret)
goto out;
} else {
dev_dbg(priv->dev, "stream OFF\n");
csi_stop(priv);
}
update_count:
priv->stream_count += enable ? 1 : -1;
if (priv->stream_count < 0)
priv->stream_count = 0;
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_subdev *remote_sd;
int ret = 0;
dev_dbg(priv->dev, "link setup %s -> %s\n", remote->entity->name,
local->entity->name);
mutex_lock(&priv->lock);
if (local->flags & MEDIA_PAD_FL_SINK) {
if (!is_media_entity_v4l2_subdev(remote->entity)) {
ret = -EINVAL;
goto out;
}
remote_sd = media_entity_to_v4l2_subdev(remote->entity);
if (flags & MEDIA_LNK_FL_ENABLED) {
if (priv->src_sd) {
ret = -EBUSY;
goto out;
}
priv->src_sd = remote_sd;
} else {
priv->src_sd = NULL;
}
goto out;
}
/* this is a source pad */
if (flags & MEDIA_LNK_FL_ENABLED) {
if (priv->sink) {
ret = -EBUSY;
goto out;
}
} else {
v4l2_ctrl_handler_free(&priv->ctrl_hdlr);
v4l2_ctrl_handler_init(&priv->ctrl_hdlr, 0);
priv->sink = NULL;
/* do not apply IC burst alignment in csi_try_crop */
priv->active_output_pad = CSI_SRC_PAD_IDMAC;
goto out;
}
/* record which output pad is now active */
priv->active_output_pad = local->index;
/* set CSI destination */
if (local->index == CSI_SRC_PAD_IDMAC) {
if (!is_media_entity_v4l2_video_device(remote->entity)) {
ret = -EINVAL;
goto out;
}
if (priv->fim) {
ret = imx_media_fim_add_controls(priv->fim);
if (ret)
goto out;
}
priv->dest = IPU_CSI_DEST_IDMAC;
} else {
if (!is_media_entity_v4l2_subdev(remote->entity)) {
ret = -EINVAL;
goto out;
}
remote_sd = media_entity_to_v4l2_subdev(remote->entity);
switch (remote_sd->grp_id) {
case IMX_MEDIA_GRP_ID_IPU_VDIC:
priv->dest = IPU_CSI_DEST_VDIC;
break;
case IMX_MEDIA_GRP_ID_IPU_IC_PRP:
priv->dest = IPU_CSI_DEST_IC;
break;
default:
ret = -EINVAL;
goto out;
}
}
priv->sink = remote->entity;
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_link_validate(struct v4l2_subdev *sd,
struct media_link *link,
struct v4l2_subdev_format *source_fmt,
struct v4l2_subdev_format *sink_fmt)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fwnode_endpoint upstream_ep = { .bus_type = 0 };
bool is_csi2;
int ret;
ret = v4l2_subdev_link_validate_default(sd, link,
source_fmt, sink_fmt);
if (ret)
return ret;
ret = csi_get_upstream_endpoint(priv, &upstream_ep);
if (ret) {
v4l2_err(&priv->sd, "failed to find upstream endpoint\n");
return ret;
}
mutex_lock(&priv->lock);
priv->upstream_ep = upstream_ep;
is_csi2 = !is_parallel_bus(&upstream_ep);
if (is_csi2) {
int vc_num = 0;
/*
* NOTE! It seems the virtual channels from the mipi csi-2
* receiver are used only for routing by the video mux's,
* or for hard-wired routing to the CSI's. Once the stream
* enters the CSI's however, they are treated internally
* in the IPU as virtual channel 0.
*/
#if 0
mutex_unlock(&priv->lock);
vc_num = imx_media_find_mipi_csi2_channel(&priv->sd.entity);
if (vc_num < 0)
return vc_num;
mutex_lock(&priv->lock);
#endif
ipu_csi_set_mipi_datatype(priv->csi, vc_num,
&priv->format_mbus[CSI_SINK_PAD]);
}
/* select either parallel or MIPI-CSI2 as input to CSI */
ipu_set_csi_src_mux(priv->ipu, priv->csi_id, is_csi2);
mutex_unlock(&priv->lock);
return ret;
}
static struct v4l2_mbus_framefmt *
__csi_get_fmt(struct csi_priv *priv, struct v4l2_subdev_pad_config *cfg,
unsigned int pad, enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_format(&priv->sd, cfg, pad);
else
return &priv->format_mbus[pad];
}
static struct v4l2_rect *
__csi_get_crop(struct csi_priv *priv, struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_crop(&priv->sd, cfg, CSI_SINK_PAD);
else
return &priv->crop;
}
static struct v4l2_rect *
__csi_get_compose(struct csi_priv *priv, struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_TRY)
return v4l2_subdev_get_try_compose(&priv->sd, cfg,
CSI_SINK_PAD);
else
return &priv->compose;
}
static void csi_try_crop(struct csi_priv *priv,
struct v4l2_rect *crop,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_mbus_framefmt *infmt,
struct v4l2_fwnode_endpoint *upstream_ep)
{
u32 in_height;
crop->width = min_t(__u32, infmt->width, crop->width);
if (crop->left + crop->width > infmt->width)
crop->left = infmt->width - crop->width;
/* adjust crop left/width to h/w alignment restrictions */
crop->left &= ~0x3;
if (priv->active_output_pad == CSI_SRC_PAD_DIRECT)
crop->width &= ~0x7; /* multiple of 8 pixels (IC burst) */
else
crop->width &= ~0x1; /* multiple of 2 pixels */
in_height = infmt->height;
if (infmt->field == V4L2_FIELD_ALTERNATE)
in_height *= 2;
/*
* FIXME: not sure why yet, but on interlaced bt.656,
* changing the vertical cropping causes loss of vertical
* sync, so fix it to NTSC/PAL active lines. NTSC contains
* 2 extra lines of active video that need to be cropped.
*/
if (upstream_ep->bus_type == V4L2_MBUS_BT656 &&
(V4L2_FIELD_HAS_BOTH(infmt->field) ||
infmt->field == V4L2_FIELD_ALTERNATE)) {
crop->height = in_height;
crop->top = (in_height == 480) ? 2 : 0;
} else {
crop->height = min_t(__u32, in_height, crop->height);
if (crop->top + crop->height > in_height)
crop->top = in_height - crop->height;
}
}
static int csi_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fwnode_endpoint upstream_ep = { .bus_type = 0 };
const struct imx_media_pixfmt *incc;
struct v4l2_mbus_framefmt *infmt;
int ret = 0;
mutex_lock(&priv->lock);
infmt = __csi_get_fmt(priv, cfg, CSI_SINK_PAD, code->which);
incc = imx_media_find_mbus_format(infmt->code, CS_SEL_ANY, true);
switch (code->pad) {
case CSI_SINK_PAD:
ret = imx_media_enum_mbus_format(&code->code, code->index,
CS_SEL_ANY, true);
break;
case CSI_SRC_PAD_DIRECT:
case CSI_SRC_PAD_IDMAC:
ret = csi_get_upstream_endpoint(priv, &upstream_ep);
if (ret) {
v4l2_err(&priv->sd, "failed to find upstream endpoint\n");
goto out;
}
if (requires_passthrough(&upstream_ep, infmt, incc)) {
if (code->index != 0) {
ret = -EINVAL;
goto out;
}
code->code = infmt->code;
} else {
u32 cs_sel = (incc->cs == IPUV3_COLORSPACE_YUV) ?
CS_SEL_YUV : CS_SEL_RGB;
ret = imx_media_enum_ipu_format(&code->code,
code->index,
cs_sel);
}
break;
default:
ret = -EINVAL;
}
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_rect *crop;
int ret = 0;
if (fse->pad >= CSI_NUM_PADS ||
fse->index > (fse->pad == CSI_SINK_PAD ? 0 : 3))
return -EINVAL;
mutex_lock(&priv->lock);
if (fse->pad == CSI_SINK_PAD) {
fse->min_width = MIN_W;
fse->max_width = MAX_W;
fse->min_height = MIN_H;
fse->max_height = MAX_H;
} else {
crop = __csi_get_crop(priv, cfg, fse->which);
fse->min_width = fse->index & 1 ?
crop->width / 2 : crop->width;
fse->max_width = fse->min_width;
fse->min_height = fse->index & 2 ?
crop->height / 2 : crop->height;
fse->max_height = fse->min_height;
}
mutex_unlock(&priv->lock);
return ret;
}
static int csi_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fract *input_fi;
struct v4l2_rect *crop;
int ret = 0;
if (fie->pad >= CSI_NUM_PADS ||
fie->index >= (fie->pad != CSI_SRC_PAD_IDMAC ?
1 : ARRAY_SIZE(csi_skip)))
return -EINVAL;
mutex_lock(&priv->lock);
input_fi = &priv->frame_interval[CSI_SINK_PAD];
crop = __csi_get_crop(priv, cfg, fie->which);
if ((fie->width != crop->width && fie->width != crop->width / 2) ||
(fie->height != crop->height && fie->height != crop->height / 2)) {
ret = -EINVAL;
goto out;
}
fie->interval = *input_fi;
if (fie->pad == CSI_SRC_PAD_IDMAC)
csi_apply_skip_interval(&csi_skip[fie->index],
&fie->interval);
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *sdformat)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *fmt;
int ret = 0;
if (sdformat->pad >= CSI_NUM_PADS)
return -EINVAL;
mutex_lock(&priv->lock);
fmt = __csi_get_fmt(priv, cfg, sdformat->pad, sdformat->which);
if (!fmt) {
ret = -EINVAL;
goto out;
}
sdformat->format = *fmt;
out:
mutex_unlock(&priv->lock);
return ret;
}
static void csi_try_field(struct csi_priv *priv,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *sdformat)
{
struct v4l2_mbus_framefmt *infmt =
__csi_get_fmt(priv, cfg, CSI_SINK_PAD, sdformat->which);
/*
* no restrictions on sink pad field type except must
* be initialized.
*/
if (sdformat->pad == CSI_SINK_PAD) {
if (sdformat->format.field == V4L2_FIELD_ANY)
sdformat->format.field = V4L2_FIELD_NONE;
return;
}
switch (infmt->field) {
case V4L2_FIELD_SEQ_TB:
case V4L2_FIELD_SEQ_BT:
/*
* If the user requests sequential at the source pad,
* allow it (along with possibly inverting field order).
* Otherwise passthrough the field type.
*/
if (!V4L2_FIELD_IS_SEQUENTIAL(sdformat->format.field))
sdformat->format.field = infmt->field;
break;
case V4L2_FIELD_ALTERNATE:
/*
* This driver does not support alternate field mode, and
* the CSI captures a whole frame, so the CSI never presents
* alternate mode at its source pads. If user has not
* already requested sequential, translate ALTERNATE at
* sink pad to SEQ_TB or SEQ_BT at the source pad depending
* on input height (assume NTSC BT order if 480 total active
* frame lines, otherwise PAL TB order).
*/
if (!V4L2_FIELD_IS_SEQUENTIAL(sdformat->format.field))
sdformat->format.field = (infmt->height == 480 / 2) ?
V4L2_FIELD_SEQ_BT : V4L2_FIELD_SEQ_TB;
break;
default:
/* Passthrough for all other input field types */
sdformat->format.field = infmt->field;
break;
}
}
static void csi_try_fmt(struct csi_priv *priv,
struct v4l2_fwnode_endpoint *upstream_ep,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *sdformat,
struct v4l2_rect *crop,
struct v4l2_rect *compose,
const struct imx_media_pixfmt **cc)
{
const struct imx_media_pixfmt *incc;
struct v4l2_mbus_framefmt *infmt;
u32 code;
infmt = __csi_get_fmt(priv, cfg, CSI_SINK_PAD, sdformat->which);
switch (sdformat->pad) {
case CSI_SRC_PAD_DIRECT:
case CSI_SRC_PAD_IDMAC:
incc = imx_media_find_mbus_format(infmt->code,
CS_SEL_ANY, true);
sdformat->format.width = compose->width;
sdformat->format.height = compose->height;
if (requires_passthrough(upstream_ep, infmt, incc)) {
sdformat->format.code = infmt->code;
*cc = incc;
} else {
u32 cs_sel = (incc->cs == IPUV3_COLORSPACE_YUV) ?
CS_SEL_YUV : CS_SEL_RGB;
*cc = imx_media_find_ipu_format(sdformat->format.code,
cs_sel);
if (!*cc) {
imx_media_enum_ipu_format(&code, 0, cs_sel);
*cc = imx_media_find_ipu_format(code, cs_sel);
sdformat->format.code = (*cc)->codes[0];
}
}
csi_try_field(priv, cfg, sdformat);
/* propagate colorimetry from sink */
sdformat->format.colorspace = infmt->colorspace;
sdformat->format.xfer_func = infmt->xfer_func;
break;
case CSI_SINK_PAD:
v4l_bound_align_image(&sdformat->format.width, MIN_W, MAX_W,
W_ALIGN, &sdformat->format.height,
MIN_H, MAX_H, H_ALIGN, S_ALIGN);
*cc = imx_media_find_mbus_format(sdformat->format.code,
CS_SEL_ANY, true);
if (!*cc) {
imx_media_enum_mbus_format(&code, 0,
CS_SEL_ANY, false);
*cc = imx_media_find_mbus_format(code,
CS_SEL_ANY, false);
sdformat->format.code = (*cc)->codes[0];
}
csi_try_field(priv, cfg, sdformat);
/* Reset crop and compose rectangles */
crop->left = 0;
crop->top = 0;
crop->width = sdformat->format.width;
crop->height = sdformat->format.height;
if (sdformat->format.field == V4L2_FIELD_ALTERNATE)
crop->height *= 2;
csi_try_crop(priv, crop, cfg, &sdformat->format, upstream_ep);
compose->left = 0;
compose->top = 0;
compose->width = crop->width;
compose->height = crop->height;
break;
}
imx_media_try_colorimetry(&sdformat->format,
priv->active_output_pad == CSI_SRC_PAD_DIRECT);
}
static int csi_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *sdformat)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fwnode_endpoint upstream_ep = { .bus_type = 0 };
const struct imx_media_pixfmt *cc;
struct v4l2_mbus_framefmt *fmt;
struct v4l2_rect *crop, *compose;
int ret;
if (sdformat->pad >= CSI_NUM_PADS)
return -EINVAL;
ret = csi_get_upstream_endpoint(priv, &upstream_ep);
if (ret) {
v4l2_err(&priv->sd, "failed to find upstream endpoint\n");
return ret;
}
mutex_lock(&priv->lock);
if (priv->stream_count > 0) {
ret = -EBUSY;
goto out;
}
crop = __csi_get_crop(priv, cfg, sdformat->which);
compose = __csi_get_compose(priv, cfg, sdformat->which);
csi_try_fmt(priv, &upstream_ep, cfg, sdformat, crop, compose, &cc);
fmt = __csi_get_fmt(priv, cfg, sdformat->pad, sdformat->which);
*fmt = sdformat->format;
if (sdformat->pad == CSI_SINK_PAD) {
int pad;
/* propagate format to source pads */
for (pad = CSI_SINK_PAD + 1; pad < CSI_NUM_PADS; pad++) {
const struct imx_media_pixfmt *outcc;
struct v4l2_mbus_framefmt *outfmt;
struct v4l2_subdev_format format;
format.pad = pad;
format.which = sdformat->which;
format.format = sdformat->format;
csi_try_fmt(priv, &upstream_ep, cfg, &format,
NULL, compose, &outcc);
outfmt = __csi_get_fmt(priv, cfg, pad, sdformat->which);
*outfmt = format.format;
if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE)
priv->cc[pad] = outcc;
}
}
if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE)
priv->cc[sdformat->pad] = cc;
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *infmt;
struct v4l2_rect *crop, *compose;
int ret = 0;
if (sel->pad != CSI_SINK_PAD)
return -EINVAL;
mutex_lock(&priv->lock);
infmt = __csi_get_fmt(priv, cfg, CSI_SINK_PAD, sel->which);
crop = __csi_get_crop(priv, cfg, sel->which);
compose = __csi_get_compose(priv, cfg, sel->which);
switch (sel->target) {
case V4L2_SEL_TGT_CROP_BOUNDS:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = infmt->width;
sel->r.height = infmt->height;
if (infmt->field == V4L2_FIELD_ALTERNATE)
sel->r.height *= 2;
break;
case V4L2_SEL_TGT_CROP:
sel->r = *crop;
break;
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
sel->r.left = 0;
sel->r.top = 0;
sel->r.width = crop->width;
sel->r.height = crop->height;
break;
case V4L2_SEL_TGT_COMPOSE:
sel->r = *compose;
break;
default:
ret = -EINVAL;
}
mutex_unlock(&priv->lock);
return ret;
}
static int csi_set_scale(u32 *compose, u32 crop, u32 flags)
{
if ((flags & (V4L2_SEL_FLAG_LE | V4L2_SEL_FLAG_GE)) ==
(V4L2_SEL_FLAG_LE | V4L2_SEL_FLAG_GE) &&
*compose != crop && *compose != crop / 2)
return -ERANGE;
if (*compose <= crop / 2 ||
(*compose < crop * 3 / 4 && !(flags & V4L2_SEL_FLAG_GE)) ||
(*compose < crop && (flags & V4L2_SEL_FLAG_LE)))
*compose = crop / 2;
else
*compose = crop;
return 0;
}
static int csi_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct v4l2_fwnode_endpoint upstream_ep = { .bus_type = 0 };
struct v4l2_mbus_framefmt *infmt;
struct v4l2_rect *crop, *compose;
int pad, ret;
if (sel->pad != CSI_SINK_PAD)
return -EINVAL;
ret = csi_get_upstream_endpoint(priv, &upstream_ep);
if (ret) {
v4l2_err(&priv->sd, "failed to find upstream endpoint\n");
return ret;
}
mutex_lock(&priv->lock);
if (priv->stream_count > 0) {
ret = -EBUSY;
goto out;
}
infmt = __csi_get_fmt(priv, cfg, CSI_SINK_PAD, sel->which);
crop = __csi_get_crop(priv, cfg, sel->which);
compose = __csi_get_compose(priv, cfg, sel->which);
switch (sel->target) {
case V4L2_SEL_TGT_CROP:
/*
* Modifying the crop rectangle always changes the format on
* the source pads. If the KEEP_CONFIG flag is set, just return
* the current crop rectangle.
*/
if (sel->flags & V4L2_SEL_FLAG_KEEP_CONFIG) {
sel->r = priv->crop;
if (sel->which == V4L2_SUBDEV_FORMAT_TRY)
*crop = sel->r;
goto out;
}
csi_try_crop(priv, &sel->r, cfg, infmt, &upstream_ep);
*crop = sel->r;
/* Reset scaling to 1:1 */
compose->width = crop->width;
compose->height = crop->height;
break;
case V4L2_SEL_TGT_COMPOSE:
/*
* Modifying the compose rectangle always changes the format on
* the source pads. If the KEEP_CONFIG flag is set, just return
* the current compose rectangle.
*/
if (sel->flags & V4L2_SEL_FLAG_KEEP_CONFIG) {
sel->r = priv->compose;
if (sel->which == V4L2_SUBDEV_FORMAT_TRY)
*compose = sel->r;
goto out;
}
sel->r.left = 0;
sel->r.top = 0;
ret = csi_set_scale(&sel->r.width, crop->width, sel->flags);
if (ret)
goto out;
ret = csi_set_scale(&sel->r.height, crop->height, sel->flags);
if (ret)
goto out;
*compose = sel->r;
break;
default:
ret = -EINVAL;
goto out;
}
/* Reset source pads to sink compose rectangle */
for (pad = CSI_SINK_PAD + 1; pad < CSI_NUM_PADS; pad++) {
struct v4l2_mbus_framefmt *outfmt;
outfmt = __csi_get_fmt(priv, cfg, pad, sel->which);
outfmt->width = compose->width;
outfmt->height = compose->height;
}
out:
mutex_unlock(&priv->lock);
return ret;
}
static int csi_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
if (sub->type != V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR)
return -EINVAL;
if (sub->id != 0)
return -EINVAL;
return v4l2_event_subscribe(fh, sub, 0, NULL);
}
static int csi_unsubscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
return v4l2_event_unsubscribe(fh, sub);
}
/*
* retrieve our pads parsed from the OF graph by the media device
*/
static int csi_registered(struct v4l2_subdev *sd)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
struct ipu_csi *csi;
int i, ret;
u32 code;
/* get handle to IPU CSI */
csi = ipu_csi_get(priv->ipu, priv->csi_id);
if (IS_ERR(csi)) {
v4l2_err(&priv->sd, "failed to get CSI%d\n", priv->csi_id);
return PTR_ERR(csi);
}
priv->csi = csi;
for (i = 0; i < CSI_NUM_PADS; i++) {
priv->pad[i].flags = (i == CSI_SINK_PAD) ?
MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE;
code = 0;
if (i != CSI_SINK_PAD)
imx_media_enum_ipu_format(&code, 0, CS_SEL_YUV);
/* set a default mbus format */
ret = imx_media_init_mbus_fmt(&priv->format_mbus[i],
640, 480, code, V4L2_FIELD_NONE,
&priv->cc[i]);
if (ret)
goto put_csi;
/* init default frame interval */
priv->frame_interval[i].numerator = 1;
priv->frame_interval[i].denominator = 30;
}
/* disable frame skipping */
priv->skip = &csi_skip[0];
/* init default crop and compose rectangle sizes */
priv->crop.width = 640;
priv->crop.height = 480;
priv->compose.width = 640;
priv->compose.height = 480;
priv->fim = imx_media_fim_init(&priv->sd);
if (IS_ERR(priv->fim)) {
ret = PTR_ERR(priv->fim);
goto put_csi;
}
ret = media_entity_pads_init(&sd->entity, CSI_NUM_PADS, priv->pad);
if (ret)
goto free_fim;
ret = imx_media_capture_device_register(priv->vdev);
if (ret)
goto free_fim;
return 0;
free_fim:
if (priv->fim)
imx_media_fim_free(priv->fim);
put_csi:
ipu_csi_put(priv->csi);
return ret;
}
static void csi_unregistered(struct v4l2_subdev *sd)
{
struct csi_priv *priv = v4l2_get_subdevdata(sd);
imx_media_capture_device_unregister(priv->vdev);
if (priv->fim)
imx_media_fim_free(priv->fim);
if (priv->csi)
ipu_csi_put(priv->csi);
}
static const struct media_entity_operations csi_entity_ops = {
.link_setup = csi_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_core_ops csi_core_ops = {
.subscribe_event = csi_subscribe_event,
.unsubscribe_event = csi_unsubscribe_event,
};
static const struct v4l2_subdev_video_ops csi_video_ops = {
.g_frame_interval = csi_g_frame_interval,
.s_frame_interval = csi_s_frame_interval,
.s_stream = csi_s_stream,
};
static const struct v4l2_subdev_pad_ops csi_pad_ops = {
.init_cfg = imx_media_init_cfg,
.enum_mbus_code = csi_enum_mbus_code,
.enum_frame_size = csi_enum_frame_size,
.enum_frame_interval = csi_enum_frame_interval,
.get_fmt = csi_get_fmt,
.set_fmt = csi_set_fmt,
.get_selection = csi_get_selection,
.set_selection = csi_set_selection,
.link_validate = csi_link_validate,
};
static const struct v4l2_subdev_ops csi_subdev_ops = {
.core = &csi_core_ops,
.video = &csi_video_ops,
.pad = &csi_pad_ops,
};
static const struct v4l2_subdev_internal_ops csi_internal_ops = {
.registered = csi_registered,
.unregistered = csi_unregistered,
};
static int imx_csi_parse_endpoint(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd)
{
return fwnode_device_is_available(asd->match.fwnode) ? 0 : -ENOTCONN;
}
static int imx_csi_async_register(struct csi_priv *priv)
{
struct v4l2_async_notifier *notifier;
struct fwnode_handle *fwnode;
unsigned int port;
int ret;
notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
if (!notifier)
return -ENOMEM;
v4l2_async_notifier_init(notifier);
fwnode = dev_fwnode(priv->dev);
/* get this CSI's port id */
ret = fwnode_property_read_u32(fwnode, "reg", &port);
if (ret < 0)
goto out_free;
ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(
priv->dev->parent, notifier, sizeof(struct v4l2_async_subdev),
port, imx_csi_parse_endpoint);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_subdev_notifier_register(&priv->sd, notifier);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_register_subdev(&priv->sd);
if (ret < 0)
goto out_unregister;
priv->sd.subdev_notifier = notifier;
return 0;
out_unregister:
v4l2_async_notifier_unregister(notifier);
out_cleanup:
v4l2_async_notifier_cleanup(notifier);
out_free:
kfree(notifier);
return ret;
}
static int imx_csi_probe(struct platform_device *pdev)
{
struct ipu_client_platformdata *pdata;
struct pinctrl *pinctrl;
struct csi_priv *priv;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, &priv->sd);
priv->dev = &pdev->dev;
ret = dma_set_coherent_mask(priv->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
/* get parent IPU */
priv->ipu = dev_get_drvdata(priv->dev->parent);
/* get our CSI id */
pdata = priv->dev->platform_data;
priv->csi_id = pdata->csi;
priv->smfc_id = (priv->csi_id == 0) ? 0 : 2;
priv->active_output_pad = CSI_SRC_PAD_IDMAC;
timer_setup(&priv->eof_timeout_timer, csi_idmac_eof_timeout, 0);
spin_lock_init(&priv->irqlock);
v4l2_subdev_init(&priv->sd, &csi_subdev_ops);
v4l2_set_subdevdata(&priv->sd, priv);
priv->sd.internal_ops = &csi_internal_ops;
priv->sd.entity.ops = &csi_entity_ops;
priv->sd.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
priv->sd.dev = &pdev->dev;
priv->sd.fwnode = of_fwnode_handle(pdata->of_node);
priv->sd.owner = THIS_MODULE;
priv->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
priv->sd.grp_id = priv->csi_id ?
IMX_MEDIA_GRP_ID_IPU_CSI1 : IMX_MEDIA_GRP_ID_IPU_CSI0;
imx_media_grp_id_to_sd_name(priv->sd.name, sizeof(priv->sd.name),
priv->sd.grp_id, ipu_get_num(priv->ipu));
priv->vdev = imx_media_capture_device_init(priv->sd.dev, &priv->sd,
CSI_SRC_PAD_IDMAC);
if (IS_ERR(priv->vdev))
return PTR_ERR(priv->vdev);
mutex_init(&priv->lock);
v4l2_ctrl_handler_init(&priv->ctrl_hdlr, 0);
priv->sd.ctrl_handler = &priv->ctrl_hdlr;
/*
* The IPUv3 driver did not assign an of_node to this
* device. As a result, pinctrl does not automatically
* configure our pin groups, so we need to do that manually
* here, after setting this device's of_node.
*/
priv->dev->of_node = pdata->of_node;
pinctrl = devm_pinctrl_get_select_default(priv->dev);
if (IS_ERR(pinctrl)) {
ret = PTR_ERR(pinctrl);
dev_dbg(priv->dev,
"devm_pinctrl_get_select_default() failed: %d\n", ret);
if (ret != -ENODEV)
goto free;
}
ret = imx_csi_async_register(priv);
if (ret)
goto free;
return 0;
free:
v4l2_ctrl_handler_free(&priv->ctrl_hdlr);
mutex_destroy(&priv->lock);
imx_media_capture_device_remove(priv->vdev);
return ret;
}
static int imx_csi_remove(struct platform_device *pdev)
{
struct v4l2_subdev *sd = platform_get_drvdata(pdev);
struct csi_priv *priv = sd_to_dev(sd);
v4l2_ctrl_handler_free(&priv->ctrl_hdlr);
mutex_destroy(&priv->lock);
imx_media_capture_device_remove(priv->vdev);
v4l2_async_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
return 0;
}
static const struct platform_device_id imx_csi_ids[] = {
{ .name = "imx-ipuv3-csi" },
{ },
};
MODULE_DEVICE_TABLE(platform, imx_csi_ids);
static struct platform_driver imx_csi_driver = {
.probe = imx_csi_probe,
.remove = imx_csi_remove,
.id_table = imx_csi_ids,
.driver = {
.name = "imx-ipuv3-csi",
},
};
module_platform_driver(imx_csi_driver);
MODULE_DESCRIPTION("i.MX CSI subdev driver");
MODULE_AUTHOR("Steve Longerbeam <steve_longerbeam@mentor.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:imx-ipuv3-csi");