/* Copyright (c) 2016 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/pm_opp.h>
#include "a5xx_gpu.h"
/*
* The GPMU data block is a block of shared registers that can be used to
* communicate back and forth. These "registers" are by convention with the GPMU
* firwmare and not bound to any specific hardware design
*/
#define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE
#define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5)
#define AGC_MSG_BASE (AGC_INIT_BASE + 7)
#define AGC_MSG_STATE (AGC_MSG_BASE + 0)
#define AGC_MSG_COMMAND (AGC_MSG_BASE + 1)
#define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3)
#define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o))
#define AGC_POWER_CONFIG_PRODUCTION_ID 1
#define AGC_INIT_MSG_VALUE 0xBABEFACE
static struct {
uint32_t reg;
uint32_t value;
} a5xx_sequence_regs[] = {
{ 0xB9A1, 0x00010303 },
{ 0xB9A2, 0x13000000 },
{ 0xB9A3, 0x00460020 },
{ 0xB9A4, 0x10000000 },
{ 0xB9A5, 0x040A1707 },
{ 0xB9A6, 0x00010000 },
{ 0xB9A7, 0x0E000904 },
{ 0xB9A8, 0x10000000 },
{ 0xB9A9, 0x01165000 },
{ 0xB9AA, 0x000E0002 },
{ 0xB9AB, 0x03884141 },
{ 0xB9AC, 0x10000840 },
{ 0xB9AD, 0x572A5000 },
{ 0xB9AE, 0x00000003 },
{ 0xB9AF, 0x00000000 },
{ 0xB9B0, 0x10000000 },
{ 0xB828, 0x6C204010 },
{ 0xB829, 0x6C204011 },
{ 0xB82A, 0x6C204012 },
{ 0xB82B, 0x6C204013 },
{ 0xB82C, 0x6C204014 },
{ 0xB90F, 0x00000004 },
{ 0xB910, 0x00000002 },
{ 0xB911, 0x00000002 },
{ 0xB912, 0x00000002 },
{ 0xB913, 0x00000002 },
{ 0xB92F, 0x00000004 },
{ 0xB930, 0x00000005 },
{ 0xB931, 0x00000005 },
{ 0xB932, 0x00000005 },
{ 0xB933, 0x00000005 },
{ 0xB96F, 0x00000001 },
{ 0xB970, 0x00000003 },
{ 0xB94F, 0x00000004 },
{ 0xB950, 0x0000000B },
{ 0xB951, 0x0000000B },
{ 0xB952, 0x0000000B },
{ 0xB953, 0x0000000B },
{ 0xB907, 0x00000019 },
{ 0xB927, 0x00000019 },
{ 0xB947, 0x00000019 },
{ 0xB967, 0x00000019 },
{ 0xB987, 0x00000019 },
{ 0xB906, 0x00220001 },
{ 0xB926, 0x00220001 },
{ 0xB946, 0x00220001 },
{ 0xB966, 0x00220001 },
{ 0xB986, 0x00300000 },
{ 0xAC40, 0x0340FF41 },
{ 0xAC41, 0x03BEFED0 },
{ 0xAC42, 0x00331FED },
{ 0xAC43, 0x021FFDD3 },
{ 0xAC44, 0x5555AAAA },
{ 0xAC45, 0x5555AAAA },
{ 0xB9BA, 0x00000008 },
};
/*
* Get the actual voltage value for the operating point at the specified
* frequency
*/
static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq)
{
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct dev_pm_opp *opp;
opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true);
return (!IS_ERR(opp)) ? dev_pm_opp_get_voltage(opp) / 1000 : 0;
}
/* Setup thermal limit management */
static void a5xx_lm_setup(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
unsigned int i;
/* Write the block of sequence registers */
for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++)
gpu_write(gpu, a5xx_sequence_regs[i].reg,
a5xx_sequence_regs[i].value);
/* Hard code the A530 GPU thermal sensor ID for the GPMU */
gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007);
gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01);
gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01);
/* Until we get clock scaling 0 is always the active power level */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage);
/* The threshold is fixed at 6000 for A530 */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1);
/* Write the voltage table */
gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1);
gpu_write(gpu, AGC_MSG_STATE, 1);
gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
/* Write the max power - hard coded to 5448 for A530 */
gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
/*
* For now just write the one voltage level - we will do more when we
* can do scaling
*/
gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t));
gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
}
/* Enable SP/TP cpower collapse */
static void a5xx_pc_init(struct msm_gpu *gpu)
{
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040);
}
/* Enable the GPMU microcontroller */
static int a5xx_gpmu_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb;
if (!a5xx_gpu->gpmu_dwords)
return 0;
/* Turn off protected mode for this operation */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Kick off the IB to load the GPMU microcode */
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova));
OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova));
OUT_RING(ring, a5xx_gpu->gpmu_dwords);
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
gpu->funcs->flush(gpu);
if (!gpu->funcs->idle(gpu)) {
DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n",
gpu->name);
return -EINVAL;
}
gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014);
/* Kick off the GPMU */
gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0);
/*
* Wait for the GPMU to respond. It isn't fatal if it doesn't, we just
* won't have advanced power collapse.
*/
if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF,
0xBABEFACE))
DRM_ERROR("%s: GPMU firmware initialization timed out\n",
gpu->name);
return 0;
}
/* Enable limits management */
static void a5xx_lm_enable(struct msm_gpu *gpu)
{
gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0);
gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A);
gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01);
gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000);
gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000);
gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011);
}
int a5xx_power_init(struct msm_gpu *gpu)
{
int ret;
/* Set up the limits management */
a5xx_lm_setup(gpu);
/* Set up SP/TP power collpase */
a5xx_pc_init(gpu);
/* Start the GPMU */
ret = a5xx_gpmu_init(gpu);
if (ret)
return ret;
/* Start the limits management */
a5xx_lm_enable(gpu);
return 0;
}
void a5xx_gpmu_ucode_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct drm_device *drm = gpu->dev;
const struct firmware *fw;
uint32_t dwords = 0, offset = 0, bosize;
unsigned int *data, *ptr, *cmds;
unsigned int cmds_size;
if (a5xx_gpu->gpmu_bo)
return;
/* Get the firmware */
if (request_firmware(&fw, adreno_gpu->info->gpmufw, drm->dev)) {
DRM_ERROR("%s: Could not get GPMU firmware. GPMU will not be active\n",
gpu->name);
return;
}
data = (unsigned int *) fw->data;
/*
* The first dword is the size of the remaining data in dwords. Use it
* as a checksum of sorts and make sure it matches the actual size of
* the firmware that we read
*/
if (fw->size < 8 || (data[0] < 2) || (data[0] >= (fw->size >> 2)))
goto out;
/* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */
if (data[1] != 2)
goto out;
cmds = data + data[2] + 3;
cmds_size = data[0] - data[2] - 2;
/*
* A single type4 opcode can only have so many values attached so
* add enough opcodes to load the all the commands
*/
bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2;
mutex_lock(&drm->struct_mutex);
a5xx_gpu->gpmu_bo = msm_gem_new(drm, bosize, MSM_BO_UNCACHED);
mutex_unlock(&drm->struct_mutex);
if (IS_ERR(a5xx_gpu->gpmu_bo))
goto err;
if (msm_gem_get_iova(a5xx_gpu->gpmu_bo, gpu->id, &a5xx_gpu->gpmu_iova))
goto err;
ptr = msm_gem_get_vaddr(a5xx_gpu->gpmu_bo);
if (!ptr)
goto err;
while (cmds_size > 0) {
int i;
uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ?
TYPE4_MAX_PAYLOAD : cmds_size;
ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset,
_size);
for (i = 0; i < _size; i++)
ptr[dwords++] = *cmds++;
offset += _size;
cmds_size -= _size;
}
msm_gem_put_vaddr(a5xx_gpu->gpmu_bo);
a5xx_gpu->gpmu_dwords = dwords;
goto out;
err:
if (a5xx_gpu->gpmu_iova)
msm_gem_put_iova(a5xx_gpu->gpmu_bo, gpu->id);
if (a5xx_gpu->gpmu_bo)
drm_gem_object_unreference_unlocked(a5xx_gpu->gpmu_bo);
a5xx_gpu->gpmu_bo = NULL;
a5xx_gpu->gpmu_iova = 0;
a5xx_gpu->gpmu_dwords = 0;
out:
/* No need to keep that firmware laying around anymore */
release_firmware(fw);
}