/*
* Copyright (C) 2015 IT University of Copenhagen. All rights reserved.
* Initial release: Matias Bjorling <m@bjorling.me>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include <linux/list.h>
#include <linux/types.h>
#include <linux/sem.h>
#include <linux/bitmap.h>
#include <linux/moduleparam.h>
#include <linux/miscdevice.h>
#include <linux/lightnvm.h>
#include <linux/sched/sysctl.h>
static LIST_HEAD(nvm_tgt_types);
static DECLARE_RWSEM(nvm_tgtt_lock);
static LIST_HEAD(nvm_mgrs);
static LIST_HEAD(nvm_devices);
static DECLARE_RWSEM(nvm_lock);
struct nvm_tgt_type *nvm_find_target_type(const char *name, int lock)
{
struct nvm_tgt_type *tmp, *tt = NULL;
if (lock)
down_write(&nvm_tgtt_lock);
list_for_each_entry(tmp, &nvm_tgt_types, list)
if (!strcmp(name, tmp->name)) {
tt = tmp;
break;
}
if (lock)
up_write(&nvm_tgtt_lock);
return tt;
}
EXPORT_SYMBOL(nvm_find_target_type);
int nvm_register_tgt_type(struct nvm_tgt_type *tt)
{
int ret = 0;
down_write(&nvm_tgtt_lock);
if (nvm_find_target_type(tt->name, 0))
ret = -EEXIST;
else
list_add(&tt->list, &nvm_tgt_types);
up_write(&nvm_tgtt_lock);
return ret;
}
EXPORT_SYMBOL(nvm_register_tgt_type);
void nvm_unregister_tgt_type(struct nvm_tgt_type *tt)
{
if (!tt)
return;
down_write(&nvm_lock);
list_del(&tt->list);
up_write(&nvm_lock);
}
EXPORT_SYMBOL(nvm_unregister_tgt_type);
void *nvm_dev_dma_alloc(struct nvm_dev *dev, gfp_t mem_flags,
dma_addr_t *dma_handler)
{
return dev->ops->dev_dma_alloc(dev, dev->dma_pool, mem_flags,
dma_handler);
}
EXPORT_SYMBOL(nvm_dev_dma_alloc);
void nvm_dev_dma_free(struct nvm_dev *dev, void *addr, dma_addr_t dma_handler)
{
dev->ops->dev_dma_free(dev->dma_pool, addr, dma_handler);
}
EXPORT_SYMBOL(nvm_dev_dma_free);
static struct nvmm_type *nvm_find_mgr_type(const char *name)
{
struct nvmm_type *mt;
list_for_each_entry(mt, &nvm_mgrs, list)
if (!strcmp(name, mt->name))
return mt;
return NULL;
}
static struct nvmm_type *nvm_init_mgr(struct nvm_dev *dev)
{
struct nvmm_type *mt;
int ret;
lockdep_assert_held(&nvm_lock);
list_for_each_entry(mt, &nvm_mgrs, list) {
if (strncmp(dev->sb.mmtype, mt->name, NVM_MMTYPE_LEN))
continue;
ret = mt->register_mgr(dev);
if (ret < 0) {
pr_err("nvm: media mgr failed to init (%d) on dev %s\n",
ret, dev->name);
return NULL; /* initialization failed */
} else if (ret > 0)
return mt;
}
return NULL;
}
int nvm_register_mgr(struct nvmm_type *mt)
{
struct nvm_dev *dev;
int ret = 0;
down_write(&nvm_lock);
if (nvm_find_mgr_type(mt->name)) {
ret = -EEXIST;
goto finish;
} else {
list_add(&mt->list, &nvm_mgrs);
}
/* try to register media mgr if any device have none configured */
list_for_each_entry(dev, &nvm_devices, devices) {
if (dev->mt)
continue;
dev->mt = nvm_init_mgr(dev);
}
finish:
up_write(&nvm_lock);
return ret;
}
EXPORT_SYMBOL(nvm_register_mgr);
void nvm_unregister_mgr(struct nvmm_type *mt)
{
if (!mt)
return;
down_write(&nvm_lock);
list_del(&mt->list);
up_write(&nvm_lock);
}
EXPORT_SYMBOL(nvm_unregister_mgr);
static struct nvm_dev *nvm_find_nvm_dev(const char *name)
{
struct nvm_dev *dev;
list_for_each_entry(dev, &nvm_devices, devices)
if (!strcmp(name, dev->name))
return dev;
return NULL;
}
static void nvm_tgt_generic_to_addr_mode(struct nvm_tgt_dev *tgt_dev,
struct nvm_rq *rqd)
{
struct nvm_dev *dev = tgt_dev->parent;
int i;
if (rqd->nr_ppas > 1) {
for (i = 0; i < rqd->nr_ppas; i++) {
rqd->ppa_list[i] = dev->mt->trans_ppa(tgt_dev,
rqd->ppa_list[i], TRANS_TGT_TO_DEV);
rqd->ppa_list[i] = generic_to_dev_addr(dev,
rqd->ppa_list[i]);
}
} else {
rqd->ppa_addr = dev->mt->trans_ppa(tgt_dev, rqd->ppa_addr,
TRANS_TGT_TO_DEV);
rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr);
}
}
int nvm_set_bb_tbl(struct nvm_dev *dev, struct ppa_addr *ppas, int nr_ppas,
int type)
{
struct nvm_rq rqd;
int ret;
if (nr_ppas > dev->ops->max_phys_sect) {
pr_err("nvm: unable to update all sysblocks atomically\n");
return -EINVAL;
}
memset(&rqd, 0, sizeof(struct nvm_rq));
nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1);
nvm_generic_to_addr_mode(dev, &rqd);
ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
nvm_free_rqd_ppalist(dev, &rqd);
if (ret) {
pr_err("nvm: sysblk failed bb mark\n");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(nvm_set_bb_tbl);
int nvm_set_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas,
int nr_ppas, int type)
{
struct nvm_dev *dev = tgt_dev->parent;
struct nvm_rq rqd;
int ret;
if (nr_ppas > dev->ops->max_phys_sect) {
pr_err("nvm: unable to update all blocks atomically\n");
return -EINVAL;
}
memset(&rqd, 0, sizeof(struct nvm_rq));
nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1);
nvm_tgt_generic_to_addr_mode(tgt_dev, &rqd);
ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
nvm_free_rqd_ppalist(dev, &rqd);
if (ret) {
pr_err("nvm: sysblk failed bb mark\n");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(nvm_set_tgt_bb_tbl);
int nvm_max_phys_sects(struct nvm_tgt_dev *tgt_dev)
{
struct nvm_dev *dev = tgt_dev->parent;
return dev->ops->max_phys_sect;
}
EXPORT_SYMBOL(nvm_max_phys_sects);
int nvm_submit_io(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
{
struct nvm_dev *dev = tgt_dev->parent;
return dev->mt->submit_io(tgt_dev, rqd);
}
EXPORT_SYMBOL(nvm_submit_io);
int nvm_erase_blk(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p, int flags)
{
struct nvm_dev *dev = tgt_dev->parent;
return dev->mt->erase_blk(tgt_dev, p, flags);
}
EXPORT_SYMBOL(nvm_erase_blk);
int nvm_get_l2p_tbl(struct nvm_tgt_dev *tgt_dev, u64 slba, u32 nlb,
nvm_l2p_update_fn *update_l2p, void *priv)
{
struct nvm_dev *dev = tgt_dev->parent;
if (!dev->ops->get_l2p_tbl)
return 0;
return dev->ops->get_l2p_tbl(dev, slba, nlb, update_l2p, priv);
}
EXPORT_SYMBOL(nvm_get_l2p_tbl);
int nvm_get_area(struct nvm_tgt_dev *tgt_dev, sector_t *lba, sector_t len)
{
struct nvm_dev *dev = tgt_dev->parent;
return dev->mt->get_area(dev, lba, len);
}
EXPORT_SYMBOL(nvm_get_area);
void nvm_put_area(struct nvm_tgt_dev *tgt_dev, sector_t lba)
{
struct nvm_dev *dev = tgt_dev->parent;
dev->mt->put_area(dev, lba);
}
EXPORT_SYMBOL(nvm_put_area);
void nvm_addr_to_generic_mode(struct nvm_dev *dev, struct nvm_rq *rqd)
{
int i;
if (rqd->nr_ppas > 1) {
for (i = 0; i < rqd->nr_ppas; i++)
rqd->ppa_list[i] = dev_to_generic_addr(dev,
rqd->ppa_list[i]);
} else {
rqd->ppa_addr = dev_to_generic_addr(dev, rqd->ppa_addr);
}
}
EXPORT_SYMBOL(nvm_addr_to_generic_mode);
void nvm_generic_to_addr_mode(struct nvm_dev *dev, struct nvm_rq *rqd)
{
int i;
if (rqd->nr_ppas > 1) {
for (i = 0; i < rqd->nr_ppas; i++)
rqd->ppa_list[i] = generic_to_dev_addr(dev,
rqd->ppa_list[i]);
} else {
rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr);
}
}
EXPORT_SYMBOL(nvm_generic_to_addr_mode);
int nvm_set_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd,
const struct ppa_addr *ppas, int nr_ppas, int vblk)
{
struct nvm_geo *geo = &dev->geo;
int i, plane_cnt, pl_idx;
struct ppa_addr ppa;
if ((!vblk || geo->plane_mode == NVM_PLANE_SINGLE) && nr_ppas == 1) {
rqd->nr_ppas = nr_ppas;
rqd->ppa_addr = ppas[0];
return 0;
}
rqd->nr_ppas = nr_ppas;
rqd->ppa_list = nvm_dev_dma_alloc(dev, GFP_KERNEL, &rqd->dma_ppa_list);
if (!rqd->ppa_list) {
pr_err("nvm: failed to allocate dma memory\n");
return -ENOMEM;
}
if (!vblk) {
for (i = 0; i < nr_ppas; i++)
rqd->ppa_list[i] = ppas[i];
} else {
plane_cnt = geo->plane_mode;
rqd->nr_ppas *= plane_cnt;
for (i = 0; i < nr_ppas; i++) {
for (pl_idx = 0; pl_idx < plane_cnt; pl_idx++) {
ppa = ppas[i];
ppa.g.pl = pl_idx;
rqd->ppa_list[(pl_idx * nr_ppas) + i] = ppa;
}
}
}
return 0;
}
EXPORT_SYMBOL(nvm_set_rqd_ppalist);
void nvm_free_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd)
{
if (!rqd->ppa_list)
return;
nvm_dev_dma_free(dev, rqd->ppa_list, rqd->dma_ppa_list);
}
EXPORT_SYMBOL(nvm_free_rqd_ppalist);
int nvm_erase_ppa(struct nvm_dev *dev, struct ppa_addr *ppas, int nr_ppas,
int flags)
{
struct nvm_rq rqd;
int ret;
if (!dev->ops->erase_block)
return 0;
memset(&rqd, 0, sizeof(struct nvm_rq));
ret = nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1);
if (ret)
return ret;
nvm_generic_to_addr_mode(dev, &rqd);
rqd.flags = flags;
ret = dev->ops->erase_block(dev, &rqd);
nvm_free_rqd_ppalist(dev, &rqd);
return ret;
}
EXPORT_SYMBOL(nvm_erase_ppa);
void nvm_end_io(struct nvm_rq *rqd, int error)
{
rqd->error = error;
rqd->end_io(rqd);
}
EXPORT_SYMBOL(nvm_end_io);
static void nvm_end_io_sync(struct nvm_rq *rqd)
{
struct completion *waiting = rqd->wait;
rqd->wait = NULL;
complete(waiting);
}
static int __nvm_submit_ppa(struct nvm_dev *dev, struct nvm_rq *rqd, int opcode,
int flags, void *buf, int len)
{
DECLARE_COMPLETION_ONSTACK(wait);
struct bio *bio;
int ret;
unsigned long hang_check;
bio = bio_map_kern(dev->q, buf, len, GFP_KERNEL);
if (IS_ERR_OR_NULL(bio))
return -ENOMEM;
nvm_generic_to_addr_mode(dev, rqd);
rqd->dev = NULL;
rqd->opcode = opcode;
rqd->flags = flags;
rqd->bio = bio;
rqd->wait = &wait;
rqd->end_io = nvm_end_io_sync;
ret = dev->ops->submit_io(dev, rqd);
if (ret) {
bio_put(bio);
return ret;
}
/* Prevent hang_check timer from firing at us during very long I/O */
hang_check = sysctl_hung_task_timeout_secs;
if (hang_check)
while (!wait_for_completion_io_timeout(&wait,
hang_check * (HZ/2)))
;
else
wait_for_completion_io(&wait);
return rqd->error;
}
/**
* nvm_submit_ppa_list - submit user-defined ppa list to device. The user must
* take to free ppa list if necessary.
* @dev: device
* @ppa_list: user created ppa_list
* @nr_ppas: length of ppa_list
* @opcode: device opcode
* @flags: device flags
* @buf: data buffer
* @len: data buffer length
*/
int nvm_submit_ppa_list(struct nvm_dev *dev, struct ppa_addr *ppa_list,
int nr_ppas, int opcode, int flags, void *buf, int len)
{
struct nvm_rq rqd;
if (dev->ops->max_phys_sect < nr_ppas)
return -EINVAL;
memset(&rqd, 0, sizeof(struct nvm_rq));
rqd.nr_ppas = nr_ppas;
if (nr_ppas > 1)
rqd.ppa_list = ppa_list;
else
rqd.ppa_addr = ppa_list[0];
return __nvm_submit_ppa(dev, &rqd, opcode, flags, buf, len);
}
EXPORT_SYMBOL(nvm_submit_ppa_list);
/**
* nvm_submit_ppa - submit PPAs to device. PPAs will automatically be unfolded
* as single, dual, quad plane PPAs depending on device type.
* @dev: device
* @ppa: user created ppa_list
* @nr_ppas: length of ppa_list
* @opcode: device opcode
* @flags: device flags
* @buf: data buffer
* @len: data buffer length
*/
int nvm_submit_ppa(struct nvm_dev *dev, struct ppa_addr *ppa, int nr_ppas,
int opcode, int flags, void *buf, int len)
{
struct nvm_rq rqd;
int ret;
memset(&rqd, 0, sizeof(struct nvm_rq));
ret = nvm_set_rqd_ppalist(dev, &rqd, ppa, nr_ppas, 1);
if (ret)
return ret;
ret = __nvm_submit_ppa(dev, &rqd, opcode, flags, buf, len);
nvm_free_rqd_ppalist(dev, &rqd);
return ret;
}
EXPORT_SYMBOL(nvm_submit_ppa);
/*
* folds a bad block list from its plane representation to its virtual
* block representation. The fold is done in place and reduced size is
* returned.
*
* If any of the planes status are bad or grown bad block, the virtual block
* is marked bad. If not bad, the first plane state acts as the block state.
*/
int nvm_bb_tbl_fold(struct nvm_dev *dev, u8 *blks, int nr_blks)
{
struct nvm_geo *geo = &dev->geo;
int blk, offset, pl, blktype;
if (nr_blks != geo->blks_per_lun * geo->plane_mode)
return -EINVAL;
for (blk = 0; blk < geo->blks_per_lun; blk++) {
offset = blk * geo->plane_mode;
blktype = blks[offset];
/* Bad blocks on any planes take precedence over other types */
for (pl = 0; pl < geo->plane_mode; pl++) {
if (blks[offset + pl] &
(NVM_BLK_T_BAD|NVM_BLK_T_GRWN_BAD)) {
blktype = blks[offset + pl];
break;
}
}
blks[blk] = blktype;
}
return geo->blks_per_lun;
}
EXPORT_SYMBOL(nvm_bb_tbl_fold);
int nvm_get_bb_tbl(struct nvm_dev *dev, struct ppa_addr ppa, u8 *blks)
{
ppa = generic_to_dev_addr(dev, ppa);
return dev->ops->get_bb_tbl(dev, ppa, blks);
}
EXPORT_SYMBOL(nvm_get_bb_tbl);
int nvm_get_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr ppa,
u8 *blks)
{
struct nvm_dev *dev = tgt_dev->parent;
ppa = dev->mt->trans_ppa(tgt_dev, ppa, TRANS_TGT_TO_DEV);
return nvm_get_bb_tbl(dev, ppa, blks);
}
EXPORT_SYMBOL(nvm_get_tgt_bb_tbl);
static int nvm_init_slc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
{
struct nvm_geo *geo = &dev->geo;
int i;
dev->lps_per_blk = geo->pgs_per_blk;
dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
if (!dev->lptbl)
return -ENOMEM;
/* Just a linear array */
for (i = 0; i < dev->lps_per_blk; i++)
dev->lptbl[i] = i;
return 0;
}
static int nvm_init_mlc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
{
int i, p;
struct nvm_id_lp_mlc *mlc = &grp->lptbl.mlc;
if (!mlc->num_pairs)
return 0;
dev->lps_per_blk = mlc->num_pairs;
dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
if (!dev->lptbl)
return -ENOMEM;
/* The lower page table encoding consists of a list of bytes, where each
* has a lower and an upper half. The first half byte maintains the
* increment value and every value after is an offset added to the
* previous incrementation value
*/
dev->lptbl[0] = mlc->pairs[0] & 0xF;
for (i = 1; i < dev->lps_per_blk; i++) {
p = mlc->pairs[i >> 1];
if (i & 0x1) /* upper */
dev->lptbl[i] = dev->lptbl[i - 1] + ((p & 0xF0) >> 4);
else /* lower */
dev->lptbl[i] = dev->lptbl[i - 1] + (p & 0xF);
}
return 0;
}
static int nvm_core_init(struct nvm_dev *dev)
{
struct nvm_id *id = &dev->identity;
struct nvm_id_group *grp = &id->groups[0];
struct nvm_geo *geo = &dev->geo;
int ret;
/* Whole device values */
geo->nr_chnls = grp->num_ch;
geo->luns_per_chnl = grp->num_lun;
/* Generic device values */
geo->pgs_per_blk = grp->num_pg;
geo->blks_per_lun = grp->num_blk;
geo->nr_planes = grp->num_pln;
geo->fpg_size = grp->fpg_sz;
geo->pfpg_size = grp->fpg_sz * grp->num_pln;
geo->sec_size = grp->csecs;
geo->oob_size = grp->sos;
geo->sec_per_pg = grp->fpg_sz / grp->csecs;
geo->mccap = grp->mccap;
memcpy(&geo->ppaf, &id->ppaf, sizeof(struct nvm_addr_format));
geo->plane_mode = NVM_PLANE_SINGLE;
geo->max_rq_size = dev->ops->max_phys_sect * geo->sec_size;
if (grp->mpos & 0x020202)
geo->plane_mode = NVM_PLANE_DOUBLE;
if (grp->mpos & 0x040404)
geo->plane_mode = NVM_PLANE_QUAD;
if (grp->mtype != 0) {
pr_err("nvm: memory type not supported\n");
return -EINVAL;
}
/* calculated values */
geo->sec_per_pl = geo->sec_per_pg * geo->nr_planes;
geo->sec_per_blk = geo->sec_per_pl * geo->pgs_per_blk;
geo->sec_per_lun = geo->sec_per_blk * geo->blks_per_lun;
geo->nr_luns = geo->luns_per_chnl * geo->nr_chnls;
dev->total_secs = geo->nr_luns * geo->sec_per_lun;
dev->lun_map = kcalloc(BITS_TO_LONGS(geo->nr_luns),
sizeof(unsigned long), GFP_KERNEL);
if (!dev->lun_map)
return -ENOMEM;
switch (grp->fmtype) {
case NVM_ID_FMTYPE_SLC:
if (nvm_init_slc_tbl(dev, grp)) {
ret = -ENOMEM;
goto err_fmtype;
}
break;
case NVM_ID_FMTYPE_MLC:
if (nvm_init_mlc_tbl(dev, grp)) {
ret = -ENOMEM;
goto err_fmtype;
}
break;
default:
pr_err("nvm: flash type not supported\n");
ret = -EINVAL;
goto err_fmtype;
}
mutex_init(&dev->mlock);
spin_lock_init(&dev->lock);
blk_queue_logical_block_size(dev->q, geo->sec_size);
return 0;
err_fmtype:
kfree(dev->lun_map);
return ret;
}
static void nvm_free_mgr(struct nvm_dev *dev)
{
if (!dev->mt)
return;
dev->mt->unregister_mgr(dev);
dev->mt = NULL;
}
void nvm_free(struct nvm_dev *dev)
{
if (!dev)
return;
nvm_free_mgr(dev);
if (dev->dma_pool)
dev->ops->destroy_dma_pool(dev->dma_pool);
kfree(dev->lptbl);
kfree(dev->lun_map);
kfree(dev);
}
static int nvm_init(struct nvm_dev *dev)
{
struct nvm_geo *geo = &dev->geo;
int ret = -EINVAL;
if (!dev->q || !dev->ops)
return ret;
if (dev->ops->identity(dev, &dev->identity)) {
pr_err("nvm: device could not be identified\n");
goto err;
}
pr_debug("nvm: ver:%x nvm_vendor:%x groups:%u\n",
dev->identity.ver_id, dev->identity.vmnt,
dev->identity.cgrps);
if (dev->identity.ver_id != 1) {
pr_err("nvm: device not supported by kernel.");
goto err;
}
if (dev->identity.cgrps != 1) {
pr_err("nvm: only one group configuration supported.");
goto err;
}
ret = nvm_core_init(dev);
if (ret) {
pr_err("nvm: could not initialize core structures.\n");
goto err;
}
pr_info("nvm: registered %s [%u/%u/%u/%u/%u/%u]\n",
dev->name, geo->sec_per_pg, geo->nr_planes,
geo->pgs_per_blk, geo->blks_per_lun,
geo->nr_luns, geo->nr_chnls);
return 0;
err:
pr_err("nvm: failed to initialize nvm\n");
return ret;
}
struct nvm_dev *nvm_alloc_dev(int node)
{
return kzalloc_node(sizeof(struct nvm_dev), GFP_KERNEL, node);
}
EXPORT_SYMBOL(nvm_alloc_dev);
int nvm_register(struct nvm_dev *dev)
{
int ret;
ret = nvm_init(dev);
if (ret)
goto err_init;
if (dev->ops->max_phys_sect > 256) {
pr_info("nvm: max sectors supported is 256.\n");
ret = -EINVAL;
goto err_init;
}
if (dev->ops->max_phys_sect > 1) {
dev->dma_pool = dev->ops->create_dma_pool(dev, "ppalist");
if (!dev->dma_pool) {
pr_err("nvm: could not create dma pool\n");
ret = -ENOMEM;
goto err_init;
}
}
if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT) {
ret = nvm_get_sysblock(dev, &dev->sb);
if (!ret)
pr_err("nvm: device not initialized.\n");
else if (ret < 0)
pr_err("nvm: err (%d) on device initialization\n", ret);
}
/* register device with a supported media manager */
down_write(&nvm_lock);
if (ret > 0)
dev->mt = nvm_init_mgr(dev);
list_add(&dev->devices, &nvm_devices);
up_write(&nvm_lock);
return 0;
err_init:
kfree(dev->lun_map);
return ret;
}
EXPORT_SYMBOL(nvm_register);
void nvm_unregister(struct nvm_dev *dev)
{
down_write(&nvm_lock);
list_del(&dev->devices);
up_write(&nvm_lock);
nvm_free(dev);
}
EXPORT_SYMBOL(nvm_unregister);
static int __nvm_configure_create(struct nvm_ioctl_create *create)
{
struct nvm_dev *dev;
struct nvm_ioctl_create_simple *s;
down_write(&nvm_lock);
dev = nvm_find_nvm_dev(create->dev);
up_write(&nvm_lock);
if (!dev) {
pr_err("nvm: device not found\n");
return -EINVAL;
}
if (!dev->mt) {
pr_info("nvm: device has no media manager registered.\n");
return -ENODEV;
}
if (create->conf.type != NVM_CONFIG_TYPE_SIMPLE) {
pr_err("nvm: config type not valid\n");
return -EINVAL;
}
s = &create->conf.s;
if (s->lun_begin > s->lun_end || s->lun_end > dev->geo.nr_luns) {
pr_err("nvm: lun out of bound (%u:%u > %u)\n",
s->lun_begin, s->lun_end, dev->geo.nr_luns);
return -EINVAL;
}
return dev->mt->create_tgt(dev, create);
}
static long nvm_ioctl_info(struct file *file, void __user *arg)
{
struct nvm_ioctl_info *info;
struct nvm_tgt_type *tt;
int tgt_iter = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
info = memdup_user(arg, sizeof(struct nvm_ioctl_info));
if (IS_ERR(info))
return -EFAULT;
info->version[0] = NVM_VERSION_MAJOR;
info->version[1] = NVM_VERSION_MINOR;
info->version[2] = NVM_VERSION_PATCH;
down_write(&nvm_lock);
list_for_each_entry(tt, &nvm_tgt_types, list) {
struct nvm_ioctl_info_tgt *tgt = &info->tgts[tgt_iter];
tgt->version[0] = tt->version[0];
tgt->version[1] = tt->version[1];
tgt->version[2] = tt->version[2];
strncpy(tgt->tgtname, tt->name, NVM_TTYPE_NAME_MAX);
tgt_iter++;
}
info->tgtsize = tgt_iter;
up_write(&nvm_lock);
if (copy_to_user(arg, info, sizeof(struct nvm_ioctl_info))) {
kfree(info);
return -EFAULT;
}
kfree(info);
return 0;
}
static long nvm_ioctl_get_devices(struct file *file, void __user *arg)
{
struct nvm_ioctl_get_devices *devices;
struct nvm_dev *dev;
int i = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
devices = kzalloc(sizeof(struct nvm_ioctl_get_devices), GFP_KERNEL);
if (!devices)
return -ENOMEM;
down_write(&nvm_lock);
list_for_each_entry(dev, &nvm_devices, devices) {
struct nvm_ioctl_device_info *info = &devices->info[i];
sprintf(info->devname, "%s", dev->name);
if (dev->mt) {
info->bmversion[0] = dev->mt->version[0];
info->bmversion[1] = dev->mt->version[1];
info->bmversion[2] = dev->mt->version[2];
sprintf(info->bmname, "%s", dev->mt->name);
} else {
sprintf(info->bmname, "none");
}
i++;
if (i > 31) {
pr_err("nvm: max 31 devices can be reported.\n");
break;
}
}
up_write(&nvm_lock);
devices->nr_devices = i;
if (copy_to_user(arg, devices,
sizeof(struct nvm_ioctl_get_devices))) {
kfree(devices);
return -EFAULT;
}
kfree(devices);
return 0;
}
static long nvm_ioctl_dev_create(struct file *file, void __user *arg)
{
struct nvm_ioctl_create create;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&create, arg, sizeof(struct nvm_ioctl_create)))
return -EFAULT;
create.dev[DISK_NAME_LEN - 1] = '\0';
create.tgttype[NVM_TTYPE_NAME_MAX - 1] = '\0';
create.tgtname[DISK_NAME_LEN - 1] = '\0';
if (create.flags != 0) {
pr_err("nvm: no flags supported\n");
return -EINVAL;
}
return __nvm_configure_create(&create);
}
static long nvm_ioctl_dev_remove(struct file *file, void __user *arg)
{
struct nvm_ioctl_remove remove;
struct nvm_dev *dev;
int ret = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&remove, arg, sizeof(struct nvm_ioctl_remove)))
return -EFAULT;
remove.tgtname[DISK_NAME_LEN - 1] = '\0';
if (remove.flags != 0) {
pr_err("nvm: no flags supported\n");
return -EINVAL;
}
list_for_each_entry(dev, &nvm_devices, devices) {
ret = dev->mt->remove_tgt(dev, &remove);
if (!ret)
break;
}
return ret;
}
static void nvm_setup_nvm_sb_info(struct nvm_sb_info *info)
{
info->seqnr = 1;
info->erase_cnt = 0;
info->version = 1;
}
static long __nvm_ioctl_dev_init(struct nvm_ioctl_dev_init *init)
{
struct nvm_dev *dev;
struct nvm_sb_info info;
int ret;
down_write(&nvm_lock);
dev = nvm_find_nvm_dev(init->dev);
up_write(&nvm_lock);
if (!dev) {
pr_err("nvm: device not found\n");
return -EINVAL;
}
nvm_setup_nvm_sb_info(&info);
strncpy(info.mmtype, init->mmtype, NVM_MMTYPE_LEN);
info.fs_ppa.ppa = -1;
if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT) {
ret = nvm_init_sysblock(dev, &info);
if (ret)
return ret;
}
memcpy(&dev->sb, &info, sizeof(struct nvm_sb_info));
down_write(&nvm_lock);
dev->mt = nvm_init_mgr(dev);
up_write(&nvm_lock);
return 0;
}
static long nvm_ioctl_dev_init(struct file *file, void __user *arg)
{
struct nvm_ioctl_dev_init init;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&init, arg, sizeof(struct nvm_ioctl_dev_init)))
return -EFAULT;
if (init.flags != 0) {
pr_err("nvm: no flags supported\n");
return -EINVAL;
}
init.dev[DISK_NAME_LEN - 1] = '\0';
return __nvm_ioctl_dev_init(&init);
}
static long nvm_ioctl_dev_factory(struct file *file, void __user *arg)
{
struct nvm_ioctl_dev_factory fact;
struct nvm_dev *dev;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&fact, arg, sizeof(struct nvm_ioctl_dev_factory)))
return -EFAULT;
fact.dev[DISK_NAME_LEN - 1] = '\0';
if (fact.flags & ~(NVM_FACTORY_NR_BITS - 1))
return -EINVAL;
down_write(&nvm_lock);
dev = nvm_find_nvm_dev(fact.dev);
up_write(&nvm_lock);
if (!dev) {
pr_err("nvm: device not found\n");
return -EINVAL;
}
nvm_free_mgr(dev);
if (dev->identity.cap & NVM_ID_DCAP_BBLKMGMT)
return nvm_dev_factory(dev, fact.flags);
return 0;
}
static long nvm_ctl_ioctl(struct file *file, uint cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
switch (cmd) {
case NVM_INFO:
return nvm_ioctl_info(file, argp);
case NVM_GET_DEVICES:
return nvm_ioctl_get_devices(file, argp);
case NVM_DEV_CREATE:
return nvm_ioctl_dev_create(file, argp);
case NVM_DEV_REMOVE:
return nvm_ioctl_dev_remove(file, argp);
case NVM_DEV_INIT:
return nvm_ioctl_dev_init(file, argp);
case NVM_DEV_FACTORY:
return nvm_ioctl_dev_factory(file, argp);
}
return 0;
}
static const struct file_operations _ctl_fops = {
.open = nonseekable_open,
.unlocked_ioctl = nvm_ctl_ioctl,
.owner = THIS_MODULE,
.llseek = noop_llseek,
};
static struct miscdevice _nvm_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "lightnvm",
.nodename = "lightnvm/control",
.fops = &_ctl_fops,
};
builtin_misc_device(_nvm_misc);