Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/*
 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
 *
 * Floating-point emulation code
 *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2, or (at your option)
 *    any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
/*
 * BEGIN_DESC
 *
 *  File:
 *	@(#)	pa/spmath/dfadd.c		$Revision: 1.1 $
 *
 *  Purpose:
 *	Double_add: add two double precision values.
 *
 *  External Interfaces:
 *	dbl_fadd(leftptr, rightptr, dstptr, status)
 *
 *  Internal Interfaces:
 *
 *  Theory:
 *	<<please update with a overview of the operation of this file>>
 *
 * END_DESC
*/


#include "float.h"
#include "dbl_float.h"

/*
 * Double_add: add two double precision values.
 */
dbl_fadd(
    dbl_floating_point *leftptr,
    dbl_floating_point *rightptr,
    dbl_floating_point *dstptr,
    unsigned int *status)
{
    register unsigned int signless_upper_left, signless_upper_right, save;
    register unsigned int leftp1, leftp2, rightp1, rightp2, extent;
    register unsigned int resultp1 = 0, resultp2 = 0;
    
    register int result_exponent, right_exponent, diff_exponent;
    register int sign_save, jumpsize;
    register boolean inexact = FALSE;
    register boolean underflowtrap;
        
    /* Create local copies of the numbers */
    Dbl_copyfromptr(leftptr,leftp1,leftp2);
    Dbl_copyfromptr(rightptr,rightp1,rightp2);

    /* A zero "save" helps discover equal operands (for later),  *
     * and is used in swapping operands (if needed).             */
    Dbl_xortointp1(leftp1,rightp1,/*to*/save);

    /*
     * check first operand for NaN's or infinity
     */
    if ((result_exponent = Dbl_exponent(leftp1)) == DBL_INFINITY_EXPONENT)
	{
	if (Dbl_iszero_mantissa(leftp1,leftp2)) 
	    {
	    if (Dbl_isnotnan(rightp1,rightp2)) 
		{
		if (Dbl_isinfinity(rightp1,rightp2) && save!=0) 
		    {
		    /* 
		     * invalid since operands are opposite signed infinity's
		     */
		    if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
                    Set_invalidflag();
                    Dbl_makequietnan(resultp1,resultp2);
		    Dbl_copytoptr(resultp1,resultp2,dstptr);
		    return(NOEXCEPTION);
		    }
		/*
	 	 * return infinity
	 	 */
		Dbl_copytoptr(leftp1,leftp2,dstptr);
		return(NOEXCEPTION);
		}
	    }
	else 
	    {
            /*
             * is NaN; signaling or quiet?
             */
            if (Dbl_isone_signaling(leftp1)) 
		{
               	/* trap if INVALIDTRAP enabled */
		if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
        	/* make NaN quiet */
        	Set_invalidflag();
        	Dbl_set_quiet(leftp1);
        	}
	    /* 
	     * is second operand a signaling NaN? 
	     */
	    else if (Dbl_is_signalingnan(rightp1)) 
		{
        	/* trap if INVALIDTRAP enabled */
               	if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
		/* make NaN quiet */
		Set_invalidflag();
		Dbl_set_quiet(rightp1);
		Dbl_copytoptr(rightp1,rightp2,dstptr);
		return(NOEXCEPTION);
		}
	    /*
 	     * return quiet NaN
 	     */
	    Dbl_copytoptr(leftp1,leftp2,dstptr);
 	    return(NOEXCEPTION);
	    }
	} /* End left NaN or Infinity processing */
    /*
     * check second operand for NaN's or infinity
     */
    if (Dbl_isinfinity_exponent(rightp1)) 
	{
	if (Dbl_iszero_mantissa(rightp1,rightp2)) 
	    {
	    /* return infinity */
	    Dbl_copytoptr(rightp1,rightp2,dstptr);
	    return(NOEXCEPTION);
	    }
        /*
         * is NaN; signaling or quiet?
         */
        if (Dbl_isone_signaling(rightp1)) 
	    {
            /* trap if INVALIDTRAP enabled */
	    if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
	    /* make NaN quiet */
	    Set_invalidflag();
	    Dbl_set_quiet(rightp1);
	    }
	/*
	 * return quiet NaN
 	 */
	Dbl_copytoptr(rightp1,rightp2,dstptr);
	return(NOEXCEPTION);
    	} /* End right NaN or Infinity processing */

    /* Invariant: Must be dealing with finite numbers */

    /* Compare operands by removing the sign */
    Dbl_copytoint_exponentmantissap1(leftp1,signless_upper_left);
    Dbl_copytoint_exponentmantissap1(rightp1,signless_upper_right);

    /* sign difference selects add or sub operation. */
    if(Dbl_ismagnitudeless(leftp2,rightp2,signless_upper_left,signless_upper_right))
	{
	/* Set the left operand to the larger one by XOR swap *
	 *  First finish the first word using "save"          */
	Dbl_xorfromintp1(save,rightp1,/*to*/rightp1);
	Dbl_xorfromintp1(save,leftp1,/*to*/leftp1);
     	Dbl_swap_lower(leftp2,rightp2);
	result_exponent = Dbl_exponent(leftp1);
	}
    /* Invariant:  left is not smaller than right. */ 

    if((right_exponent = Dbl_exponent(rightp1)) == 0)
        {
	/* Denormalized operands.  First look for zeroes */
	if(Dbl_iszero_mantissa(rightp1,rightp2)) 
	    {
	    /* right is zero */
	    if(Dbl_iszero_exponentmantissa(leftp1,leftp2))
		{
		/* Both operands are zeros */
		if(Is_rounding_mode(ROUNDMINUS))
		    {
		    Dbl_or_signs(leftp1,/*with*/rightp1);
		    }
		else
		    {
		    Dbl_and_signs(leftp1,/*with*/rightp1);
		    }
		}
	    else 
		{
		/* Left is not a zero and must be the result.  Trapped
		 * underflows are signaled if left is denormalized.  Result
		 * is always exact. */
		if( (result_exponent == 0) && Is_underflowtrap_enabled() )
		    {
		    /* need to normalize results mantissa */
	    	    sign_save = Dbl_signextendedsign(leftp1);
		    Dbl_leftshiftby1(leftp1,leftp2);
		    Dbl_normalize(leftp1,leftp2,result_exponent);
		    Dbl_set_sign(leftp1,/*using*/sign_save);
                    Dbl_setwrapped_exponent(leftp1,result_exponent,unfl);
		    Dbl_copytoptr(leftp1,leftp2,dstptr);
		    /* inexact = FALSE */
		    return(UNDERFLOWEXCEPTION);
		    }
		}
	    Dbl_copytoptr(leftp1,leftp2,dstptr);
	    return(NOEXCEPTION);
	    }

	/* Neither are zeroes */
	Dbl_clear_sign(rightp1);	/* Exponent is already cleared */
	if(result_exponent == 0 )
	    {
	    /* Both operands are denormalized.  The result must be exact
	     * and is simply calculated.  A sum could become normalized and a
	     * difference could cancel to a true zero. */
	    if( (/*signed*/int) save < 0 )
		{
		Dbl_subtract(leftp1,leftp2,/*minus*/rightp1,rightp2,
		/*into*/resultp1,resultp2);
		if(Dbl_iszero_mantissa(resultp1,resultp2))
		    {
		    if(Is_rounding_mode(ROUNDMINUS))
			{
			Dbl_setone_sign(resultp1);
			}
		    else
			{
			Dbl_setzero_sign(resultp1);
			}
		    Dbl_copytoptr(resultp1,resultp2,dstptr);
		    return(NOEXCEPTION);
		    }
		}
	    else
		{
		Dbl_addition(leftp1,leftp2,rightp1,rightp2,
		/*into*/resultp1,resultp2);
		if(Dbl_isone_hidden(resultp1))
		    {
		    Dbl_copytoptr(resultp1,resultp2,dstptr);
		    return(NOEXCEPTION);
		    }
		}
	    if(Is_underflowtrap_enabled())
		{
		/* need to normalize result */
	    	sign_save = Dbl_signextendedsign(resultp1);
		Dbl_leftshiftby1(resultp1,resultp2);
		Dbl_normalize(resultp1,resultp2,result_exponent);
		Dbl_set_sign(resultp1,/*using*/sign_save);
                Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
	        Dbl_copytoptr(resultp1,resultp2,dstptr);
		/* inexact = FALSE */
	        return(UNDERFLOWEXCEPTION);
		}
	    Dbl_copytoptr(resultp1,resultp2,dstptr);
	    return(NOEXCEPTION);
	    }
	right_exponent = 1;	/* Set exponent to reflect different bias
				 * with denomalized numbers. */
	}
    else
	{
	Dbl_clear_signexponent_set_hidden(rightp1);
	}
    Dbl_clear_exponent_set_hidden(leftp1);
    diff_exponent = result_exponent - right_exponent;

    /* 
     * Special case alignment of operands that would force alignment 
     * beyond the extent of the extension.  A further optimization
     * could special case this but only reduces the path length for this
     * infrequent case.
     */
    if(diff_exponent > DBL_THRESHOLD)
	{
	diff_exponent = DBL_THRESHOLD;
	}
    
    /* Align right operand by shifting to right */
    Dbl_right_align(/*operand*/rightp1,rightp2,/*shifted by*/diff_exponent,
    /*and lower to*/extent);

    /* Treat sum and difference of the operands separately. */
    if( (/*signed*/int) save < 0 )
	{
	/*
	 * Difference of the two operands.  Their can be no overflow.  A
	 * borrow can occur out of the hidden bit and force a post
	 * normalization phase.
	 */
	Dbl_subtract_withextension(leftp1,leftp2,/*minus*/rightp1,rightp2,
	/*with*/extent,/*into*/resultp1,resultp2);
	if(Dbl_iszero_hidden(resultp1))
	    {
	    /* Handle normalization */
	    /* A straight forward algorithm would now shift the result
	     * and extension left until the hidden bit becomes one.  Not
	     * all of the extension bits need participate in the shift.
	     * Only the two most significant bits (round and guard) are
	     * needed.  If only a single shift is needed then the guard
	     * bit becomes a significant low order bit and the extension
	     * must participate in the rounding.  If more than a single 
	     * shift is needed, then all bits to the right of the guard 
	     * bit are zeros, and the guard bit may or may not be zero. */
	    sign_save = Dbl_signextendedsign(resultp1);
            Dbl_leftshiftby1_withextent(resultp1,resultp2,extent,resultp1,resultp2);

            /* Need to check for a zero result.  The sign and exponent
	     * fields have already been zeroed.  The more efficient test
	     * of the full object can be used.
	     */
    	    if(Dbl_iszero(resultp1,resultp2))
		/* Must have been "x-x" or "x+(-x)". */
		{
		if(Is_rounding_mode(ROUNDMINUS)) Dbl_setone_sign(resultp1);
		Dbl_copytoptr(resultp1,resultp2,dstptr);
		return(NOEXCEPTION);
		}
	    result_exponent--;
	    /* Look to see if normalization is finished. */
	    if(Dbl_isone_hidden(resultp1))
		{
		if(result_exponent==0)
		    {
		    /* Denormalized, exponent should be zero.  Left operand *
		     * was normalized, so extent (guard, round) was zero    */
		    goto underflow;
		    }
		else
		    {
		    /* No further normalization is needed. */
		    Dbl_set_sign(resultp1,/*using*/sign_save);
	    	    Ext_leftshiftby1(extent);
		    goto round;
		    }
		}

	    /* Check for denormalized, exponent should be zero.  Left    *
	     * operand was normalized, so extent (guard, round) was zero */
	    if(!(underflowtrap = Is_underflowtrap_enabled()) &&
	       result_exponent==0) goto underflow;

	    /* Shift extension to complete one bit of normalization and
	     * update exponent. */
	    Ext_leftshiftby1(extent);

	    /* Discover first one bit to determine shift amount.  Use a
	     * modified binary search.  We have already shifted the result
	     * one position right and still not found a one so the remainder
	     * of the extension must be zero and simplifies rounding. */
	    /* Scan bytes */
	    while(Dbl_iszero_hiddenhigh7mantissa(resultp1))
		{
		Dbl_leftshiftby8(resultp1,resultp2);
		if((result_exponent -= 8) <= 0  && !underflowtrap)
		    goto underflow;
		}
	    /* Now narrow it down to the nibble */
	    if(Dbl_iszero_hiddenhigh3mantissa(resultp1))
		{
		/* The lower nibble contains the normalizing one */
		Dbl_leftshiftby4(resultp1,resultp2);
		if((result_exponent -= 4) <= 0 && !underflowtrap)
		    goto underflow;
		}
	    /* Select case were first bit is set (already normalized)
	     * otherwise select the proper shift. */
	    if((jumpsize = Dbl_hiddenhigh3mantissa(resultp1)) > 7)
		{
		/* Already normalized */
		if(result_exponent <= 0) goto underflow;
		Dbl_set_sign(resultp1,/*using*/sign_save);
		Dbl_set_exponent(resultp1,/*using*/result_exponent);
		Dbl_copytoptr(resultp1,resultp2,dstptr);
		return(NOEXCEPTION);
		}
	    Dbl_sethigh4bits(resultp1,/*using*/sign_save);
	    switch(jumpsize) 
		{
		case 1:
		    {
		    Dbl_leftshiftby3(resultp1,resultp2);
		    result_exponent -= 3;
		    break;
		    }
		case 2:
		case 3:
		    {
		    Dbl_leftshiftby2(resultp1,resultp2);
		    result_exponent -= 2;
		    break;
		    }
		case 4:
		case 5:
		case 6:
		case 7:
		    {
		    Dbl_leftshiftby1(resultp1,resultp2);
		    result_exponent -= 1;
		    break;
		    }
		}
	    if(result_exponent > 0) 
		{
		Dbl_set_exponent(resultp1,/*using*/result_exponent);
		Dbl_copytoptr(resultp1,resultp2,dstptr);
		return(NOEXCEPTION); 	/* Sign bit is already set */
		}
	    /* Fixup potential underflows */
	  underflow:
	    if(Is_underflowtrap_enabled())
		{
		Dbl_set_sign(resultp1,sign_save);
                Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
		Dbl_copytoptr(resultp1,resultp2,dstptr);
		/* inexact = FALSE */
		return(UNDERFLOWEXCEPTION);
		}
	    /* 
	     * Since we cannot get an inexact denormalized result,
	     * we can now return.
	     */
	    Dbl_fix_overshift(resultp1,resultp2,(1-result_exponent),extent);
	    Dbl_clear_signexponent(resultp1);
	    Dbl_set_sign(resultp1,sign_save);
	    Dbl_copytoptr(resultp1,resultp2,dstptr);
	    return(NOEXCEPTION);
	    } /* end if(hidden...)... */
	/* Fall through and round */
	} /* end if(save < 0)... */
    else 
	{
	/* Add magnitudes */
	Dbl_addition(leftp1,leftp2,rightp1,rightp2,/*to*/resultp1,resultp2);
	if(Dbl_isone_hiddenoverflow(resultp1))
	    {
	    /* Prenormalization required. */
	    Dbl_rightshiftby1_withextent(resultp2,extent,extent);
	    Dbl_arithrightshiftby1(resultp1,resultp2);
	    result_exponent++;
	    } /* end if hiddenoverflow... */
	} /* end else ...add magnitudes... */
    
    /* Round the result.  If the extension is all zeros,then the result is
     * exact.  Otherwise round in the correct direction.  No underflow is
     * possible. If a postnormalization is necessary, then the mantissa is
     * all zeros so no shift is needed. */
  round:
    if(Ext_isnotzero(extent))
	{
	inexact = TRUE;
	switch(Rounding_mode())
	    {
	    case ROUNDNEAREST: /* The default. */
	    if(Ext_isone_sign(extent))
		{
		/* at least 1/2 ulp */
		if(Ext_isnotzero_lower(extent)  ||
		  Dbl_isone_lowmantissap2(resultp2))
		    {
		    /* either exactly half way and odd or more than 1/2ulp */
		    Dbl_increment(resultp1,resultp2);
		    }
		}
	    break;

	    case ROUNDPLUS:
	    if(Dbl_iszero_sign(resultp1))
		{
		/* Round up positive results */
		Dbl_increment(resultp1,resultp2);
		}
	    break;
	    
	    case ROUNDMINUS:
	    if(Dbl_isone_sign(resultp1))
		{
		/* Round down negative results */
		Dbl_increment(resultp1,resultp2);
		}
	    
	    case ROUNDZERO:;
	    /* truncate is simple */
	    } /* end switch... */
	if(Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
	}
    if(result_exponent == DBL_INFINITY_EXPONENT)
        {
        /* Overflow */
        if(Is_overflowtrap_enabled())
	    {
	    Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
	    Dbl_copytoptr(resultp1,resultp2,dstptr);
	    if (inexact)
		if (Is_inexacttrap_enabled())
			return(OVERFLOWEXCEPTION | INEXACTEXCEPTION);
		else Set_inexactflag();
	    return(OVERFLOWEXCEPTION);
	    }
        else
	    {
	    inexact = TRUE;
	    Set_overflowflag();
	    Dbl_setoverflow(resultp1,resultp2);
	    }
	}
    else Dbl_set_exponent(resultp1,result_exponent);
    Dbl_copytoptr(resultp1,resultp2,dstptr);
    if(inexact) 
	if(Is_inexacttrap_enabled())
	    return(INEXACTEXCEPTION);
	else Set_inexactflag();
    return(NOEXCEPTION);
}