#ifndef __ASM_SH_FPU_H #define __ASM_SH_FPU_H #ifndef __ASSEMBLY__ struct task_struct; #ifdef [31mCONFIG_SH_FPU[0m static inline void release_fpu(struct pt_regs *regs) { regs->sr |= SR_FD; } static inline void grab_fpu(struct pt_regs *regs) { regs->sr &= ~SR_FD; } extern void save_fpu(struct task_struct *__tsk); extern void restore_fpu(struct task_struct *__tsk); extern void fpu_state_restore(struct pt_regs *regs); extern void __fpu_state_restore(void); #else #define save_fpu(tsk) do { } while (0) #define restore_fpu(tsk) do { } while (0) #define release_fpu(regs) do { } while (0) #define grab_fpu(regs) do { } while (0) #define fpu_state_restore(regs) do { } while (0) #define __fpu_state_restore(regs) do { } while (0) #endif struct user_regset; extern int do_fpu_inst(unsigned short, struct pt_regs *); extern int init_fpu(struct task_struct *); extern int fpregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf); static inline void __unlazy_fpu(struct task_struct *tsk, struct pt_regs *regs) { if (task_thread_info(tsk)->status & TS_USEDFPU) { task_thread_info(tsk)->status &= ~TS_USEDFPU; save_fpu(tsk); release_fpu(regs); } else tsk->thread.fpu_counter = 0; } static inline void unlazy_fpu(struct task_struct *tsk, struct pt_regs *regs) { preempt_disable(); __unlazy_fpu(tsk, regs); preempt_enable(); } static inline void clear_fpu(struct task_struct *tsk, struct pt_regs *regs) { preempt_disable(); if (task_thread_info(tsk)->status & TS_USEDFPU) { task_thread_info(tsk)->status &= ~TS_USEDFPU; release_fpu(regs); } preempt_enable(); } #endif /* __ASSEMBLY__ */ #endif /* __ASM_SH_FPU_H */ |