// SPDX-License-Identifier: GPL-2.0+
/*
* 2002-10-15 Posix Clocks & timers
* by George Anzinger george@mvista.com
* Copyright (C) 2002 2003 by MontaVista Software.
*
* 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
* Copyright (C) 2004 Boris Hu
*
* These are all the functions necessary to implement POSIX clocks & timers
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/mutex.h>
#include <linux/sched/task.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/hash.h>
#include <linux/posix-clock.h>
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <linux/hashtable.h>
#include <linux/compat.h>
#include <linux/nospec.h>
#include "timekeeping.h"
#include "posix-timers.h"
/*
* Management arrays for POSIX timers. Timers are now kept in static hash table
* with 512 entries.
* Timer ids are allocated by local routine, which selects proper hash head by
* key, constructed from current->signal address and per signal struct counter.
* This keeps timer ids unique per process, but now they can intersect between
* processes.
*/
/*
* Lets keep our timers in a slab cache :-)
*/
static struct kmem_cache *posix_timers_cache;
static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
static const struct k_clock clock_realtime, clock_monotonic;
/*
* we assume that the new SIGEV_THREAD_ID shares no bits with the other
* SIGEV values. Here we put out an error if this assumption fails.
*/
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif
/*
* The timer ID is turned into a timer address by idr_find().
* Verifying a valid ID consists of:
*
* a) checking that idr_find() returns other than -1.
* b) checking that the timer id matches the one in the timer itself.
* c) that the timer owner is in the callers thread group.
*/
/*
* CLOCKs: The POSIX standard calls for a couple of clocks and allows us
* to implement others. This structure defines the various
* clocks.
*
* RESOLUTION: Clock resolution is used to round up timer and interval
* times, NOT to report clock times, which are reported with as
* much resolution as the system can muster. In some cases this
* resolution may depend on the underlying clock hardware and
* may not be quantifiable until run time, and only then is the
* necessary code is written. The standard says we should say
* something about this issue in the documentation...
*
* FUNCTIONS: The CLOCKs structure defines possible functions to
* handle various clock functions.
*
* The standard POSIX timer management code assumes the
* following: 1.) The k_itimer struct (sched.h) is used for
* the timer. 2.) The list, it_lock, it_clock, it_id and
* it_pid fields are not modified by timer code.
*
* Permissions: It is assumed that the clock_settime() function defined
* for each clock will take care of permission checks. Some
* clocks may be set able by any user (i.e. local process
* clocks) others not. Currently the only set able clock we
* have is CLOCK_REALTIME and its high res counter part, both of
* which we beg off on and pass to do_sys_settimeofday().
*/
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
#define lock_timer(tid, flags) \
({ struct k_itimer *__timr; \
__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
__timr; \
})
static int hash(struct signal_struct *sig, unsigned int nr)
{
return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}
static struct k_itimer *__posix_timers_find(struct hlist_head *head,
struct signal_struct *sig,
timer_t id)
{
struct k_itimer *timer;
hlist_for_each_entry_rcu(timer, head, t_hash) {
if ((timer->it_signal == sig) && (timer->it_id == id))
return timer;
}
return NULL;
}
static struct k_itimer *posix_timer_by_id(timer_t id)
{
struct signal_struct *sig = current->signal;
struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
return __posix_timers_find(head, sig, id);
}
static int posix_timer_add(struct k_itimer *timer)
{
struct signal_struct *sig = current->signal;
int first_free_id = sig->posix_timer_id;
struct hlist_head *head;
int ret = -ENOENT;
do {
spin_lock(&hash_lock);
head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
hlist_add_head_rcu(&timer->t_hash, head);
ret = sig->posix_timer_id;
}
if (++sig->posix_timer_id < 0)
sig->posix_timer_id = 0;
if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
/* Loop over all possible ids completed */
ret = -EAGAIN;
spin_unlock(&hash_lock);
} while (ret == -ENOENT);
return ret;
}
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
spin_unlock_irqrestore(&timr->it_lock, flags);
}
/* Get clock_realtime */
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_real_ts64(tp);
return 0;
}
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
const struct timespec64 *tp)
{
return do_sys_settimeofday64(tp, NULL);
}
static int posix_clock_realtime_adj(const clockid_t which_clock,
struct __kernel_timex *t)
{
return do_adjtimex(t);
}
/*
* Get monotonic time for posix timers
*/
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_ts64(tp);
return 0;
}
/*
* Get monotonic-raw time for posix timers
*/
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_raw_ts64(tp);
return 0;
}
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_coarse_real_ts64(tp);
return 0;
}
static int posix_get_monotonic_coarse(clockid_t which_clock,
struct timespec64 *tp)
{
ktime_get_coarse_ts64(tp);
return 0;
}
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
{
*tp = ktime_to_timespec64(KTIME_LOW_RES);
return 0;
}
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_boottime_ts64(tp);
return 0;
}
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_clocktai_ts64(tp);
return 0;
}
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
{
tp->tv_sec = 0;
tp->tv_nsec = hrtimer_resolution;
return 0;
}
/*
* Initialize everything, well, just everything in Posix clocks/timers ;)
*/
static __init int init_posix_timers(void)
{
posix_timers_cache = kmem_cache_create("posix_timers_cache",
sizeof (struct k_itimer), 0, SLAB_PANIC,
NULL);
return 0;
}
__initcall(init_posix_timers);
/*
* The siginfo si_overrun field and the return value of timer_getoverrun(2)
* are of type int. Clamp the overrun value to INT_MAX
*/
static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
{
s64 sum = timr->it_overrun_last + (s64)baseval;
return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
}
static void common_hrtimer_rearm(struct k_itimer *timr)
{
struct hrtimer *timer = &timr->it.real.timer;
timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
timr->it_interval);
hrtimer_restart(timer);
}
/*
* This function is exported for use by the signal deliver code. It is
* called just prior to the info block being released and passes that
* block to us. It's function is to update the overrun entry AND to
* restart the timer. It should only be called if the timer is to be
* restarted (i.e. we have flagged this in the sys_private entry of the
* info block).
*
* To protect against the timer going away while the interrupt is queued,
* we require that the it_requeue_pending flag be set.
*/
void posixtimer_rearm(struct kernel_siginfo *info)
{
struct k_itimer *timr;
unsigned long flags;
timr = lock_timer(info->si_tid, &flags);
if (!timr)
return;
if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
timr->kclock->timer_rearm(timr);
timr->it_active = 1;
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1LL;
++timr->it_requeue_pending;
info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
}
unlock_timer(timr, flags);
}
int posix_timer_event(struct k_itimer *timr, int si_private)
{
enum pid_type type;
int ret = -1;
/*
* FIXME: if ->sigq is queued we can race with
* dequeue_signal()->posixtimer_rearm().
*
* If dequeue_signal() sees the "right" value of
* si_sys_private it calls posixtimer_rearm().
* We re-queue ->sigq and drop ->it_lock().
* posixtimer_rearm() locks the timer
* and re-schedules it while ->sigq is pending.
* Not really bad, but not that we want.
*/
timr->sigq->info.si_sys_private = si_private;
type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
ret = send_sigqueue(timr->sigq, timr->it_pid, type);
/* If we failed to send the signal the timer stops. */
return ret > 0;
}
/*
* This function gets called when a POSIX.1b interval timer expires. It
* is used as a callback from the kernel internal timer. The
* run_timer_list code ALWAYS calls with interrupts on.
* This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
*/
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
struct k_itimer *timr;
unsigned long flags;
int si_private = 0;
enum hrtimer_restart ret = HRTIMER_NORESTART;
timr = container_of(timer, struct k_itimer, it.real.timer);
spin_lock_irqsave(&timr->it_lock, flags);
timr->it_active = 0;
if (timr->it_interval != 0)
si_private = ++timr->it_requeue_pending;
if (posix_timer_event(timr, si_private)) {
/*
* signal was not sent because of sig_ignor
* we will not get a call back to restart it AND
* it should be restarted.
*/
if (timr->it_interval != 0) {
ktime_t now = hrtimer_cb_get_time(timer);
/*
* FIXME: What we really want, is to stop this
* timer completely and restart it in case the
* SIG_IGN is removed. This is a non trivial
* change which involves sighand locking
* (sigh !), which we don't want to do late in
* the release cycle.
*
* For now we just let timers with an interval
* less than a jiffie expire every jiffie to
* avoid softirq starvation in case of SIG_IGN
* and a very small interval, which would put
* the timer right back on the softirq pending
* list. By moving now ahead of time we trick
* hrtimer_forward() to expire the timer
* later, while we still maintain the overrun
* accuracy, but have some inconsistency in
* the timer_gettime() case. This is at least
* better than a starved softirq. A more
* complex fix which solves also another related
* inconsistency is already in the pipeline.
*/
#ifdef [31mCONFIG_HIGH_RES_TIMERS[0m
{
ktime_t kj = NSEC_PER_SEC / HZ;
if (timr->it_interval < kj)
now = ktime_add(now, kj);
}
#endif
timr->it_overrun += hrtimer_forward(timer, now,
timr->it_interval);
ret = HRTIMER_RESTART;
++timr->it_requeue_pending;
timr->it_active = 1;
}
}
unlock_timer(timr, flags);
return ret;
}
static struct pid *good_sigevent(sigevent_t * event)
{
struct pid *pid = task_tgid(current);
struct task_struct *rtn;
switch (event->sigev_notify) {
case SIGEV_SIGNAL | SIGEV_THREAD_ID:
pid = find_vpid(event->sigev_notify_thread_id);
rtn = pid_task(pid, PIDTYPE_PID);
if (!rtn || !same_thread_group(rtn, current))
return NULL;
/* FALLTHRU */
case SIGEV_SIGNAL:
case SIGEV_THREAD:
if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
return NULL;
/* FALLTHRU */
case SIGEV_NONE:
return pid;
default:
return NULL;
}
}
static struct k_itimer * alloc_posix_timer(void)
{
struct k_itimer *tmr;
tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
clear_siginfo(&tmr->sigq->info);
return tmr;
}
static void k_itimer_rcu_free(struct rcu_head *head)
{
struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
kmem_cache_free(posix_timers_cache, tmr);
}
#define IT_ID_SET 1
#define IT_ID_NOT_SET 0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
if (it_id_set) {
unsigned long flags;
spin_lock_irqsave(&hash_lock, flags);
hlist_del_rcu(&tmr->t_hash);
spin_unlock_irqrestore(&hash_lock, flags);
}
put_pid(tmr->it_pid);
sigqueue_free(tmr->sigq);
call_rcu(&tmr->rcu, k_itimer_rcu_free);
}
static int common_timer_create(struct k_itimer *new_timer)
{
hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
return 0;
}
/* Create a POSIX.1b interval timer. */
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
timer_t __user *created_timer_id)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct k_itimer *new_timer;
int error, new_timer_id;
int it_id_set = IT_ID_NOT_SET;
if (!kc)
return -EINVAL;
if (!kc->timer_create)
return -EOPNOTSUPP;
new_timer = alloc_posix_timer();
if (unlikely(!new_timer))
return -EAGAIN;
spin_lock_init(&new_timer->it_lock);
new_timer_id = posix_timer_add(new_timer);
if (new_timer_id < 0) {
error = new_timer_id;
goto out;
}
it_id_set = IT_ID_SET;
new_timer->it_id = (timer_t) new_timer_id;
new_timer->it_clock = which_clock;
new_timer->kclock = kc;
new_timer->it_overrun = -1LL;
if (event) {
rcu_read_lock();
new_timer->it_pid = get_pid(good_sigevent(event));
rcu_read_unlock();
if (!new_timer->it_pid) {
error = -EINVAL;
goto out;
}
new_timer->it_sigev_notify = event->sigev_notify;
new_timer->sigq->info.si_signo = event->sigev_signo;
new_timer->sigq->info.si_value = event->sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
new_timer->sigq->info.si_signo = SIGALRM;
memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
new_timer->it_pid = get_pid(task_tgid(current));
}
new_timer->sigq->info.si_tid = new_timer->it_id;
new_timer->sigq->info.si_code = SI_TIMER;
if (copy_to_user(created_timer_id,
&new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
goto out;
}
error = kc->timer_create(new_timer);
if (error)
goto out;
spin_lock_irq(¤t->sighand->siglock);
new_timer->it_signal = current->signal;
list_add(&new_timer->list, ¤t->signal->posix_timers);
spin_unlock_irq(¤t->sighand->siglock);
return 0;
/*
* In the case of the timer belonging to another task, after
* the task is unlocked, the timer is owned by the other task
* and may cease to exist at any time. Don't use or modify
* new_timer after the unlock call.
*/
out:
release_posix_timer(new_timer, it_id_set);
return error;
}
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
struct sigevent __user *, timer_event_spec,
timer_t __user *, created_timer_id)
{
if (timer_event_spec) {
sigevent_t event;
if (copy_from_user(&event, timer_event_spec, sizeof (event)))
return -EFAULT;
return do_timer_create(which_clock, &event, created_timer_id);
}
return do_timer_create(which_clock, NULL, created_timer_id);
}
#ifdef [31mCONFIG_COMPAT[0m
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
struct compat_sigevent __user *, timer_event_spec,
timer_t __user *, created_timer_id)
{
if (timer_event_spec) {
sigevent_t event;
if (get_compat_sigevent(&event, timer_event_spec))
return -EFAULT;
return do_timer_create(which_clock, &event, created_timer_id);
}
return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif
/*
* Locking issues: We need to protect the result of the id look up until
* we get the timer locked down so it is not deleted under us. The
* removal is done under the idr spinlock so we use that here to bridge
* the find to the timer lock. To avoid a dead lock, the timer id MUST
* be release with out holding the timer lock.
*/
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
{
struct k_itimer *timr;
/*
* timer_t could be any type >= int and we want to make sure any
* @timer_id outside positive int range fails lookup.
*/
if ((unsigned long long)timer_id > INT_MAX)
return NULL;
rcu_read_lock();
timr = posix_timer_by_id(timer_id);
if (timr) {
spin_lock_irqsave(&timr->it_lock, *flags);
if (timr->it_signal == current->signal) {
rcu_read_unlock();
return timr;
}
spin_unlock_irqrestore(&timr->it_lock, *flags);
}
rcu_read_unlock();
return NULL;
}
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
struct hrtimer *timer = &timr->it.real.timer;
return __hrtimer_expires_remaining_adjusted(timer, now);
}
static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
struct hrtimer *timer = &timr->it.real.timer;
return hrtimer_forward(timer, now, timr->it_interval);
}
/*
* Get the time remaining on a POSIX.1b interval timer. This function
* is ALWAYS called with spin_lock_irq on the timer, thus it must not
* mess with irq.
*
* We have a couple of messes to clean up here. First there is the case
* of a timer that has a requeue pending. These timers should appear to
* be in the timer list with an expiry as if we were to requeue them
* now.
*
* The second issue is the SIGEV_NONE timer which may be active but is
* not really ever put in the timer list (to save system resources).
* This timer may be expired, and if so, we will do it here. Otherwise
* it is the same as a requeue pending timer WRT to what we should
* report.
*/
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
{
const struct k_clock *kc = timr->kclock;
ktime_t now, remaining, iv;
struct timespec64 ts64;
bool sig_none;
sig_none = timr->it_sigev_notify == SIGEV_NONE;
iv = timr->it_interval;
/* interval timer ? */
if (iv) {
cur_setting->it_interval = ktime_to_timespec64(iv);
} else if (!timr->it_active) {
/*
* SIGEV_NONE oneshot timers are never queued. Check them
* below.
*/
if (!sig_none)
return;
}
/*
* The timespec64 based conversion is suboptimal, but it's not
* worth to implement yet another callback.
*/
kc->clock_get(timr->it_clock, &ts64);
now = timespec64_to_ktime(ts64);
/*
* When a requeue is pending or this is a SIGEV_NONE timer move the
* expiry time forward by intervals, so expiry is > now.
*/
if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
timr->it_overrun += kc->timer_forward(timr, now);
remaining = kc->timer_remaining(timr, now);
/* Return 0 only, when the timer is expired and not pending */
if (remaining <= 0) {
/*
* A single shot SIGEV_NONE timer must return 0, when
* it is expired !
*/
if (!sig_none)
cur_setting->it_value.tv_nsec = 1;
} else {
cur_setting->it_value = ktime_to_timespec64(remaining);
}
}
/* Get the time remaining on a POSIX.1b interval timer. */
static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
{
struct k_itimer *timr;
const struct k_clock *kc;
unsigned long flags;
int ret = 0;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
memset(setting, 0, sizeof(*setting));
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_get))
ret = -EINVAL;
else
kc->timer_get(timr, setting);
unlock_timer(timr, flags);
return ret;
}
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
struct __kernel_itimerspec __user *, setting)
{
struct itimerspec64 cur_setting;
int ret = do_timer_gettime(timer_id, &cur_setting);
if (!ret) {
if (put_itimerspec64(&cur_setting, setting))
ret = -EFAULT;
}
return ret;
}
#ifdef [31mCONFIG_COMPAT_32BIT_TIME[0m
SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
struct old_itimerspec32 __user *, setting)
{
struct itimerspec64 cur_setting;
int ret = do_timer_gettime(timer_id, &cur_setting);
if (!ret) {
if (put_old_itimerspec32(&cur_setting, setting))
ret = -EFAULT;
}
return ret;
}
#endif
/*
* Get the number of overruns of a POSIX.1b interval timer. This is to
* be the overrun of the timer last delivered. At the same time we are
* accumulating overruns on the next timer. The overrun is frozen when
* the signal is delivered, either at the notify time (if the info block
* is not queued) or at the actual delivery time (as we are informed by
* the call back to posixtimer_rearm(). So all we need to do is
* to pick up the frozen overrun.
*/
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
{
struct k_itimer *timr;
int overrun;
unsigned long flags;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
overrun = timer_overrun_to_int(timr, 0);
unlock_timer(timr, flags);
return overrun;
}
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
bool absolute, bool sigev_none)
{
struct hrtimer *timer = &timr->it.real.timer;
enum hrtimer_mode mode;
mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
/*
* Posix magic: Relative CLOCK_REALTIME timers are not affected by
* clock modifications, so they become CLOCK_MONOTONIC based under the
* hood. See hrtimer_init(). Update timr->kclock, so the generic
* functions which use timr->kclock->clock_get() work.
*
* Note: it_clock stays unmodified, because the next timer_set() might
* use ABSTIME, so it needs to switch back.
*/
if (timr->it_clock == CLOCK_REALTIME)
timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
timr->it.real.timer.function = posix_timer_fn;
if (!absolute)
expires = ktime_add_safe(expires, timer->base->get_time());
hrtimer_set_expires(timer, expires);
if (!sigev_none)
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
return hrtimer_try_to_cancel(&timr->it.real.timer);
}
static void common_timer_wait_running(struct k_itimer *timer)
{
hrtimer_cancel_wait_running(&timer->it.real.timer);
}
/*
* On PREEMPT_RT this prevent priority inversion against softirq kthread in
* case it gets preempted while executing a timer callback. See comments in
* hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
* cpu_relax().
*/
static struct k_itimer *timer_wait_running(struct k_itimer *timer,
unsigned long *flags)
{
const struct k_clock *kc = READ_ONCE(timer->kclock);
timer_t timer_id = READ_ONCE(timer->it_id);
/* Prevent kfree(timer) after dropping the lock */
rcu_read_lock();
unlock_timer(timer, *flags);
if (!WARN_ON_ONCE(!kc->timer_wait_running))
kc->timer_wait_running(timer);
rcu_read_unlock();
/* Relock the timer. It might be not longer hashed. */
return lock_timer(timer_id, flags);
}
/* Set a POSIX.1b interval timer. */
int common_timer_set(struct k_itimer *timr, int flags,
struct itimerspec64 *new_setting,
struct itimerspec64 *old_setting)
{
const struct k_clock *kc = timr->kclock;
bool sigev_none;
ktime_t expires;
if (old_setting)
common_timer_get(timr, old_setting);
/* Prevent rearming by clearing the interval */
timr->it_interval = 0;
/*
* Careful here. On SMP systems the timer expiry function could be
* active and spinning on timr->it_lock.
*/
if (kc->timer_try_to_cancel(timr) < 0)
return TIMER_RETRY;
timr->it_active = 0;
timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
~REQUEUE_PENDING;
timr->it_overrun_last = 0;
/* Switch off the timer when it_value is zero */
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
return 0;
timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
expires = timespec64_to_ktime(new_setting->it_value);
sigev_none = timr->it_sigev_notify == SIGEV_NONE;
kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
timr->it_active = !sigev_none;
return 0;
}
static int do_timer_settime(timer_t timer_id, int tmr_flags,
struct itimerspec64 *new_spec64,
struct itimerspec64 *old_spec64)
{
const struct k_clock *kc;
struct k_itimer *timr;
unsigned long flags;
int error = 0;
if (!timespec64_valid(&new_spec64->it_interval) ||
!timespec64_valid(&new_spec64->it_value))
return -EINVAL;
if (old_spec64)
memset(old_spec64, 0, sizeof(*old_spec64));
timr = lock_timer(timer_id, &flags);
retry:
if (!timr)
return -EINVAL;
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_set))
error = -EINVAL;
else
error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
if (error == TIMER_RETRY) {
// We already got the old time...
old_spec64 = NULL;
/* Unlocks and relocks the timer if it still exists */
timr = timer_wait_running(timr, &flags);
goto retry;
}
unlock_timer(timr, flags);
return error;
}
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
const struct __kernel_itimerspec __user *, new_setting,
struct __kernel_itimerspec __user *, old_setting)
{
struct itimerspec64 new_spec, old_spec;
struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
int error = 0;
if (!new_setting)
return -EINVAL;
if (get_itimerspec64(&new_spec, new_setting))
return -EFAULT;
error = do_timer_settime(timer_id, flags, &new_spec, rtn);
if (!error && old_setting) {
if (put_itimerspec64(&old_spec, old_setting))
error = -EFAULT;
}
return error;
}
#ifdef [31mCONFIG_COMPAT_32BIT_TIME[0m
SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
struct old_itimerspec32 __user *, new,
struct old_itimerspec32 __user *, old)
{
struct itimerspec64 new_spec, old_spec;
struct itimerspec64 *rtn = old ? &old_spec : NULL;
int error = 0;
if (!new)
return -EINVAL;
if (get_old_itimerspec32(&new_spec, new))
return -EFAULT;
error = do_timer_settime(timer_id, flags, &new_spec, rtn);
if (!error && old) {
if (put_old_itimerspec32(&old_spec, old))
error = -EFAULT;
}
return error;
}
#endif
int common_timer_del(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
timer->it_interval = 0;
if (kc->timer_try_to_cancel(timer) < 0)
return TIMER_RETRY;
timer->it_active = 0;
return 0;
}
static inline int timer_delete_hook(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_del))
return -EINVAL;
return kc->timer_del(timer);
}
/* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
{
struct k_itimer *timer;
unsigned long flags;
timer = lock_timer(timer_id, &flags);
retry_delete:
if (!timer)
return -EINVAL;
if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
/* Unlocks and relocks the timer if it still exists */
timer = timer_wait_running(timer, &flags);
goto retry_delete;
}
spin_lock(¤t->sighand->siglock);
list_del(&timer->list);
spin_unlock(¤t->sighand->siglock);
/*
* This keeps any tasks waiting on the spin lock from thinking
* they got something (see the lock code above).
*/
timer->it_signal = NULL;
unlock_timer(timer, flags);
release_posix_timer(timer, IT_ID_SET);
return 0;
}
/*
* return timer owned by the process, used by exit_itimers
*/
static void itimer_delete(struct k_itimer *timer)
{
retry_delete:
spin_lock_irq(&timer->it_lock);
if (timer_delete_hook(timer) == TIMER_RETRY) {
spin_unlock_irq(&timer->it_lock);
goto retry_delete;
}
list_del(&timer->list);
spin_unlock_irq(&timer->it_lock);
release_posix_timer(timer, IT_ID_SET);
}
/*
* This is called by do_exit or de_thread, only when there are no more
* references to the shared signal_struct.
*/
void exit_itimers(struct signal_struct *sig)
{
struct k_itimer *tmr;
while (!list_empty(&sig->posix_timers)) {
tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
itimer_delete(tmr);
}
}
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
const struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 new_tp;
if (!kc || !kc->clock_set)
return -EINVAL;
if (get_timespec64(&new_tp, tp))
return -EFAULT;
return kc->clock_set(which_clock, &new_tp);
}
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 kernel_tp;
int error;
if (!kc)
return -EINVAL;
error = kc->clock_get(which_clock, &kernel_tp);
if (!error && put_timespec64(&kernel_tp, tp))
error = -EFAULT;
return error;
}
int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
if (!kc)
return -EINVAL;
if (!kc->clock_adj)
return -EOPNOTSUPP;
return kc->clock_adj(which_clock, ktx);
}
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
struct __kernel_timex __user *, utx)
{
struct __kernel_timex ktx;
int err;
if (copy_from_user(&ktx, utx, sizeof(ktx)))
return -EFAULT;
err = do_clock_adjtime(which_clock, &ktx);
if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
return -EFAULT;
return err;
}
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 rtn_tp;
int error;
if (!kc)
return -EINVAL;
error = kc->clock_getres(which_clock, &rtn_tp);
if (!error && tp && put_timespec64(&rtn_tp, tp))
error = -EFAULT;
return error;
}
#ifdef [31mCONFIG_COMPAT_32BIT_TIME[0m
SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
if (!kc || !kc->clock_set)
return -EINVAL;
if (get_old_timespec32(&ts, tp))
return -EFAULT;
return kc->clock_set(which_clock, &ts);
}
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
int err;
if (!kc)
return -EINVAL;
err = kc->clock_get(which_clock, &ts);
if (!err && put_old_timespec32(&ts, tp))
err = -EFAULT;
return err;
}
SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
struct old_timex32 __user *, utp)
{
struct __kernel_timex ktx;
int err;
err = get_old_timex32(&ktx, utp);
if (err)
return err;
err = do_clock_adjtime(which_clock, &ktx);
if (err >= 0)
err = put_old_timex32(utp, &ktx);
return err;
}
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
int err;
if (!kc)
return -EINVAL;
err = kc->clock_getres(which_clock, &ts);
if (!err && tp && put_old_timespec32(&ts, tp))
return -EFAULT;
return err;
}
#endif
/*
* nanosleep for monotonic and realtime clocks
*/
static int common_nsleep(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
which_clock);
}
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
const struct __kernel_timespec __user *, rqtp,
struct __kernel_timespec __user *, rmtp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 t;
if (!kc)
return -EINVAL;
if (!kc->nsleep)
return -EOPNOTSUPP;
if (get_timespec64(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
current->restart_block.nanosleep.rmtp = rmtp;
return kc->nsleep(which_clock, flags, &t);
}
#ifdef [31mCONFIG_COMPAT_32BIT_TIME[0m
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
struct old_timespec32 __user *, rqtp,
struct old_timespec32 __user *, rmtp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 t;
if (!kc)
return -EINVAL;
if (!kc->nsleep)
return -EOPNOTSUPP;
if (get_old_timespec32(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
current->restart_block.nanosleep.compat_rmtp = rmtp;
return kc->nsleep(which_clock, flags, &t);
}
#endif
static const struct k_clock clock_realtime = {
.clock_getres = posix_get_hrtimer_res,
.clock_get = posix_clock_realtime_get,
.clock_set = posix_clock_realtime_set,
.clock_adj = posix_clock_realtime_adj,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic = {
.clock_getres = posix_get_hrtimer_res,
.clock_get = posix_ktime_get_ts,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic_raw = {
.clock_getres = posix_get_hrtimer_res,
.clock_get = posix_get_monotonic_raw,
};
static const struct k_clock clock_realtime_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get = posix_get_realtime_coarse,
};
static const struct k_clock clock_monotonic_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get = posix_get_monotonic_coarse,
};
static const struct k_clock clock_tai = {
.clock_getres = posix_get_hrtimer_res,
.clock_get = posix_get_tai,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_boottime = {
.clock_getres = posix_get_hrtimer_res,
.clock_get = posix_get_boottime,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock * const posix_clocks[] = {
[CLOCK_REALTIME] = &clock_realtime,
[CLOCK_MONOTONIC] = &clock_monotonic,
[CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
[CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
[CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
[CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
[CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
[CLOCK_BOOTTIME] = &clock_boottime,
[CLOCK_REALTIME_ALARM] = &alarm_clock,
[CLOCK_BOOTTIME_ALARM] = &alarm_clock,
[CLOCK_TAI] = &clock_tai,
};
static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
clockid_t idx = id;
if (id < 0) {
return (id & CLOCKFD_MASK) == CLOCKFD ?
&clock_posix_dynamic : &clock_posix_cpu;
}
if (id >= ARRAY_SIZE(posix_clocks))
return NULL;
return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
}