Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 * Copyright (C) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#define CFG_OFFSET                   0x00
#define CFG_RESET_SHIFT              31
#define CFG_EN_SHIFT                 30
#define CFG_M_RETRY_CNT_SHIFT        16
#define CFG_M_RETRY_CNT_MASK         0x0f

#define TIM_CFG_OFFSET               0x04
#define TIM_CFG_MODE_400_SHIFT       31

#define M_FIFO_CTRL_OFFSET           0x0c
#define M_FIFO_RX_FLUSH_SHIFT        31
#define M_FIFO_TX_FLUSH_SHIFT        30
#define M_FIFO_RX_CNT_SHIFT          16
#define M_FIFO_RX_CNT_MASK           0x7f
#define M_FIFO_RX_THLD_SHIFT         8
#define M_FIFO_RX_THLD_MASK          0x3f

#define M_CMD_OFFSET                 0x30
#define M_CMD_START_BUSY_SHIFT       31
#define M_CMD_STATUS_SHIFT           25
#define M_CMD_STATUS_MASK            0x07
#define M_CMD_STATUS_SUCCESS         0x0
#define M_CMD_STATUS_LOST_ARB        0x1
#define M_CMD_STATUS_NACK_ADDR       0x2
#define M_CMD_STATUS_NACK_DATA       0x3
#define M_CMD_STATUS_TIMEOUT         0x4
#define M_CMD_PROTOCOL_SHIFT         9
#define M_CMD_PROTOCOL_MASK          0xf
#define M_CMD_PROTOCOL_BLK_WR        0x7
#define M_CMD_PROTOCOL_BLK_RD        0x8
#define M_CMD_PEC_SHIFT              8
#define M_CMD_RD_CNT_SHIFT           0
#define M_CMD_RD_CNT_MASK            0xff

#define IE_OFFSET                    0x38
#define IE_M_RX_FIFO_FULL_SHIFT      31
#define IE_M_RX_THLD_SHIFT           30
#define IE_M_START_BUSY_SHIFT        28
#define IE_M_TX_UNDERRUN_SHIFT       27

#define IS_OFFSET                    0x3c
#define IS_M_RX_FIFO_FULL_SHIFT      31
#define IS_M_RX_THLD_SHIFT           30
#define IS_M_START_BUSY_SHIFT        28
#define IS_M_TX_UNDERRUN_SHIFT       27

#define M_TX_OFFSET                  0x40
#define M_TX_WR_STATUS_SHIFT         31
#define M_TX_DATA_SHIFT              0
#define M_TX_DATA_MASK               0xff

#define M_RX_OFFSET                  0x44
#define M_RX_STATUS_SHIFT            30
#define M_RX_STATUS_MASK             0x03
#define M_RX_PEC_ERR_SHIFT           29
#define M_RX_DATA_SHIFT              0
#define M_RX_DATA_MASK               0xff

#define I2C_TIMEOUT_MSEC             50000
#define M_TX_RX_FIFO_SIZE            64

enum bus_speed_index {
	I2C_SPD_100K = 0,
	I2C_SPD_400K,
};

struct bcm_iproc_i2c_dev {
	struct device *device;
	int irq;

	void __iomem *base;

	struct i2c_adapter adapter;
	unsigned int bus_speed;

	struct completion done;
	int xfer_is_done;

	struct i2c_msg *msg;

	/* bytes that have been transferred */
	unsigned int tx_bytes;
};

/*
 * Can be expanded in the future if more interrupt status bits are utilized
 */
#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT))

static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = data;
	u32 status = readl(iproc_i2c->base + IS_OFFSET);

	status &= ISR_MASK;

	if (!status)
		return IRQ_NONE;

	/* TX FIFO is empty and we have more data to send */
	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT)) {
		struct i2c_msg *msg = iproc_i2c->msg;
		unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
		unsigned int i;
		u32 val;

		/* can only fill up to the FIFO size */
		tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
		for (i = 0; i < tx_bytes; i++) {
			/* start from where we left over */
			unsigned int idx = iproc_i2c->tx_bytes + i;

			val = msg->buf[idx];

			/* mark the last byte */
			if (idx == msg->len - 1) {
				u32 tmp;

				val |= BIT(M_TX_WR_STATUS_SHIFT);

				/*
				 * Since this is the last byte, we should
				 * now disable TX FIFO underrun interrupt
				 */
				tmp = readl(iproc_i2c->base + IE_OFFSET);
				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
				writel(tmp, iproc_i2c->base + IE_OFFSET);
			}

			/* load data into TX FIFO */
			writel(val, iproc_i2c->base + M_TX_OFFSET);
		}
		/* update number of transferred bytes */
		iproc_i2c->tx_bytes += tx_bytes;
	}

	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
		iproc_i2c->xfer_is_done = 1;
		complete(&iproc_i2c->done);
	}

	writel(status, iproc_i2c->base + IS_OFFSET);

	return IRQ_HANDLED;
}

static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	u32 val;

	/* put controller in reset */
	val = readl(iproc_i2c->base + CFG_OFFSET);
	val |= 1 << CFG_RESET_SHIFT;
	val &= ~(1 << CFG_EN_SHIFT);
	writel(val, iproc_i2c->base + CFG_OFFSET);

	/* wait 100 usec per spec */
	udelay(100);

	/* bring controller out of reset */
	val &= ~(1 << CFG_RESET_SHIFT);
	writel(val, iproc_i2c->base + CFG_OFFSET);

	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
	val = (1 << M_FIFO_RX_FLUSH_SHIFT) | (1 << M_FIFO_TX_FLUSH_SHIFT);
	writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
	/* disable all interrupts */
	writel(0, iproc_i2c->base + IE_OFFSET);

	/* clear all pending interrupts */
	writel(0xffffffff, iproc_i2c->base + IS_OFFSET);

	return 0;
}

static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
					 bool enable)
{
	u32 val;

	val = readl(iproc_i2c->base + CFG_OFFSET);
	if (enable)
		val |= BIT(CFG_EN_SHIFT);
	else
		val &= ~BIT(CFG_EN_SHIFT);
	writel(val, iproc_i2c->base + CFG_OFFSET);
}

static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
				      struct i2c_msg *msg)
{
	u32 val;

	val = readl(iproc_i2c->base + M_CMD_OFFSET);
	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;

	switch (val) {
	case M_CMD_STATUS_SUCCESS:
		return 0;

	case M_CMD_STATUS_LOST_ARB:
		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
		return -EAGAIN;

	case M_CMD_STATUS_NACK_ADDR:
		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
		return -ENXIO;

	case M_CMD_STATUS_NACK_DATA:
		dev_dbg(iproc_i2c->device, "NAK data\n");
		return -ENXIO;

	case M_CMD_STATUS_TIMEOUT:
		dev_dbg(iproc_i2c->device, "bus timeout\n");
		return -ETIMEDOUT;

	default:
		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);

		/* re-initialize i2c for recovery */
		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
		bcm_iproc_i2c_init(iproc_i2c);
		bcm_iproc_i2c_enable_disable(iproc_i2c, true);

		return -EIO;
	}
}

static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
					 struct i2c_msg *msg)
{
	int ret, i;
	u8 addr;
	u32 val;
	unsigned int tx_bytes;
	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);

	/* check if bus is busy */
	if (!!(readl(iproc_i2c->base + M_CMD_OFFSET) &
	       BIT(M_CMD_START_BUSY_SHIFT))) {
		dev_warn(iproc_i2c->device, "bus is busy\n");
		return -EBUSY;
	}

	iproc_i2c->msg = msg;

	/* format and load slave address into the TX FIFO */
	addr = i2c_8bit_addr_from_msg(msg);
	writel(addr, iproc_i2c->base + M_TX_OFFSET);

	/*
	 * For a write transaction, load data into the TX FIFO. Only allow
	 * loading up to TX FIFO size - 1 bytes of data since the first byte
	 * has been used up by the slave address
	 */
	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
	if (!(msg->flags & I2C_M_RD)) {
		for (i = 0; i < tx_bytes; i++) {
			val = msg->buf[i];

			/* mark the last byte */
			if (i == msg->len - 1)
				val |= 1 << M_TX_WR_STATUS_SHIFT;

			writel(val, iproc_i2c->base + M_TX_OFFSET);
		}
		iproc_i2c->tx_bytes = tx_bytes;
	}

	/* mark as incomplete before starting the transaction */
	reinit_completion(&iproc_i2c->done);
	iproc_i2c->xfer_is_done = 0;

	/*
	 * Enable the "start busy" interrupt, which will be triggered after the
	 * transaction is done, i.e., the internal start_busy bit, transitions
	 * from 1 to 0.
	 */
	val = BIT(IE_M_START_BUSY_SHIFT);

	/*
	 * If TX data size is larger than the TX FIFO, need to enable TX
	 * underrun interrupt, which will be triggerred when the TX FIFO is
	 * empty. When that happens we can then pump more data into the FIFO
	 */
	if (!(msg->flags & I2C_M_RD) &&
	    msg->len > iproc_i2c->tx_bytes)
		val |= BIT(IE_M_TX_UNDERRUN_SHIFT);

	writel(val, iproc_i2c->base + IE_OFFSET);

	/*
	 * Now we can activate the transfer. For a read operation, specify the
	 * number of bytes to read
	 */
	val = BIT(M_CMD_START_BUSY_SHIFT);
	if (msg->flags & I2C_M_RD) {
		val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
		       (msg->len << M_CMD_RD_CNT_SHIFT);
	} else {
		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
	}
	writel(val, iproc_i2c->base + M_CMD_OFFSET);

	time_left = wait_for_completion_timeout(&iproc_i2c->done, time_left);

	/* disable all interrupts */
	writel(0, iproc_i2c->base + IE_OFFSET);
	/* read it back to flush the write */
	readl(iproc_i2c->base + IE_OFFSET);

	/* make sure the interrupt handler isn't running */
	synchronize_irq(iproc_i2c->irq);

	if (!time_left && !iproc_i2c->xfer_is_done) {
		dev_err(iproc_i2c->device, "transaction timed out\n");

		/* flush FIFOs */
		val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
		      (1 << M_FIFO_TX_FLUSH_SHIFT);
		writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		return -ETIMEDOUT;
	}

	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
	if (ret) {
		/* flush both TX/RX FIFOs */
		val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
		      (1 << M_FIFO_TX_FLUSH_SHIFT);
		writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
		return ret;
	}

	/*
	 * For a read operation, we now need to load the data from FIFO
	 * into the memory buffer
	 */
	if (msg->flags & I2C_M_RD) {
		for (i = 0; i < msg->len; i++) {
			msg->buf[i] = (readl(iproc_i2c->base + M_RX_OFFSET) >>
				      M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
		}
	}

	return 0;
}

static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
			      struct i2c_msg msgs[], int num)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
	int ret, i;

	/* go through all messages */
	for (i = 0; i < num; i++) {
		ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
		if (ret) {
			dev_dbg(iproc_i2c->device, "xfer failed\n");
			return ret;
		}
	}

	return num;
}

static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm bcm_iproc_algo = {
	.master_xfer = bcm_iproc_i2c_xfer,
	.functionality = bcm_iproc_i2c_functionality,
};

static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
	/* need to reserve one byte in the FIFO for the slave address */
	.max_read_len = M_TX_RX_FIFO_SIZE - 1,
};

static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
{
	unsigned int bus_speed;
	u32 val;
	int ret = of_property_read_u32(iproc_i2c->device->of_node,
				       "clock-frequency", &bus_speed);
	if (ret < 0) {
		dev_info(iproc_i2c->device,
			"unable to interpret clock-frequency DT property\n");
		bus_speed = 100000;
	}

	if (bus_speed < 100000) {
		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
			bus_speed);
		dev_err(iproc_i2c->device,
			"valid speeds are 100khz and 400khz\n");
		return -EINVAL;
	} else if (bus_speed < 400000) {
		bus_speed = 100000;
	} else {
		bus_speed = 400000;
	}

	iproc_i2c->bus_speed = bus_speed;
	val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
	val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
	val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
	writel(val, iproc_i2c->base + TIM_CFG_OFFSET);

	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);

	return 0;
}

static int bcm_iproc_i2c_probe(struct platform_device *pdev)
{
	int irq, ret = 0;
	struct bcm_iproc_i2c_dev *iproc_i2c;
	struct i2c_adapter *adap;
	struct resource *res;

	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
				 GFP_KERNEL);
	if (!iproc_i2c)
		return -ENOMEM;

	platform_set_drvdata(pdev, iproc_i2c);
	iproc_i2c->device = &pdev->dev;
	init_completion(&iproc_i2c->done);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
	if (IS_ERR(iproc_i2c->base))
		return PTR_ERR(iproc_i2c->base);

	ret = bcm_iproc_i2c_init(iproc_i2c);
	if (ret)
		return ret;

	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
	if (ret)
		return ret;

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(iproc_i2c->device, "no irq resource\n");
		return irq;
	}
	iproc_i2c->irq = irq;

	ret = devm_request_irq(iproc_i2c->device, irq, bcm_iproc_i2c_isr, 0,
			       pdev->name, iproc_i2c);
	if (ret < 0) {
		dev_err(iproc_i2c->device, "unable to request irq %i\n", irq);
		return ret;
	}

	bcm_iproc_i2c_enable_disable(iproc_i2c, true);

	adap = &iproc_i2c->adapter;
	i2c_set_adapdata(adap, iproc_i2c);
	strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
	adap->algo = &bcm_iproc_algo;
	adap->quirks = &bcm_iproc_i2c_quirks;
	adap->dev.parent = &pdev->dev;
	adap->dev.of_node = pdev->dev.of_node;

	return i2c_add_adapter(adap);
}

static int bcm_iproc_i2c_remove(struct platform_device *pdev)
{
	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);

	/* make sure there's no pending interrupt when we remove the adapter */
	writel(0, iproc_i2c->base + IE_OFFSET);
	readl(iproc_i2c->base + IE_OFFSET);
	synchronize_irq(iproc_i2c->irq);

	i2c_del_adapter(&iproc_i2c->adapter);
	bcm_iproc_i2c_enable_disable(iproc_i2c, false);

	return 0;
}

#ifdef CONFIG_PM_SLEEP

static int bcm_iproc_i2c_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);

	/* make sure there's no pending interrupt when we go into suspend */
	writel(0, iproc_i2c->base + IE_OFFSET);
	readl(iproc_i2c->base + IE_OFFSET);
	synchronize_irq(iproc_i2c->irq);

	/* now disable the controller */
	bcm_iproc_i2c_enable_disable(iproc_i2c, false);

	return 0;
}

static int bcm_iproc_i2c_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
	int ret;
	u32 val;

	/*
	 * Power domain could have been shut off completely in system deep
	 * sleep, so re-initialize the block here
	 */
	ret = bcm_iproc_i2c_init(iproc_i2c);
	if (ret)
		return ret;

	/* configure to the desired bus speed */
	val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
	val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
	val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
	writel(val, iproc_i2c->base + TIM_CFG_OFFSET);

	bcm_iproc_i2c_enable_disable(iproc_i2c, true);

	return 0;
}

static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
	.suspend_late = &bcm_iproc_i2c_suspend,
	.resume_early = &bcm_iproc_i2c_resume
};

#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
#else
#define BCM_IPROC_I2C_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */

static const struct of_device_id bcm_iproc_i2c_of_match[] = {
	{ .compatible = "brcm,iproc-i2c" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);

static struct platform_driver bcm_iproc_i2c_driver = {
	.driver = {
		.name = "bcm-iproc-i2c",
		.of_match_table = bcm_iproc_i2c_of_match,
		.pm = BCM_IPROC_I2C_PM_OPS,
	},
	.probe = bcm_iproc_i2c_probe,
	.remove = bcm_iproc_i2c_remove,
};
module_platform_driver(bcm_iproc_i2c_driver);

MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
MODULE_LICENSE("GPL v2");