Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * Copyright 2013 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

/******************************************************************************
 * kernel data segment
 *****************************************************************************/
#ifdef INCLUDE_PROC
proc_kern:
process(PROC_KERN, 0, 0)
proc_list_head:
#endif

#ifdef INCLUDE_DATA
proc_list_tail:
time_prev: .b32 0
time_next: .b32 0
#endif

/******************************************************************************
 * kernel code segment
 *****************************************************************************/
#ifdef INCLUDE_CODE
	bra #init

// read nv register
//
// $r15 - current
// $r14 - addr
// $r13 - data (return)
// $r0  - zero
rd32:
	nv_iowr(NV_PPWR_MMIO_ADDR, $r14)
	imm32($r13, NV_PPWR_MMIO_CTRL_OP_RD | NV_PPWR_MMIO_CTRL_TRIGGER)
	nv_iowr(NV_PPWR_MMIO_CTRL, $r13)
	rd32_wait:
		nv_iord($r13, NV_PPWR_MMIO_CTRL)
		and $r13 NV_PPWR_MMIO_CTRL_STATUS
		bra nz #rd32_wait
	nv_iord($r13, NV_PPWR_MMIO_DATA)
	ret

// write nv register
//
// $r15 - current
// $r14 - addr
// $r13 - data
// $r0  - zero
wr32:
	nv_iowr(NV_PPWR_MMIO_ADDR, $r14)
	nv_iowr(NV_PPWR_MMIO_DATA, $r13)
	imm32($r13, NV_PPWR_MMIO_CTRL_OP_WR | NV_PPWR_MMIO_CTRL_MASK_B32_0 | NV_PPWR_MMIO_CTRL_TRIGGER)

#ifdef NVKM_FALCON_MMIO_TRAP
	push $r13
	mov $r13 NV_PPWR_INTR_TRIGGER_USER1
	nv_iowr(NV_PPWR_INTR_TRIGGER, $r13)
	wr32_host:
		nv_iord($r13, NV_PPWR_INTR)
		and $r13 NV_PPWR_INTR_USER1
		bra nz #wr32_host
	pop $r13
#endif

	nv_iowr(NV_PPWR_MMIO_CTRL, $r13)
	wr32_wait:
		nv_iord($r13, NV_PPWR_MMIO_CTRL)
		and $r13 NV_PPWR_MMIO_CTRL_STATUS
		bra nz #wr32_wait
	ret

// busy-wait for a period of time
//
// $r15 - current
// $r14 - ns
// $r0  - zero
nsec:
	push $r9
	push $r8
	nv_iord($r8, NV_PPWR_TIMER_LOW)
	nsec_loop:
		nv_iord($r9, NV_PPWR_TIMER_LOW)
		sub b32 $r9 $r8
		cmp b32 $r9 $r14
		bra l #nsec_loop
	pop $r8
	pop $r9
	ret

// busy-wait for a period of time
//
// $r15 - current
// $r14 - addr
// $r13 - mask
// $r12 - data
// $r11 - timeout (ns)
// $r0  - zero
wait:
	push $r9
	push $r8
	nv_iord($r8, NV_PPWR_TIMER_LOW)
	wait_loop:
		nv_rd32($r10, $r14)
		and $r10 $r13
		cmp b32 $r10 $r12
		bra e #wait_done
		nv_iord($r9, NV_PPWR_TIMER_LOW)
		sub b32 $r9 $r8
		cmp b32 $r9 $r11
		bra l #wait_loop
	wait_done:
	pop $r8
	pop $r9
	ret

// $r15 - current (kern)
// $r14 - process
// $r8  - NV_PPWR_INTR
intr_watchdog:
	// read process' timer status, skip if not enabled
	ld b32 $r9 D[$r14 + #proc_time]
	cmp b32 $r9 0
	bra z #intr_watchdog_next_proc

	// subtract last timer's value from process' timer,
	// if it's <= 0 then the timer has expired
	ld b32 $r10 D[$r0 + #time_prev]
	sub b32 $r9 $r10
	bra g #intr_watchdog_next_time
		mov $r13 KMSG_ALARM
		call(send_proc)
		clear b32 $r9
		bra #intr_watchdog_next_proc

	// otherwise, update the next timer's value if this
	// process' timer is the soonest
	intr_watchdog_next_time:
		// ... or if there's no next timer yet
		ld b32 $r10 D[$r0 + #time_next]
		cmp b32 $r10 0
		bra z #intr_watchdog_next_time_set

		cmp b32 $r9 $r10
		bra g #intr_watchdog_next_proc
		intr_watchdog_next_time_set:
		st b32 D[$r0 + #time_next] $r9

	// update process' timer status, and advance
	intr_watchdog_next_proc:
	st b32 D[$r14 + #proc_time] $r9
	add b32 $r14 #proc_size
	cmp b32 $r14 #proc_list_tail
	bra ne #intr_watchdog
	ret

intr:
	push $r0
	clear b32 $r0
	push $r8
	push $r9
	push $r10
	push $r11
	push $r12
	push $r13
	push $r14
	push $r15
	mov $r15 #proc_kern
	mov $r8 $flags
	push $r8

	nv_iord($r8, NV_PPWR_DSCRATCH(0))
	add b32 $r8 1
	nv_iowr(NV_PPWR_DSCRATCH(0), $r8)

	nv_iord($r8, NV_PPWR_INTR)
	and $r9 $r8 NV_PPWR_INTR_WATCHDOG
	bra z #intr_skip_watchdog
		st b32 D[$r0 + #time_next] $r0
		mov $r14 #proc_list_head
		call(intr_watchdog)
		ld b32 $r9 D[$r0 + #time_next]
		cmp b32 $r9 0
		bra z #intr_skip_watchdog
			nv_iowr(NV_PPWR_WATCHDOG_TIME, $r9)
			st b32 D[$r0 + #time_prev] $r9

	intr_skip_watchdog:
	and $r9 $r8 NV_PPWR_INTR_SUBINTR
	bra z #intr_skip_subintr
		nv_iord($r9, NV_PPWR_SUBINTR)
		and $r10 $r9 NV_PPWR_SUBINTR_FIFO
		bra z #intr_subintr_skip_fifo
			nv_iord($r12, NV_PPWR_FIFO_INTR)
			push $r12
			imm32($r14, PROC_HOST)
			mov $r13 KMSG_FIFO
			call(send)
			pop $r12
			nv_iowr(NV_PPWR_FIFO_INTR, $r12)
		intr_subintr_skip_fifo:
		nv_iowr(NV_PPWR_SUBINTR, $r9)

	intr_skip_subintr:
	mov $r9 (NV_PPWR_INTR_USER0 | NV_PPWR_INTR_USER1 | NV_PPWR_INTR_PAUSE)
	not b32 $r9
	and $r8 $r9
	nv_iowr(NV_PPWR_INTR_ACK, $r8)

	pop $r8
	mov $flags $r8
	pop $r15
	pop $r14
	pop $r13
	pop $r12
	pop $r11
	pop $r10
	pop $r9
	pop $r8
	pop $r0
	bclr $flags $p0
	iret

// calculate the number of ticks in the specified nanoseconds delay
//
// $r15 - current
// $r14 - ns
// $r14 - ticks (return)
// $r0  - zero
ticks_from_ns:
	push $r12
	push $r11

	/* try not losing precision (multiply then divide) */
	imm32($r13, HW_TICKS_PER_US)
	call(mulu32_32_64)

	/* use an immeditate, it's ok because HW_TICKS_PER_US < 16 bits */
	div $r12 $r12 1000

	/* check if there wasn't any overflow */
	cmpu b32 $r11 0
	bra e #ticks_from_ns_quit

	/* let's divide then multiply, too bad for the precision! */
	div $r14 $r14 1000
	imm32($r13, HW_TICKS_PER_US)
	call(mulu32_32_64)

	/* this cannot overflow as long as HW_TICKS_PER_US < 1000 */

ticks_from_ns_quit:
	mov b32 $r14 $r12
	pop $r11
	pop $r12
	ret

// calculate the number of ticks in the specified microsecond delay
//
// $r15 - current
// $r14 - us
// $r14 - ticks (return)
// $r0  - zero
ticks_from_us:
	push $r12
	push $r11

	/* simply multiply $us by HW_TICKS_PER_US */
	imm32($r13, HW_TICKS_PER_US)
	call(mulu32_32_64)
	mov b32 $r14 $r12

	/* check if there wasn't any overflow */
	cmpu b32 $r11 0
	bra e #ticks_from_us_quit

	/* Overflow! */
	clear b32 $r14

ticks_from_us_quit:
	pop $r11
	pop $r12
	ret

// calculate the number of ticks in the specified microsecond delay
//
// $r15 - current
// $r14 - ticks
// $r14 - us (return)
// $r0  - zero
ticks_to_us:
	/* simply divide $ticks by HW_TICKS_PER_US */
	imm32($r13, HW_TICKS_PER_US)
	div $r14 $r14 $r13

	ret

// request the current process be sent a message after a timeout expires
//
// $r15 - current
// $r14 - ticks (make sure it is < 2^31 to avoid any possible overflow)
// $r0  - zero
timer:
	push $r9
	push $r8

	// interrupts off to prevent racing with timer isr
	bclr $flags ie0

	// if current process already has a timer set, bail
	ld b32 $r8 D[$r15 + #proc_time]
	cmp b32 $r8 0
	bra g #timer_done

	// halt watchdog timer temporarily
	clear b32 $r8
	nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r8)

	// find out how much time elapsed since the last update
	// of the watchdog and add this time to the wanted ticks
	nv_iord($r8, NV_PPWR_WATCHDOG_TIME)
	ld b32 $r9 D[$r0 + #time_prev]
	sub b32 $r9 $r8
	add b32 $r14 $r9
	st b32 D[$r15 + #proc_time] $r14

	// check for a pending interrupt.  if there's one already
	// pending, we can just bail since the timer isr will
	// queue the next soonest right after it's done
	nv_iord($r8, NV_PPWR_INTR)
	and $r8 NV_PPWR_INTR_WATCHDOG
	bra nz #timer_enable

	// update the watchdog if this timer should expire first,
	// or if there's no timeout already set
	nv_iord($r8, NV_PPWR_WATCHDOG_TIME)
	cmp b32 $r14 $r0
	bra e #timer_reset
	cmp b32 $r14 $r8
	bra g #timer_enable
		timer_reset:
		nv_iowr(NV_PPWR_WATCHDOG_TIME, $r14)
		st b32 D[$r0 + #time_prev] $r14

	// re-enable the watchdog timer
	timer_enable:
	mov $r8 1
	nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r8)

	// interrupts back on
	timer_done:
	bset $flags ie0

	pop $r8
	pop $r9
	ret

// send message to another process
//
// $r15 - current
// $r14 - process
// $r13 - message
// $r12 - message data 0
// $r11 - message data 1
// $r0  - zero
send_proc:
	push $r8
	push $r9
	// check for space in queue
	ld b32 $r8 D[$r14 + #proc_qget]
	ld b32 $r9 D[$r14 + #proc_qput]
	xor $r8 #proc_qmaskb
	cmp b32 $r8 $r9
	bra e #send_done

	// enqueue message
	and $r8 $r9 #proc_qmaskp
	shl b32 $r8 $r8 #proc_qlen
	add b32 $r8 #proc_queue
	add b32 $r8 $r14

	ld b32 $r10 D[$r15 + #proc_id]
	st b32 D[$r8 + #msg_process] $r10
	st b32 D[$r8 + #msg_message] $r13
	st b32 D[$r8 + #msg_data0] $r12
	st b32 D[$r8 + #msg_data1] $r11

	// increment PUT
	add b32 $r9 1
	and $r9 #proc_qmaskf
	st b32 D[$r14 + #proc_qput] $r9
	bset $flags $p2
	send_done:
	pop $r9
	pop $r8
	ret

// lookup process structure by its name
//
// $r15 - current
// $r14 - process name
// $r0  - zero
//
// $r14 - process
// $p1  - success
find:
	push $r8
	mov $r8 #proc_list_head
	bset $flags $p1
	find_loop:
		ld b32 $r10 D[$r8 + #proc_id]
		cmp b32 $r10 $r14
		bra e #find_done
		add b32 $r8 #proc_size
		cmp b32 $r8 #proc_list_tail
		bra ne #find_loop
		bclr $flags $p1
	find_done:
	mov b32 $r14 $r8
	pop $r8
	ret

// send message to another process
//
// $r15 - current
// $r14 - process id
// $r13 - message
// $r12 - message data 0
// $r11 - message data 1
// $r0  - zero
send:
	call(find)
	bra $p1 #send_proc
	ret

// process single message for a given process
//
// $r15 - current
// $r14 - process
// $r0  - zero
recv:
	push $r9
	push $r8

	ld b32 $r8 D[$r14 + #proc_qget]
	ld b32 $r9 D[$r14 + #proc_qput]
	bclr $flags $p1
	cmp b32 $r8 $r9
	bra e #recv_done
		// dequeue message
		and $r9 $r8 #proc_qmaskp
		add b32 $r8 1
		and $r8 #proc_qmaskf
		st b32 D[$r14 + #proc_qget] $r8
		ld b32 $r10 D[$r14 + #proc_recv]

		push $r15
		mov $r15 $flags
		push $r15
		mov b32 $r15 $r14

		shl b32 $r9 $r9 #proc_qlen
		add b32 $r14 $r9
		add b32 $r14 #proc_queue
		ld b32 $r11 D[$r14 + #msg_data1]
		ld b32 $r12 D[$r14 + #msg_data0]
		ld b32 $r13 D[$r14 + #msg_message]
		ld b32 $r14 D[$r14 + #msg_process]

		// process it
		call $r10
		pop $r15
		mov $flags $r15
		bset $flags $p1
		pop $r15
	recv_done:
	pop $r8
	pop $r9
	ret

init:
	// setup stack
	nv_iord($r1, NV_PPWR_CAPS)
	extr $r1 $r1 9:17
	shl b32 $r1 8
	mov $sp $r1

#ifdef NVKM_FALCON_MMIO_UAS
	// somehow allows the magic "access mmio via D[]" stuff that's
	// used by the nv_rd32/nv_wr32 macros to work
	imm32($r1, 0x10 | NV_PPWR_UAS_CONFIG_ENABLE)
	nv_iowrs(NV_PPWR_UAS_CONFIG, $r1)
#endif

	// route all interrupts except user0/1 and pause to fuc
	imm32($r1, 0xe0)
	nv_iowr(NV_PPWR_INTR_ROUTE, $r1)

	// enable watchdog and subintr intrs
	mov $r1 NV_PPWR_INTR_EN_CLR_MASK
	nv_iowr(NV_PPWR_INTR_EN_CLR, $r1)
	mov $r1 NV_PPWR_INTR_EN_SET_WATCHDOG
	or $r1 NV_PPWR_INTR_EN_SET_SUBINTR
	nv_iowr(NV_PPWR_INTR_EN_SET, $r1)

	// enable interrupts globally
	imm32($r1, #intr)
	and $r1 0xffff
	mov $iv0 $r1
	bset $flags ie0

	// enable watchdog timer
	mov $r1 1
	nv_iowr(NV_PPWR_WATCHDOG_ENABLE, $r1)

	// bootstrap processes, idle process will be last, and not return
	mov $r15 #proc_list_head
	init_proc:
		ld b32 $r1 D[$r15 + #proc_init]
		cmp b32 $r1 0
		bra z #init_proc
		call $r1
		add b32 $r15 #proc_size
		bra #init_proc
#endif