/***************************************************************************\
|* *|
|* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NOTICE TO USER: The source code is copyrighted under U.S. and *|
|* international laws. Users and possessors of this source code are *|
|* hereby granted a nonexclusive, royalty-free copyright license to *|
|* use this code in individual and commercial software. *|
|* *|
|* Any use of this source code must include, in the user documenta- *|
|* tion and internal comments to the code, notices to the end user *|
|* as follows: *|
|* *|
|* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *|
|* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *|
|* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *|
|* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *|
|* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *|
|* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *|
|* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *|
|* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *|
|* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *|
|* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *|
|* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *|
|* *|
|* U.S. Government End Users. This source code is a "commercial *|
|* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *|
|* consisting of "commercial computer software" and "commercial *|
|* computer software documentation," as such terms are used in *|
|* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *|
|* ment only as a commercial end item. Consistent with 48 C.F.R. *|
|* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *|
|* all U.S. Government End Users acquire the source code with only *|
|* those rights set forth herein. *|
|* *|
\***************************************************************************/
/*
* GPL Licensing Note - According to Mark Vojkovich, author of the Xorg/
* XFree86 'nv' driver, this source code is provided under MIT-style licensing
* where the source code is provided "as is" without warranty of any kind.
* The only usage restriction is for the copyright notices to be retained
* whenever code is used.
*
* Antonino Daplas <adaplas@pol.net> 2005-03-11
*/
/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/nv_hw.c,v 1.4 2003/11/03 05:11:25 tsi Exp $ */
#include <linux/pci.h>
#include "nv_type.h"
#include "nv_local.h"
#include "nv_proto.h"
void NVLockUnlock(struct nvidia_par *par, int Lock)
{
u8 cr11;
VGA_WR08(par->PCIO, 0x3D4, 0x1F);
VGA_WR08(par->PCIO, 0x3D5, Lock ? 0x99 : 0x57);
VGA_WR08(par->PCIO, 0x3D4, 0x11);
cr11 = VGA_RD08(par->PCIO, 0x3D5);
if (Lock)
cr11 |= 0x80;
else
cr11 &= ~0x80;
VGA_WR08(par->PCIO, 0x3D5, cr11);
}
int NVShowHideCursor(struct nvidia_par *par, int ShowHide)
{
int cur = par->CurrentState->cursor1;
par->CurrentState->cursor1 = (par->CurrentState->cursor1 & 0xFE) |
(ShowHide & 0x01);
VGA_WR08(par->PCIO, 0x3D4, 0x31);
VGA_WR08(par->PCIO, 0x3D5, par->CurrentState->cursor1);
if (par->Architecture == NV_ARCH_40)
NV_WR32(par->PRAMDAC, 0x0300, NV_RD32(par->PRAMDAC, 0x0300));
return (cur & 0x01);
}
/****************************************************************************\
* *
* The video arbitration routines calculate some "magic" numbers. Fixes *
* the snow seen when accessing the framebuffer without it. *
* It just works (I hope). *
* *
\****************************************************************************/
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int valid;
} nv4_fifo_info;
typedef struct {
int pclk_khz;
int mclk_khz;
int nvclk_khz;
char mem_page_miss;
char mem_latency;
int memory_width;
char enable_video;
char gr_during_vid;
char pix_bpp;
char mem_aligned;
char enable_mp;
} nv4_sim_state;
typedef struct {
int graphics_lwm;
int video_lwm;
int graphics_burst_size;
int video_burst_size;
int valid;
} nv10_fifo_info;
typedef struct {
int pclk_khz;
int mclk_khz;
int nvclk_khz;
char mem_page_miss;
char mem_latency;
u32 memory_type;
int memory_width;
char enable_video;
char gr_during_vid;
char pix_bpp;
char mem_aligned;
char enable_mp;
} nv10_sim_state;
static void nvGetClocks(struct nvidia_par *par, unsigned int *MClk,
unsigned int *NVClk)
{
unsigned int pll, N, M, MB, NB, P;
if (par->Architecture >= NV_ARCH_40) {
pll = NV_RD32(par->PMC, 0x4020);
P = (pll >> 16) & 0x07;
pll = NV_RD32(par->PMC, 0x4024);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
if (((par->Chipset & 0xfff0) == 0x0290) ||
((par->Chipset & 0xfff0) == 0x0390)) {
MB = 1;
NB = 1;
} else {
MB = (pll >> 16) & 0xFF;
NB = (pll >> 24) & 0xFF;
}
*MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
pll = NV_RD32(par->PMC, 0x4000);
P = (pll >> 16) & 0x07;
pll = NV_RD32(par->PMC, 0x4004);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
MB = (pll >> 16) & 0xFF;
NB = (pll >> 24) & 0xFF;
*NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
} else if (par->twoStagePLL) {
pll = NV_RD32(par->PRAMDAC0, 0x0504);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x0F;
pll = NV_RD32(par->PRAMDAC0, 0x0574);
if (pll & 0x80000000) {
MB = pll & 0xFF;
NB = (pll >> 8) & 0xFF;
} else {
MB = 1;
NB = 1;
}
*MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
pll = NV_RD32(par->PRAMDAC0, 0x0500);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x0F;
pll = NV_RD32(par->PRAMDAC0, 0x0570);
if (pll & 0x80000000) {
MB = pll & 0xFF;
NB = (pll >> 8) & 0xFF;
} else {
MB = 1;
NB = 1;
}
*NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
} else
if (((par->Chipset & 0x0ff0) == 0x0300) ||
((par->Chipset & 0x0ff0) == 0x0330)) {
pll = NV_RD32(par->PRAMDAC0, 0x0504);
M = pll & 0x0F;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x07;
if (pll & 0x00000080) {
MB = (pll >> 4) & 0x07;
NB = (pll >> 19) & 0x1f;
} else {
MB = 1;
NB = 1;
}
*MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
pll = NV_RD32(par->PRAMDAC0, 0x0500);
M = pll & 0x0F;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x07;
if (pll & 0x00000080) {
MB = (pll >> 4) & 0x07;
NB = (pll >> 19) & 0x1f;
} else {
MB = 1;
NB = 1;
}
*NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P;
} else {
pll = NV_RD32(par->PRAMDAC0, 0x0504);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x0F;
*MClk = (N * par->CrystalFreqKHz / M) >> P;
pll = NV_RD32(par->PRAMDAC0, 0x0500);
M = pll & 0xFF;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x0F;
*NVClk = (N * par->CrystalFreqKHz / M) >> P;
}
}
static void nv4CalcArbitration(nv4_fifo_info * fifo, nv4_sim_state * arb)
{
int data, pagemiss, cas, width, video_enable, bpp;
int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs;
int found, mclk_extra, mclk_loop, cbs, m1, p1;
int mclk_freq, pclk_freq, nvclk_freq, mp_enable;
int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate;
int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt, clwm;
fifo->valid = 1;
pclk_freq = arb->pclk_khz;
mclk_freq = arb->mclk_khz;
nvclk_freq = arb->nvclk_khz;
pagemiss = arb->mem_page_miss;
cas = arb->mem_latency;
width = arb->memory_width >> 6;
video_enable = arb->enable_video;
bpp = arb->pix_bpp;
mp_enable = arb->enable_mp;
clwm = 0;
vlwm = 0;
cbs = 128;
pclks = 2;
nvclks = 2;
nvclks += 2;
nvclks += 1;
mclks = 5;
mclks += 3;
mclks += 1;
mclks += cas;
mclks += 1;
mclks += 1;
mclks += 1;
mclks += 1;
mclk_extra = 3;
nvclks += 2;
nvclks += 1;
nvclks += 1;
nvclks += 1;
if (mp_enable)
mclks += 4;
nvclks += 0;
pclks += 0;
found = 0;
vbs = 0;
while (found != 1) {
fifo->valid = 1;
found = 1;
mclk_loop = mclks + mclk_extra;
us_m = mclk_loop * 1000 * 1000 / mclk_freq;
us_n = nvclks * 1000 * 1000 / nvclk_freq;
us_p = nvclks * 1000 * 1000 / pclk_freq;
if (video_enable) {
video_drain_rate = pclk_freq * 2;
crtc_drain_rate = pclk_freq * bpp / 8;
vpagemiss = 2;
vpagemiss += 1;
crtpagemiss = 2;
vpm_us =
(vpagemiss * pagemiss) * 1000 * 1000 / mclk_freq;
if (nvclk_freq * 2 > mclk_freq * width)
video_fill_us =
cbs * 1000 * 1000 / 16 / nvclk_freq;
else
video_fill_us =
cbs * 1000 * 1000 / (8 * width) /
mclk_freq;
us_video = vpm_us + us_m + us_n + us_p + video_fill_us;
vlwm = us_video * video_drain_rate / (1000 * 1000);
vlwm++;
vbs = 128;
if (vlwm > 128)
vbs = 64;
if (vlwm > (256 - 64))
vbs = 32;
if (nvclk_freq * 2 > mclk_freq * width)
video_fill_us =
vbs * 1000 * 1000 / 16 / nvclk_freq;
else
video_fill_us =
vbs * 1000 * 1000 / (8 * width) /
mclk_freq;
cpm_us =
crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
us_crt =
us_video + video_fill_us + cpm_us + us_m + us_n +
us_p;
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
clwm++;
} else {
crtc_drain_rate = pclk_freq * bpp / 8;
crtpagemiss = 2;
crtpagemiss += 1;
cpm_us =
crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
us_crt = cpm_us + us_m + us_n + us_p;
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
clwm++;
}
m1 = clwm + cbs - 512;
p1 = m1 * pclk_freq / mclk_freq;
p1 = p1 * bpp / 8;
if ((p1 < m1) && (m1 > 0)) {
fifo->valid = 0;
found = 0;
if (mclk_extra == 0)
found = 1;
mclk_extra--;
} else if (video_enable) {
if ((clwm > 511) || (vlwm > 255)) {
fifo->valid = 0;
found = 0;
if (mclk_extra == 0)
found = 1;
mclk_extra--;
}
} else {
if (clwm > 519) {
fifo->valid = 0;
found = 0;
if (mclk_extra == 0)
found = 1;
mclk_extra--;
}
}
if (clwm < 384)
clwm = 384;
if (vlwm < 128)
vlwm = 128;
data = (int)(clwm);
fifo->graphics_lwm = data;
fifo->graphics_burst_size = 128;
data = (int)((vlwm + 15));
fifo->video_lwm = data;
fifo->video_burst_size = vbs;
}
}
static void nv4UpdateArbitrationSettings(unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm, struct nvidia_par *par)
{
nv4_fifo_info fifo_data;
nv4_sim_state sim_data;
unsigned int MClk, NVClk, cfg1;
nvGetClocks(par, &MClk, &NVClk);
cfg1 = NV_RD32(par->PFB, 0x00000204);
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
sim_data.memory_width = (NV_RD32(par->PEXTDEV, 0x0000) & 0x10) ?
128 : 64;
sim_data.mem_latency = (char)cfg1 & 0x0F;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss =
(char)(((cfg1 >> 4) & 0x0F) + ((cfg1 >> 31) & 0x01));
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
nv4CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid) {
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1)
(*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
}
static void nv10CalcArbitration(nv10_fifo_info * fifo, nv10_sim_state * arb)
{
int data, pagemiss, width, video_enable, bpp;
int nvclks, mclks, pclks, vpagemiss, crtpagemiss;
int nvclk_fill;
int found, mclk_extra, mclk_loop, cbs, m1;
int mclk_freq, pclk_freq, nvclk_freq, mp_enable;
int us_m, us_m_min, us_n, us_p, crtc_drain_rate;
int vus_m;
int vpm_us, us_video, cpm_us, us_crt, clwm;
int clwm_rnd_down;
int m2us, us_pipe_min, p1clk, p2;
int min_mclk_extra;
int us_min_mclk_extra;
fifo->valid = 1;
pclk_freq = arb->pclk_khz; /* freq in KHz */
mclk_freq = arb->mclk_khz;
nvclk_freq = arb->nvclk_khz;
pagemiss = arb->mem_page_miss;
width = arb->memory_width / 64;
video_enable = arb->enable_video;
bpp = arb->pix_bpp;
mp_enable = arb->enable_mp;
clwm = 0;
cbs = 512;
pclks = 4; /* lwm detect. */
nvclks = 3; /* lwm -> sync. */
nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */
/* 2 edge sync. may be very close to edge so just put one. */
mclks = 1;
mclks += 1; /* arb_hp_req */
mclks += 5; /* ap_hp_req tiling pipeline */
mclks += 2; /* tc_req latency fifo */
mclks += 2; /* fb_cas_n_ memory request to fbio block */
mclks += 7; /* sm_d_rdv data returned from fbio block */
/* fb.rd.d.Put_gc need to accumulate 256 bits for read */
if (arb->memory_type == 0)
if (arb->memory_width == 64) /* 64 bit bus */
mclks += 4;
else
mclks += 2;
else if (arb->memory_width == 64) /* 64 bit bus */
mclks += 2;
else
mclks += 1;
if ((!video_enable) && (arb->memory_width == 128)) {
mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */
min_mclk_extra = 17;
} else {
mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */
/* mclk_extra = 4; *//* Margin of error */
min_mclk_extra = 18;
}
/* 2 edge sync. may be very close to edge so just put one. */
nvclks += 1;
nvclks += 1; /* fbi_d_rdv_n */
nvclks += 1; /* Fbi_d_rdata */
nvclks += 1; /* crtfifo load */
if (mp_enable)
mclks += 4; /* Mp can get in with a burst of 8. */
/* Extra clocks determined by heuristics */
nvclks += 0;
pclks += 0;
found = 0;
while (found != 1) {
fifo->valid = 1;
found = 1;
mclk_loop = mclks + mclk_extra;
/* Mclk latency in us */
us_m = mclk_loop * 1000 * 1000 / mclk_freq;
/* Minimum Mclk latency in us */
us_m_min = mclks * 1000 * 1000 / mclk_freq;
us_min_mclk_extra = min_mclk_extra * 1000 * 1000 / mclk_freq;
/* nvclk latency in us */
us_n = nvclks * 1000 * 1000 / nvclk_freq;
/* nvclk latency in us */
us_p = pclks * 1000 * 1000 / pclk_freq;
us_pipe_min = us_m_min + us_n + us_p;
/* Mclk latency in us */
vus_m = mclk_loop * 1000 * 1000 / mclk_freq;
if (video_enable) {
crtc_drain_rate = pclk_freq * bpp / 8; /* MB/s */
vpagemiss = 1; /* self generating page miss */
vpagemiss += 1; /* One higher priority before */
crtpagemiss = 2; /* self generating page miss */
if (mp_enable)
crtpagemiss += 1; /* if MA0 conflict */
vpm_us =
(vpagemiss * pagemiss) * 1000 * 1000 / mclk_freq;
/* Video has separate read return path */
us_video = vpm_us + vus_m;
cpm_us =
crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
/* Wait for video */
us_crt = us_video
+ cpm_us /* CRT Page miss */
+ us_m + us_n + us_p /* other latency */
;
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
/* fixed point <= float_point - 1. Fixes that */
clwm++;
} else {
/* bpp * pclk/8 */
crtc_drain_rate = pclk_freq * bpp / 8;
crtpagemiss = 1; /* self generating page miss */
crtpagemiss += 1; /* MA0 page miss */
if (mp_enable)
crtpagemiss += 1; /* if MA0 conflict */
cpm_us =
crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
us_crt = cpm_us + us_m + us_n + us_p;
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
/* fixed point <= float_point - 1. Fixes that */
clwm++;
/* Finally, a heuristic check when width == 64 bits */
if (width == 1) {
nvclk_fill = nvclk_freq * 8;
if (crtc_drain_rate * 100 >= nvclk_fill * 102)
/*Large number to fail */
clwm = 0xfff;
else if (crtc_drain_rate * 100 >=
nvclk_fill * 98) {
clwm = 1024;
cbs = 512;
}
}
}
/*
Overfill check:
*/
clwm_rnd_down = ((int)clwm / 8) * 8;
if (clwm_rnd_down < clwm)
clwm += 8;
m1 = clwm + cbs - 1024; /* Amount of overfill */
m2us = us_pipe_min + us_min_mclk_extra;
/* pclk cycles to drain */
p1clk = m2us * pclk_freq / (1000 * 1000);
p2 = p1clk * bpp / 8; /* bytes drained. */
if ((p2 < m1) && (m1 > 0)) {
fifo->valid = 0;
found = 0;
if (min_mclk_extra == 0) {
if (cbs <= 32) {
/* Can't adjust anymore! */
found = 1;
} else {
/* reduce the burst size */
cbs = cbs / 2;
}
} else {
min_mclk_extra--;
}
} else {
if (clwm > 1023) { /* Have some margin */
fifo->valid = 0;
found = 0;
if (min_mclk_extra == 0)
/* Can't adjust anymore! */
found = 1;
else
min_mclk_extra--;
}
}
if (clwm < (1024 - cbs + 8))
clwm = 1024 - cbs + 8;
data = (int)(clwm);
/* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n",
clwm, data ); */
fifo->graphics_lwm = data;
fifo->graphics_burst_size = cbs;
fifo->video_lwm = 1024;
fifo->video_burst_size = 512;
}
}
static void nv10UpdateArbitrationSettings(unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
struct nvidia_par *par)
{
nv10_fifo_info fifo_data;
nv10_sim_state sim_data;
unsigned int MClk, NVClk, cfg1;
nvGetClocks(par, &MClk, &NVClk);
cfg1 = NV_RD32(par->PFB, 0x0204);
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 1;
sim_data.enable_mp = 0;
sim_data.memory_type = (NV_RD32(par->PFB, 0x0200) & 0x01) ? 1 : 0;
sim_data.memory_width = (NV_RD32(par->PEXTDEV, 0x0000) & 0x10) ?
128 : 64;
sim_data.mem_latency = (char)cfg1 & 0x0F;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss =
(char)(((cfg1 >> 4) & 0x0F) + ((cfg1 >> 31) & 0x01));
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
nv10CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid) {
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1)
(*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
}
static void nv30UpdateArbitrationSettings (
struct nvidia_par *par,
unsigned int *burst,
unsigned int *lwm
)
{
unsigned int MClk, NVClk;
unsigned int fifo_size, burst_size, graphics_lwm;
fifo_size = 2048;
burst_size = 512;
graphics_lwm = fifo_size - burst_size;
nvGetClocks(par, &MClk, &NVClk);
*burst = 0;
burst_size >>= 5;
while(burst_size >>= 1) (*burst)++;
*lwm = graphics_lwm >> 3;
}
static void nForceUpdateArbitrationSettings(unsigned VClk,
unsigned pixelDepth,
unsigned *burst,
unsigned *lwm,
struct nvidia_par *par)
{
nv10_fifo_info fifo_data;
nv10_sim_state sim_data;
unsigned int M, N, P, pll, MClk, NVClk, memctrl;
struct pci_dev *dev;
if ((par->Chipset & 0x0FF0) == 0x01A0) {
unsigned int uMClkPostDiv;
dev = pci_get_bus_and_slot(0, 3);
pci_read_config_dword(dev, 0x6C, &uMClkPostDiv);
uMClkPostDiv = (uMClkPostDiv >> 8) & 0xf;
if (!uMClkPostDiv)
uMClkPostDiv = 4;
MClk = 400000 / uMClkPostDiv;
} else {
dev = pci_get_bus_and_slot(0, 5);
pci_read_config_dword(dev, 0x4c, &MClk);
MClk /= 1000;
}
pci_dev_put(dev);
pll = NV_RD32(par->PRAMDAC0, 0x0500);
M = (pll >> 0) & 0xFF;
N = (pll >> 8) & 0xFF;
P = (pll >> 16) & 0x0F;
NVClk = (N * par->CrystalFreqKHz / M) >> P;
sim_data.pix_bpp = (char)pixelDepth;
sim_data.enable_video = 0;
sim_data.enable_mp = 0;
dev = pci_get_bus_and_slot(0, 1);
pci_read_config_dword(dev, 0x7C, &sim_data.memory_type);
pci_dev_put(dev);
sim_data.memory_type = (sim_data.memory_type >> 12) & 1;
sim_data.memory_width = 64;
dev = pci_get_bus_and_slot(0, 3);
pci_read_config_dword(dev, 0, &memctrl);
pci_dev_put(dev);
memctrl >>= 16;
if ((memctrl == 0x1A9) || (memctrl == 0x1AB) || (memctrl == 0x1ED)) {
u32 dimm[3];
dev = pci_get_bus_and_slot(0, 2);
pci_read_config_dword(dev, 0x40, &dimm[0]);
dimm[0] = (dimm[0] >> 8) & 0x4f;
pci_read_config_dword(dev, 0x44, &dimm[1]);
dimm[1] = (dimm[1] >> 8) & 0x4f;
pci_read_config_dword(dev, 0x48, &dimm[2]);
dimm[2] = (dimm[2] >> 8) & 0x4f;
if ((dimm[0] + dimm[1]) != dimm[2]) {
printk("nvidiafb: your nForce DIMMs are not arranged "
"in optimal banks!\n");
}
pci_dev_put(dev);
}
sim_data.mem_latency = 3;
sim_data.mem_aligned = 1;
sim_data.mem_page_miss = 10;
sim_data.gr_during_vid = 0;
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
nv10CalcArbitration(&fifo_data, &sim_data);
if (fifo_data.valid) {
int b = fifo_data.graphics_burst_size >> 4;
*burst = 0;
while (b >>= 1)
(*burst)++;
*lwm = fifo_data.graphics_lwm >> 3;
}
}
/****************************************************************************\
* *
* RIVA Mode State Routines *
* *
\****************************************************************************/
/*
* Calculate the Video Clock parameters for the PLL.
*/
static void CalcVClock(int clockIn,
int *clockOut, u32 * pllOut, struct nvidia_par *par)
{
unsigned lowM, highM;
unsigned DeltaNew, DeltaOld;
unsigned VClk, Freq;
unsigned M, N, P;
DeltaOld = 0xFFFFFFFF;
VClk = (unsigned)clockIn;
if (par->CrystalFreqKHz == 13500) {
lowM = 7;
highM = 13;
} else {
lowM = 8;
highM = 14;
}
for (P = 0; P <= 4; P++) {
Freq = VClk << P;
if ((Freq >= 128000) && (Freq <= 350000)) {
for (M = lowM; M <= highM; M++) {
N = ((VClk << P) * M) / par->CrystalFreqKHz;
if (N <= 255) {
Freq =
((par->CrystalFreqKHz * N) /
M) >> P;
if (Freq > VClk)
DeltaNew = Freq - VClk;
else
DeltaNew = VClk - Freq;
if (DeltaNew < DeltaOld) {
*pllOut =
(P << 16) | (N << 8) | M;
*clockOut = Freq;
DeltaOld = DeltaNew;
}
}
}
}
}
}
static void CalcVClock2Stage(int clockIn,
int *clockOut,
u32 * pllOut,
u32 * pllBOut, struct nvidia_par *par)
{
unsigned DeltaNew, DeltaOld;
unsigned VClk, Freq;
unsigned M, N, P;
DeltaOld = 0xFFFFFFFF;
*pllBOut = 0x80000401; /* fixed at x4 for now */
VClk = (unsigned)clockIn;
for (P = 0; P <= 6; P++) {
Freq = VClk << P;
if ((Freq >= 400000) && (Freq <= 1000000)) {
for (M = 1; M <= 13; M++) {
N = ((VClk << P) * M) /
(par->CrystalFreqKHz << 2);
if ((N >= 5) && (N <= 255)) {
Freq =
(((par->CrystalFreqKHz << 2) * N) /
M) >> P;
if (Freq > VClk)
DeltaNew = Freq - VClk;
else
DeltaNew = VClk - Freq;
if (DeltaNew < DeltaOld) {
*pllOut =
(P << 16) | (N << 8) | M;
*clockOut = Freq;
DeltaOld = DeltaNew;
}
}
}
}
}
}
/*
* Calculate extended mode parameters (SVGA) and save in a
* mode state structure.
*/
void NVCalcStateExt(struct nvidia_par *par,
RIVA_HW_STATE * state,
int bpp,
int width,
int hDisplaySize, int height, int dotClock, int flags)
{
int pixelDepth, VClk = 0;
/*
* Save mode parameters.
*/
state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */
state->width = width;
state->height = height;
/*
* Extended RIVA registers.
*/
pixelDepth = (bpp + 1) / 8;
if (par->twoStagePLL)
CalcVClock2Stage(dotClock, &VClk, &state->pll, &state->pllB,
par);
else
CalcVClock(dotClock, &VClk, &state->pll, par);
switch (par->Architecture) {
case NV_ARCH_04:
nv4UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1), par);
state->cursor0 = 0x00;
state->cursor1 = 0xbC;
if (flags & FB_VMODE_DOUBLE)
state->cursor1 |= 2;
state->cursor2 = 0x00000000;
state->pllsel = 0x10000700;
state->config = 0x00001114;
state->general = bpp == 16 ? 0x00101100 : 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00;
break;
case NV_ARCH_40:
if (!par->FlatPanel)
state->control = NV_RD32(par->PRAMDAC0, 0x0580) &
0xeffffeff;
/* fallthrough */
case NV_ARCH_10:
case NV_ARCH_20:
case NV_ARCH_30:
default:
if ((par->Chipset & 0xfff0) == 0x0240 ||
(par->Chipset & 0xfff0) == 0x03d0) {
state->arbitration0 = 256;
state->arbitration1 = 0x0480;
} else if (((par->Chipset & 0xffff) == 0x01A0) ||
((par->Chipset & 0xffff) == 0x01f0)) {
nForceUpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
par);
} else if (par->Architecture < NV_ARCH_30) {
nv10UpdateArbitrationSettings(VClk,
pixelDepth * 8,
&(state->arbitration0),
&(state->arbitration1),
par);
} else {
nv30UpdateArbitrationSettings(par,
&(state->arbitration0),
&(state->arbitration1));
}
state->cursor0 = 0x80 | (par->CursorStart >> 17);
state->cursor1 = (par->CursorStart >> 11) << 2;
state->cursor2 = par->CursorStart >> 24;
if (flags & FB_VMODE_DOUBLE)
state->cursor1 |= 2;
state->pllsel = 0x10000700;
state->config = NV_RD32(par->PFB, 0x00000200);
state->general = bpp == 16 ? 0x00101100 : 0x00100100;
state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00;
break;
}
if (bpp != 8) /* DirectColor */
state->general |= 0x00000030;
state->repaint0 = (((width / 8) * pixelDepth) & 0x700) >> 3;
state->pixel = (pixelDepth > 2) ? 3 : pixelDepth;
}
void NVLoadStateExt(struct nvidia_par *par, RIVA_HW_STATE * state)
{
int i, j;
NV_WR32(par->PMC, 0x0140, 0x00000000);
NV_WR32(par->PMC, 0x0200, 0xFFFF00FF);
NV_WR32(par->PMC, 0x0200, 0xFFFFFFFF);
NV_WR32(par->PTIMER, 0x0200 * 4, 0x00000008);
NV_WR32(par->PTIMER, 0x0210 * 4, 0x00000003);
NV_WR32(par->PTIMER, 0x0140 * 4, 0x00000000);
NV_WR32(par->PTIMER, 0x0100 * 4, 0xFFFFFFFF);
if (par->Architecture == NV_ARCH_04) {
if (state)
NV_WR32(par->PFB, 0x0200, state->config);
} else if ((par->Architecture < NV_ARCH_40) ||
(par->Chipset & 0xfff0) == 0x0040) {
for (i = 0; i < 8; i++) {
NV_WR32(par->PFB, 0x0240 + (i * 0x10), 0);
NV_WR32(par->PFB, 0x0244 + (i * 0x10),
par->FbMapSize - 1);
}
} else {
int regions = 12;
if (((par->Chipset & 0xfff0) == 0x0090) ||
((par->Chipset & 0xfff0) == 0x01D0) ||
((par->Chipset & 0xfff0) == 0x0290) ||
((par->Chipset & 0xfff0) == 0x0390) ||
((par->Chipset & 0xfff0) == 0x03D0))
regions = 15;
for(i = 0; i < regions; i++) {
NV_WR32(par->PFB, 0x0600 + (i * 0x10), 0);
NV_WR32(par->PFB, 0x0604 + (i * 0x10),
par->FbMapSize - 1);
}
}
if (par->Architecture >= NV_ARCH_40) {
NV_WR32(par->PRAMIN, 0x0000 * 4, 0x80000010);
NV_WR32(par->PRAMIN, 0x0001 * 4, 0x00101202);
NV_WR32(par->PRAMIN, 0x0002 * 4, 0x80000011);
NV_WR32(par->PRAMIN, 0x0003 * 4, 0x00101204);
NV_WR32(par->PRAMIN, 0x0004 * 4, 0x80000012);
NV_WR32(par->PRAMIN, 0x0005 * 4, 0x00101206);
NV_WR32(par->PRAMIN, 0x0006 * 4, 0x80000013);
NV_WR32(par->PRAMIN, 0x0007 * 4, 0x00101208);
NV_WR32(par->PRAMIN, 0x0008 * 4, 0x80000014);
NV_WR32(par->PRAMIN, 0x0009 * 4, 0x0010120A);
NV_WR32(par->PRAMIN, 0x000A * 4, 0x80000015);
NV_WR32(par->PRAMIN, 0x000B * 4, 0x0010120C);
NV_WR32(par->PRAMIN, 0x000C * 4, 0x80000016);
NV_WR32(par->PRAMIN, 0x000D * 4, 0x0010120E);
NV_WR32(par->PRAMIN, 0x000E * 4, 0x80000017);
NV_WR32(par->PRAMIN, 0x000F * 4, 0x00101210);
NV_WR32(par->PRAMIN, 0x0800 * 4, 0x00003000);
NV_WR32(par->PRAMIN, 0x0801 * 4, par->FbMapSize - 1);
NV_WR32(par->PRAMIN, 0x0802 * 4, 0x00000002);
NV_WR32(par->PRAMIN, 0x0808 * 4, 0x02080062);
NV_WR32(par->PRAMIN, 0x0809 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080A * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x080B * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x080C * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0810 * 4, 0x02080043);
NV_WR32(par->PRAMIN, 0x0811 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0812 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0813 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0814 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0815 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0818 * 4, 0x02080044);
NV_WR32(par->PRAMIN, 0x0819 * 4, 0x02000000);
NV_WR32(par->PRAMIN, 0x081A * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081B * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081C * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0820 * 4, 0x02080019);
NV_WR32(par->PRAMIN, 0x0821 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0822 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0823 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0824 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0825 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0828 * 4, 0x020A005C);
NV_WR32(par->PRAMIN, 0x0829 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x082A * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x082B * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x082C * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x082D * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0830 * 4, 0x0208009F);
NV_WR32(par->PRAMIN, 0x0831 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0832 * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x0833 * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x0834 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0835 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0838 * 4, 0x0208004A);
NV_WR32(par->PRAMIN, 0x0839 * 4, 0x02000000);
NV_WR32(par->PRAMIN, 0x083A * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x083B * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x083C * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x083D * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0840 * 4, 0x02080077);
NV_WR32(par->PRAMIN, 0x0841 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0842 * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x0843 * 4, 0x00001200);
NV_WR32(par->PRAMIN, 0x0844 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0845 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x084C * 4, 0x00003002);
NV_WR32(par->PRAMIN, 0x084D * 4, 0x00007FFF);
NV_WR32(par->PRAMIN, 0x084E * 4,
par->FbUsableSize | 0x00000002);
#ifdef __BIG_ENDIAN
NV_WR32(par->PRAMIN, 0x080A * 4,
NV_RD32(par->PRAMIN, 0x080A * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x0812 * 4,
NV_RD32(par->PRAMIN, 0x0812 * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x081A * 4,
NV_RD32(par->PRAMIN, 0x081A * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x0822 * 4,
NV_RD32(par->PRAMIN, 0x0822 * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x082A * 4,
NV_RD32(par->PRAMIN, 0x082A * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x0832 * 4,
NV_RD32(par->PRAMIN, 0x0832 * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x083A * 4,
NV_RD32(par->PRAMIN, 0x083A * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x0842 * 4,
NV_RD32(par->PRAMIN, 0x0842 * 4) | 0x01000000);
NV_WR32(par->PRAMIN, 0x0819 * 4, 0x01000000);
NV_WR32(par->PRAMIN, 0x0839 * 4, 0x01000000);
#endif
} else {
NV_WR32(par->PRAMIN, 0x0000 * 4, 0x80000010);
NV_WR32(par->PRAMIN, 0x0001 * 4, 0x80011201);
NV_WR32(par->PRAMIN, 0x0002 * 4, 0x80000011);
NV_WR32(par->PRAMIN, 0x0003 * 4, 0x80011202);
NV_WR32(par->PRAMIN, 0x0004 * 4, 0x80000012);
NV_WR32(par->PRAMIN, 0x0005 * 4, 0x80011203);
NV_WR32(par->PRAMIN, 0x0006 * 4, 0x80000013);
NV_WR32(par->PRAMIN, 0x0007 * 4, 0x80011204);
NV_WR32(par->PRAMIN, 0x0008 * 4, 0x80000014);
NV_WR32(par->PRAMIN, 0x0009 * 4, 0x80011205);
NV_WR32(par->PRAMIN, 0x000A * 4, 0x80000015);
NV_WR32(par->PRAMIN, 0x000B * 4, 0x80011206);
NV_WR32(par->PRAMIN, 0x000C * 4, 0x80000016);
NV_WR32(par->PRAMIN, 0x000D * 4, 0x80011207);
NV_WR32(par->PRAMIN, 0x000E * 4, 0x80000017);
NV_WR32(par->PRAMIN, 0x000F * 4, 0x80011208);
NV_WR32(par->PRAMIN, 0x0800 * 4, 0x00003000);
NV_WR32(par->PRAMIN, 0x0801 * 4, par->FbMapSize - 1);
NV_WR32(par->PRAMIN, 0x0802 * 4, 0x00000002);
NV_WR32(par->PRAMIN, 0x0803 * 4, 0x00000002);
if (par->Architecture >= NV_ARCH_10)
NV_WR32(par->PRAMIN, 0x0804 * 4, 0x01008062);
else
NV_WR32(par->PRAMIN, 0x0804 * 4, 0x01008042);
NV_WR32(par->PRAMIN, 0x0805 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0806 * 4, 0x12001200);
NV_WR32(par->PRAMIN, 0x0807 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0808 * 4, 0x01008043);
NV_WR32(par->PRAMIN, 0x0809 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080A * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080B * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080C * 4, 0x01008044);
NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000002);
NV_WR32(par->PRAMIN, 0x080E * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x080F * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0810 * 4, 0x01008019);
NV_WR32(par->PRAMIN, 0x0811 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0812 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0813 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0814 * 4, 0x0100A05C);
NV_WR32(par->PRAMIN, 0x0815 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0816 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0817 * 4, 0x00000000);
if (par->WaitVSyncPossible)
NV_WR32(par->PRAMIN, 0x0818 * 4, 0x0100809F);
else
NV_WR32(par->PRAMIN, 0x0818 * 4, 0x0100805F);
NV_WR32(par->PRAMIN, 0x0819 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081A * 4, 0x12001200);
NV_WR32(par->PRAMIN, 0x081B * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081C * 4, 0x0100804A);
NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000002);
NV_WR32(par->PRAMIN, 0x081E * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x081F * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0820 * 4, 0x01018077);
NV_WR32(par->PRAMIN, 0x0821 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0822 * 4, 0x12001200);
NV_WR32(par->PRAMIN, 0x0823 * 4, 0x00000000);
NV_WR32(par->PRAMIN, 0x0824 * 4, 0x00003002);
NV_WR32(par->PRAMIN, 0x0825 * 4, 0x00007FFF);
NV_WR32(par->PRAMIN, 0x0826 * 4,
par->FbUsableSize | 0x00000002);
NV_WR32(par->PRAMIN, 0x0827 * 4, 0x00000002);
#ifdef __BIG_ENDIAN
NV_WR32(par->PRAMIN, 0x0804 * 4,
NV_RD32(par->PRAMIN, 0x0804 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x0808 * 4,
NV_RD32(par->PRAMIN, 0x0808 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x080C * 4,
NV_RD32(par->PRAMIN, 0x080C * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x0810 * 4,
NV_RD32(par->PRAMIN, 0x0810 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x0814 * 4,
NV_RD32(par->PRAMIN, 0x0814 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x0818 * 4,
NV_RD32(par->PRAMIN, 0x0818 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x081C * 4,
NV_RD32(par->PRAMIN, 0x081C * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x0820 * 4,
NV_RD32(par->PRAMIN, 0x0820 * 4) | 0x00080000);
NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000001);
NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000001);
#endif
}
if (par->Architecture < NV_ARCH_10) {
if ((par->Chipset & 0x0fff) == 0x0020) {
NV_WR32(par->PRAMIN, 0x0824 * 4,
NV_RD32(par->PRAMIN, 0x0824 * 4) | 0x00020000);
NV_WR32(par->PRAMIN, 0x0826 * 4,
NV_RD32(par->PRAMIN,
0x0826 * 4) + par->FbAddress);
}
NV_WR32(par->PGRAPH, 0x0080, 0x000001FF);
NV_WR32(par->PGRAPH, 0x0080, 0x1230C000);
NV_WR32(par->PGRAPH, 0x0084, 0x72111101);
NV_WR32(par->PGRAPH, 0x0088, 0x11D5F071);
NV_WR32(par->PGRAPH, 0x008C, 0x0004FF31);
NV_WR32(par->PGRAPH, 0x008C, 0x4004FF31);
NV_WR32(par->PGRAPH, 0x0140, 0x00000000);
NV_WR32(par->PGRAPH, 0x0100, 0xFFFFFFFF);
NV_WR32(par->PGRAPH, 0x0170, 0x10010100);
NV_WR32(par->PGRAPH, 0x0710, 0xFFFFFFFF);
NV_WR32(par->PGRAPH, 0x0720, 0x00000001);
NV_WR32(par->PGRAPH, 0x0810, 0x00000000);
NV_WR32(par->PGRAPH, 0x0608, 0xFFFFFFFF);
} else {
NV_WR32(par->PGRAPH, 0x0080, 0xFFFFFFFF);
NV_WR32(par->PGRAPH, 0x0080, 0x00000000);
NV_WR32(par->PGRAPH, 0x0140, 0x00000000);
NV_WR32(par->PGRAPH, 0x0100, 0xFFFFFFFF);
NV_WR32(par->PGRAPH, 0x0144, 0x10010100);
NV_WR32(par->PGRAPH, 0x0714, 0xFFFFFFFF);
NV_WR32(par->PGRAPH, 0x0720, 0x00000001);
NV_WR32(par->PGRAPH, 0x0710,
NV_RD32(par->PGRAPH, 0x0710) & 0x0007ff00);
NV_WR32(par->PGRAPH, 0x0710,
NV_RD32(par->PGRAPH, 0x0710) | 0x00020100);
if (par->Architecture == NV_ARCH_10) {
NV_WR32(par->PGRAPH, 0x0084, 0x00118700);
NV_WR32(par->PGRAPH, 0x0088, 0x24E00810);
NV_WR32(par->PGRAPH, 0x008C, 0x55DE0030);
for (i = 0; i < 32; i++)
NV_WR32(&par->PGRAPH[(0x0B00 / 4) + i], 0,
NV_RD32(&par->PFB[(0x0240 / 4) + i],
0));
NV_WR32(par->PGRAPH, 0x640, 0);
NV_WR32(par->PGRAPH, 0x644, 0);
NV_WR32(par->PGRAPH, 0x684, par->FbMapSize - 1);
NV_WR32(par->PGRAPH, 0x688, par->FbMapSize - 1);
NV_WR32(par->PGRAPH, 0x0810, 0x00000000);
NV_WR32(par->PGRAPH, 0x0608, 0xFFFFFFFF);
} else {
if (par->Architecture >= NV_ARCH_40) {
NV_WR32(par->PGRAPH, 0x0084, 0x401287c0);
NV_WR32(par->PGRAPH, 0x008C, 0x60de8051);
NV_WR32(par->PGRAPH, 0x0090, 0x00008000);
NV_WR32(par->PGRAPH, 0x0610, 0x00be3c5f);
NV_WR32(par->PGRAPH, 0x0bc4,
NV_RD32(par->PGRAPH, 0x0bc4) |
0x00008000);
j = NV_RD32(par->REGS, 0x1540) & 0xff;
if (j) {
for (i = 0; !(j & 1); j >>= 1, i++);
NV_WR32(par->PGRAPH, 0x5000, i);
}
if ((par->Chipset & 0xfff0) == 0x0040) {
NV_WR32(par->PGRAPH, 0x09b0,
0x83280fff);
NV_WR32(par->PGRAPH, 0x09b4,
0x000000a0);
} else {
NV_WR32(par->PGRAPH, 0x0820,
0x83280eff);
NV_WR32(par->PGRAPH, 0x0824,
0x000000a0);
}
switch (par->Chipset & 0xfff0) {
case 0x0040:
case 0x0210:
NV_WR32(par->PGRAPH, 0x09b8,
0x0078e366);
NV_WR32(par->PGRAPH, 0x09bc,
0x0000014c);
NV_WR32(par->PFB, 0x033C,
NV_RD32(par->PFB, 0x33C) &
0xffff7fff);
break;
case 0x00C0:
case 0x0120:
NV_WR32(par->PGRAPH, 0x0828,
0x007596ff);
NV_WR32(par->PGRAPH, 0x082C,
0x00000108);
break;
case 0x0160:
case 0x01D0:
case 0x0240:
case 0x03D0:
NV_WR32(par->PMC, 0x1700,
NV_RD32(par->PFB, 0x020C));
NV_WR32(par->PMC, 0x1704, 0);
NV_WR32(par->PMC, 0x1708, 0);
NV_WR32(par->PMC, 0x170C,
NV_RD32(par->PFB, 0x020C));
NV_WR32(par->PGRAPH, 0x0860, 0);
NV_WR32(par->PGRAPH, 0x0864, 0);
NV_WR32(par->PRAMDAC, 0x0608,
NV_RD32(par->PRAMDAC,
0x0608) | 0x00100000);
break;
case 0x0140:
NV_WR32(par->PGRAPH, 0x0828,
0x0072cb77);
NV_WR32(par->PGRAPH, 0x082C,
0x00000108);
break;
case 0x0220:
NV_WR32(par->PGRAPH, 0x0860, 0);
NV_WR32(par->PGRAPH, 0x0864, 0);
NV_WR32(par->PRAMDAC, 0x0608,
NV_RD32(par->PRAMDAC, 0x0608) |
0x00100000);
break;
case 0x0090:
case 0x0290:
case 0x0390:
NV_WR32(par->PRAMDAC, 0x0608,
NV_RD32(par->PRAMDAC, 0x0608) |
0x00100000);
NV_WR32(par->PGRAPH, 0x0828,
0x07830610);
NV_WR32(par->PGRAPH, 0x082C,
0x0000016A);
break;
default:
break;
}
NV_WR32(par->PGRAPH, 0x0b38, 0x2ffff800);
NV_WR32(par->PGRAPH, 0x0b3c, 0x00006000);
NV_WR32(par->PGRAPH, 0x032C, 0x01000000);
NV_WR32(par->PGRAPH, 0x0220, 0x00001200);
} else if (par->Architecture == NV_ARCH_30) {
NV_WR32(par->PGRAPH, 0x0084, 0x40108700);
NV_WR32(par->PGRAPH, 0x0890, 0x00140000);
NV_WR32(par->PGRAPH, 0x008C, 0xf00e0431);
NV_WR32(par->PGRAPH, 0x0090, 0x00008000);
NV_WR32(par->PGRAPH, 0x0610, 0xf04b1f36);
NV_WR32(par->PGRAPH, 0x0B80, 0x1002d888);
NV_WR32(par->PGRAPH, 0x0B88, 0x62ff007f);
} else {
NV_WR32(par->PGRAPH, 0x0084, 0x00118700);
NV_WR32(par->PGRAPH, 0x008C, 0xF20E0431);
NV_WR32(par->PGRAPH, 0x0090, 0x00000000);
NV_WR32(par->PGRAPH, 0x009C, 0x00000040);
if ((par->Chipset & 0x0ff0) >= 0x0250) {
NV_WR32(par->PGRAPH, 0x0890,
0x00080000);
NV_WR32(par->PGRAPH, 0x0610,
0x304B1FB6);
NV_WR32(par->PGRAPH, 0x0B80,
0x18B82880);
NV_WR32(par->PGRAPH, 0x0B84,
0x44000000);
NV_WR32(par->PGRAPH, 0x0098,
0x40000080);
NV_WR32(par->PGRAPH, 0x0B88,
0x000000ff);
} else {
NV_WR32(par->PGRAPH, 0x0880,
0x00080000);
NV_WR32(par->PGRAPH, 0x0094,
0x00000005);
NV_WR32(par->PGRAPH, 0x0B80,
0x45CAA208);
NV_WR32(par->PGRAPH, 0x0B84,
0x24000000);
NV_WR32(par->PGRAPH, 0x0098,
0x00000040);
NV_WR32(par->PGRAPH, 0x0750,
0x00E00038);
NV_WR32(par->PGRAPH, 0x0754,
0x00000030);
NV_WR32(par->PGRAPH, 0x0750,
0x00E10038);
NV_WR32(par->PGRAPH, 0x0754,
0x00000030);
}
}
if ((par->Architecture < NV_ARCH_40) ||
((par->Chipset & 0xfff0) == 0x0040)) {
for (i = 0; i < 32; i++) {
NV_WR32(par->PGRAPH, 0x0900 + i*4,
NV_RD32(par->PFB, 0x0240 +i*4));
NV_WR32(par->PGRAPH, 0x6900 + i*4,
NV_RD32(par->PFB, 0x0240 +i*4));
}
} else {
if (((par->Chipset & 0xfff0) == 0x0090) ||
((par->Chipset & 0xfff0) == 0x01D0) ||
((par->Chipset & 0xfff0) == 0x0290) ||
((par->Chipset & 0xfff0) == 0x0390) ||
((par->Chipset & 0xfff0) == 0x03D0)) {
for (i = 0; i < 60; i++) {
NV_WR32(par->PGRAPH,
0x0D00 + i*4,
NV_RD32(par->PFB,
0x0600 + i*4));
NV_WR32(par->PGRAPH,
0x6900 + i*4,
NV_RD32(par->PFB,
0x0600 + i*4));
}
} else {
for (i = 0; i < 48; i++) {
NV_WR32(par->PGRAPH,
0x0900 + i*4,
NV_RD32(par->PFB,
0x0600 + i*4));
if(((par->Chipset & 0xfff0)
!= 0x0160) &&
((par->Chipset & 0xfff0)
!= 0x0220) &&
((par->Chipset & 0xfff0)
!= 0x240))
NV_WR32(par->PGRAPH,
0x6900 + i*4,
NV_RD32(par->PFB,
0x0600 + i*4));
}
}
}
if (par->Architecture >= NV_ARCH_40) {
if ((par->Chipset & 0xfff0) == 0x0040) {
NV_WR32(par->PGRAPH, 0x09A4,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x09A8,
NV_RD32(par->PFB, 0x0204));
NV_WR32(par->PGRAPH, 0x69A4,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x69A8,
NV_RD32(par->PFB, 0x0204));
NV_WR32(par->PGRAPH, 0x0820, 0);
NV_WR32(par->PGRAPH, 0x0824, 0);
NV_WR32(par->PGRAPH, 0x0864,
par->FbMapSize - 1);
NV_WR32(par->PGRAPH, 0x0868,
par->FbMapSize - 1);
} else {
if ((par->Chipset & 0xfff0) == 0x0090 ||
(par->Chipset & 0xfff0) == 0x01D0 ||
(par->Chipset & 0xfff0) == 0x0290 ||
(par->Chipset & 0xfff0) == 0x0390) {
NV_WR32(par->PGRAPH, 0x0DF0,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x0DF4,
NV_RD32(par->PFB, 0x0204));
} else {
NV_WR32(par->PGRAPH, 0x09F0,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x09F4,
NV_RD32(par->PFB, 0x0204));
}
NV_WR32(par->PGRAPH, 0x69F0,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x69F4,
NV_RD32(par->PFB, 0x0204));
NV_WR32(par->PGRAPH, 0x0840, 0);
NV_WR32(par->PGRAPH, 0x0844, 0);
NV_WR32(par->PGRAPH, 0x08a0,
par->FbMapSize - 1);
NV_WR32(par->PGRAPH, 0x08a4,
par->FbMapSize - 1);
}
} else {
NV_WR32(par->PGRAPH, 0x09A4,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x09A8,
NV_RD32(par->PFB, 0x0204));
NV_WR32(par->PGRAPH, 0x0750, 0x00EA0000);
NV_WR32(par->PGRAPH, 0x0754,
NV_RD32(par->PFB, 0x0200));
NV_WR32(par->PGRAPH, 0x0750, 0x00EA0004);
NV_WR32(par->PGRAPH, 0x0754,
NV_RD32(par->PFB, 0x0204));
NV_WR32(par->PGRAPH, 0x0820, 0);
NV_WR32(par->PGRAPH, 0x0824, 0);
NV_WR32(par->PGRAPH, 0x0864,
par->FbMapSize - 1);
NV_WR32(par->PGRAPH, 0x0868,
par->FbMapSize - 1);
}
NV_WR32(par->PGRAPH, 0x0B20, 0x00000000);
NV_WR32(par->PGRAPH, 0x0B04, 0xFFFFFFFF);
}
}
NV_WR32(par->PGRAPH, 0x053C, 0);
NV_WR32(par->PGRAPH, 0x0540, 0);
NV_WR32(par->PGRAPH, 0x0544, 0x00007FFF);
NV_WR32(par->PGRAPH, 0x0548, 0x00007FFF);
NV_WR32(par->PFIFO, 0x0140 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0141 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x0480 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0494 * 4, 0x00000000);
if (par->Architecture >= NV_ARCH_40)
NV_WR32(par->PFIFO, 0x0481 * 4, 0x00010000);
else
NV_WR32(par->PFIFO, 0x0481 * 4, 0x00000100);
NV_WR32(par->PFIFO, 0x0490 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0491 * 4, 0x00000000);
if (par->Architecture >= NV_ARCH_40)
NV_WR32(par->PFIFO, 0x048B * 4, 0x00001213);
else
NV_WR32(par->PFIFO, 0x048B * 4, 0x00001209);
NV_WR32(par->PFIFO, 0x0400 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0414 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0084 * 4, 0x03000100);
NV_WR32(par->PFIFO, 0x0085 * 4, 0x00000110);
NV_WR32(par->PFIFO, 0x0086 * 4, 0x00000112);
NV_WR32(par->PFIFO, 0x0143 * 4, 0x0000FFFF);
NV_WR32(par->PFIFO, 0x0496 * 4, 0x0000FFFF);
NV_WR32(par->PFIFO, 0x0050 * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x0040 * 4, 0xFFFFFFFF);
NV_WR32(par->PFIFO, 0x0415 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x048C * 4, 0x00000000);
NV_WR32(par->PFIFO, 0x04A0 * 4, 0x00000000);
#ifdef __BIG_ENDIAN
NV_WR32(par->PFIFO, 0x0489 * 4, 0x800F0078);
#else
NV_WR32(par->PFIFO, 0x0489 * 4, 0x000F0078);
#endif
NV_WR32(par->PFIFO, 0x0488 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x0480 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x0494 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x0495 * 4, 0x00000001);
NV_WR32(par->PFIFO, 0x0140 * 4, 0x00000001);
if (!state) {
par->CurrentState = NULL;
return;
}
if (par->Architecture >= NV_ARCH_10) {
if (par->twoHeads) {
NV_WR32(par->PCRTC0, 0x0860, state->head);
NV_WR32(par->PCRTC0, 0x2860, state->head2);
}
NV_WR32(par->PRAMDAC, 0x0404, NV_RD32(par->PRAMDAC, 0x0404) |
(1 << 25));
NV_WR32(par->PMC, 0x8704, 1);
NV_WR32(par->PMC, 0x8140, 0);
NV_WR32(par->PMC, 0x8920, 0);
NV_WR32(par->PMC, 0x8924, 0);
NV_WR32(par->PMC, 0x8908, par->FbMapSize - 1);
NV_WR32(par->PMC, 0x890C, par->FbMapSize - 1);
NV_WR32(par->PMC, 0x1588, 0);
NV_WR32(par->PCRTC, 0x0810, state->cursorConfig);
NV_WR32(par->PCRTC, 0x0830, state->displayV - 3);
NV_WR32(par->PCRTC, 0x0834, state->displayV - 1);
if (par->FlatPanel) {
if ((par->Chipset & 0x0ff0) == 0x0110) {
NV_WR32(par->PRAMDAC, 0x0528, state->dither);
} else if (par->twoHeads) {
NV_WR32(par->PRAMDAC, 0x083C, state->dither);
}
VGA_WR08(par->PCIO, 0x03D4, 0x53);
VGA_WR08(par->PCIO, 0x03D5, state->timingH);
VGA_WR08(par->PCIO, 0x03D4, 0x54);
VGA_WR08(par->PCIO, 0x03D5, state->timingV);
VGA_WR08(par->PCIO, 0x03D4, 0x21);
VGA_WR08(par->PCIO, 0x03D5, 0xfa);
}
VGA_WR08(par->PCIO, 0x03D4, 0x41);
VGA_WR08(par->PCIO, 0x03D5, state->extra);
}
VGA_WR08(par->PCIO, 0x03D4, 0x19);
VGA_WR08(par->PCIO, 0x03D5, state->repaint0);
VGA_WR08(par->PCIO, 0x03D4, 0x1A);
VGA_WR08(par->PCIO, 0x03D5, state->repaint1);
VGA_WR08(par->PCIO, 0x03D4, 0x25);
VGA_WR08(par->PCIO, 0x03D5, state->screen);
VGA_WR08(par->PCIO, 0x03D4, 0x28);
VGA_WR08(par->PCIO, 0x03D5, state->pixel);
VGA_WR08(par->PCIO, 0x03D4, 0x2D);
VGA_WR08(par->PCIO, 0x03D5, state->horiz);
VGA_WR08(par->PCIO, 0x03D4, 0x1C);
VGA_WR08(par->PCIO, 0x03D5, state->fifo);
VGA_WR08(par->PCIO, 0x03D4, 0x1B);
VGA_WR08(par->PCIO, 0x03D5, state->arbitration0);
VGA_WR08(par->PCIO, 0x03D4, 0x20);
VGA_WR08(par->PCIO, 0x03D5, state->arbitration1);
if(par->Architecture >= NV_ARCH_30) {
VGA_WR08(par->PCIO, 0x03D4, 0x47);
VGA_WR08(par->PCIO, 0x03D5, state->arbitration1 >> 8);
}
VGA_WR08(par->PCIO, 0x03D4, 0x30);
VGA_WR08(par->PCIO, 0x03D5, state->cursor0);
VGA_WR08(par->PCIO, 0x03D4, 0x31);
VGA_WR08(par->PCIO, 0x03D5, state->cursor1);
VGA_WR08(par->PCIO, 0x03D4, 0x2F);
VGA_WR08(par->PCIO, 0x03D5, state->cursor2);
VGA_WR08(par->PCIO, 0x03D4, 0x39);
VGA_WR08(par->PCIO, 0x03D5, state->interlace);
if (!par->FlatPanel) {
if (par->Architecture >= NV_ARCH_40)
NV_WR32(par->PRAMDAC0, 0x0580, state->control);
NV_WR32(par->PRAMDAC0, 0x050C, state->pllsel);
NV_WR32(par->PRAMDAC0, 0x0508, state->vpll);
if (par->twoHeads)
NV_WR32(par->PRAMDAC0, 0x0520, state->vpll2);
if (par->twoStagePLL) {
NV_WR32(par->PRAMDAC0, 0x0578, state->vpllB);
NV_WR32(par->PRAMDAC0, 0x057C, state->vpll2B);
}
} else {
NV_WR32(par->PRAMDAC, 0x0848, state->scale);
NV_WR32(par->PRAMDAC, 0x0828, state->crtcSync +
par->PanelTweak);
}
NV_WR32(par->PRAMDAC, 0x0600, state->general);
NV_WR32(par->PCRTC, 0x0140, 0);
NV_WR32(par->PCRTC, 0x0100, 1);
par->CurrentState = state;
}
void NVUnloadStateExt(struct nvidia_par *par, RIVA_HW_STATE * state) {
VGA_WR08(par->PCIO, 0x03D4, 0x19);
state->repaint0 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x1A);
state->repaint1 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x25);
state->screen = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x28);
state->pixel = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x2D);
state->horiz = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x1C);
state->fifo = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x1B);
state->arbitration0 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x20);
state->arbitration1 = VGA_RD08(par->PCIO, 0x03D5);
if(par->Architecture >= NV_ARCH_30) {
VGA_WR08(par->PCIO, 0x03D4, 0x47);
state->arbitration1 |= (VGA_RD08(par->PCIO, 0x03D5) & 1) << 8;
}
VGA_WR08(par->PCIO, 0x03D4, 0x30);
state->cursor0 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x31);
state->cursor1 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x2F);
state->cursor2 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x39);
state->interlace = VGA_RD08(par->PCIO, 0x03D5);
state->vpll = NV_RD32(par->PRAMDAC0, 0x0508);
if (par->twoHeads)
state->vpll2 = NV_RD32(par->PRAMDAC0, 0x0520);
if (par->twoStagePLL) {
state->vpllB = NV_RD32(par->PRAMDAC0, 0x0578);
state->vpll2B = NV_RD32(par->PRAMDAC0, 0x057C);
}
state->pllsel = NV_RD32(par->PRAMDAC0, 0x050C);
state->general = NV_RD32(par->PRAMDAC, 0x0600);
state->scale = NV_RD32(par->PRAMDAC, 0x0848);
state->config = NV_RD32(par->PFB, 0x0200);
if (par->Architecture >= NV_ARCH_40 && !par->FlatPanel)
state->control = NV_RD32(par->PRAMDAC0, 0x0580);
if (par->Architecture >= NV_ARCH_10) {
if (par->twoHeads) {
state->head = NV_RD32(par->PCRTC0, 0x0860);
state->head2 = NV_RD32(par->PCRTC0, 0x2860);
VGA_WR08(par->PCIO, 0x03D4, 0x44);
state->crtcOwner = VGA_RD08(par->PCIO, 0x03D5);
}
VGA_WR08(par->PCIO, 0x03D4, 0x41);
state->extra = VGA_RD08(par->PCIO, 0x03D5);
state->cursorConfig = NV_RD32(par->PCRTC, 0x0810);
if ((par->Chipset & 0x0ff0) == 0x0110) {
state->dither = NV_RD32(par->PRAMDAC, 0x0528);
} else if (par->twoHeads) {
state->dither = NV_RD32(par->PRAMDAC, 0x083C);
}
if (par->FlatPanel) {
VGA_WR08(par->PCIO, 0x03D4, 0x53);
state->timingH = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D4, 0x54);
state->timingV = VGA_RD08(par->PCIO, 0x03D5);
}
}
}
void NVSetStartAddress(struct nvidia_par *par, u32 start)
{
NV_WR32(par->PCRTC, 0x800, start);
}