Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
/*
 * Copyright (C) STMicroelectronics SA 2015
 * Authors: Yannick Fertre <yannick.fertre@st.com>
 *          Hugues Fruchet <hugues.fruchet@st.com>
 * License terms:  GNU General Public License (GPL), version 2
 */

#include "hva.h"
#include "hva-hw.h"

#define MAX_SPS_PPS_SIZE 128

#define BITSTREAM_OFFSET_MASK 0x7F

/* video max size*/
#define H264_MAX_SIZE_W 1920
#define H264_MAX_SIZE_H 1920

/* macroBlocs number (width & height) */
#define MB_W(w) ((w + 0xF)  / 0x10)
#define MB_H(h) ((h + 0xF)  / 0x10)

/* formula to get temporal or spatial data size */
#define DATA_SIZE(w, h) (MB_W(w) * MB_H(h) * 16)

#define SEARCH_WINDOW_BUFFER_MAX_SIZE(w) ((4 * MB_W(w) + 42) * 256 * 3 / 2)
#define CABAC_CONTEXT_BUFFER_MAX_SIZE(w) (MB_W(w) * 16)
#define CTX_MB_BUFFER_MAX_SIZE(w) (MB_W(w) * 16 * 8)
#define SLICE_HEADER_SIZE (4 * 16)
#define BRC_DATA_SIZE (5 * 16)

/* source buffer copy in YUV 420 MB-tiled format with size=16*256*3/2 */
#define CURRENT_WINDOW_BUFFER_MAX_SIZE (16 * 256 * 3 / 2)

/*
 * 4 lines of pixels (in Luma, Chroma blue and Chroma red) of top MB
 * for deblocking with size=4*16*MBx*2
 */
#define LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(w) (4 * 16 * MB_W(w) * 2)

/* factor for bitrate and cpb buffer size max values if profile >= high */
#define H264_FACTOR_HIGH 1200

/* factor for bitrate and cpb buffer size max values if profile < high */
#define H264_FACTOR_BASELINE 1000

/* number of bytes for NALU_TYPE_FILLER_DATA header and footer */
#define H264_FILLER_DATA_SIZE 6

struct h264_profile {
	enum v4l2_mpeg_video_h264_level level;
	u32 max_mb_per_seconds;
	u32 max_frame_size;
	u32 max_bitrate;
	u32 max_cpb_size;
	u32 min_comp_ratio;
};

static const struct h264_profile h264_infos_list[] = {
	{V4L2_MPEG_VIDEO_H264_LEVEL_1_0, 1485, 99, 64, 175, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_1B, 1485, 99, 128, 350, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_1_1, 3000, 396, 192, 500, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_1_2, 6000, 396, 384, 1000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_1_3, 11880, 396, 768, 2000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_2_0, 11880, 396, 2000, 2000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_2_1, 19800, 792, 4000, 4000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_2_2, 20250, 1620, 4000, 4000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_3_0, 40500, 1620, 10000, 10000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_3_1, 108000, 3600, 14000, 14000, 4},
	{V4L2_MPEG_VIDEO_H264_LEVEL_3_2, 216000, 5120, 20000, 20000, 4},
	{V4L2_MPEG_VIDEO_H264_LEVEL_4_0, 245760, 8192, 20000, 25000, 4},
	{V4L2_MPEG_VIDEO_H264_LEVEL_4_1, 245760, 8192, 50000, 62500, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_4_2, 522240, 8704, 50000, 62500, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_5_0, 589824, 22080, 135000, 135000, 2},
	{V4L2_MPEG_VIDEO_H264_LEVEL_5_1, 983040, 36864, 240000, 240000, 2}
};

enum hva_brc_type {
	BRC_TYPE_NONE = 0,
	BRC_TYPE_CBR = 1,
	BRC_TYPE_VBR = 2,
	BRC_TYPE_VBR_LOW_DELAY = 3
};

enum hva_entropy_coding_mode {
	CAVLC = 0,
	CABAC = 1
};

enum hva_picture_coding_type {
	PICTURE_CODING_TYPE_I = 0,
	PICTURE_CODING_TYPE_P = 1,
	PICTURE_CODING_TYPE_B = 2
};

enum hva_h264_sampling_mode {
	SAMPLING_MODE_NV12 = 0,
	SAMPLING_MODE_UYVY = 1,
	SAMPLING_MODE_RGB3 = 3,
	SAMPLING_MODE_XRGB4 = 4,
	SAMPLING_MODE_NV21 = 8,
	SAMPLING_MODE_VYUY = 9,
	SAMPLING_MODE_BGR3 = 11,
	SAMPLING_MODE_XBGR4 = 12,
	SAMPLING_MODE_RGBX4 = 20,
	SAMPLING_MODE_BGRX4 = 28
};

enum hva_h264_nalu_type {
	NALU_TYPE_UNKNOWN = 0,
	NALU_TYPE_SLICE = 1,
	NALU_TYPE_SLICE_DPA = 2,
	NALU_TYPE_SLICE_DPB = 3,
	NALU_TYPE_SLICE_DPC = 4,
	NALU_TYPE_SLICE_IDR = 5,
	NALU_TYPE_SEI = 6,
	NALU_TYPE_SPS = 7,
	NALU_TYPE_PPS = 8,
	NALU_TYPE_AU_DELIMITER = 9,
	NALU_TYPE_SEQ_END = 10,
	NALU_TYPE_STREAM_END = 11,
	NALU_TYPE_FILLER_DATA = 12,
	NALU_TYPE_SPS_EXT = 13,
	NALU_TYPE_PREFIX_UNIT = 14,
	NALU_TYPE_SUBSET_SPS = 15,
	NALU_TYPE_SLICE_AUX = 19,
	NALU_TYPE_SLICE_EXT = 20
};

enum hva_h264_sei_payload_type {
	SEI_BUFFERING_PERIOD = 0,
	SEI_PICTURE_TIMING = 1,
	SEI_STEREO_VIDEO_INFO = 21,
	SEI_FRAME_PACKING_ARRANGEMENT = 45
};

/**
 * stereo Video Info struct
 */
struct hva_h264_stereo_video_sei {
	u8 field_views_flag;
	u8 top_field_is_left_view_flag;
	u8 current_frame_is_left_view_flag;
	u8 next_frame_is_second_view_flag;
	u8 left_view_self_contained_flag;
	u8 right_view_self_contained_flag;
};

/**
 * @frame_width: width in pixels of the buffer containing the input frame
 * @frame_height: height in pixels of the buffer containing the input frame
 * @frame_num: the parameter to be written in the slice header
 * @picture_coding_type: type I, P or B
 * @pic_order_cnt_type: POC mode, as defined in H264 std : can be 0,1,2
 * @first_picture_in_sequence: flag telling to encoder that this is the
 *			       first picture in a video sequence.
 *			       Used for VBR
 * @slice_size_type: 0 = no constraint to close the slice
 *		     1= a slice is closed as soon as the slice_mb_size limit
 *			is reached
 *		     2= a slice is closed as soon as the slice_byte_size limit
 *			is reached
 *		     3= a slice is closed as soon as either the slice_byte_size
 *			limit or the slice_mb_size limit is reached
 * @slice_mb_size: defines the slice size in number of macroblocks
 *		   (used when slice_size_type=1 or slice_size_type=3)
 * @ir_param_option: defines the number of macroblocks per frame to be
 *		     refreshed by AIR algorithm OR the refresh period
 *		     by CIR algorithm
 * @intra_refresh_type: enables the adaptive intra refresh algorithm.
 *			Disable=0 / Adaptative=1 and Cycle=2 as intra refresh
 * @use_constrained_intra_flag: constrained_intra_pred_flag from PPS
 * @transform_mode: controls the use of 4x4/8x8 transform mode
 * @disable_deblocking_filter_idc:
 *		     0: specifies that all luma and chroma block edges of
 *			the slice are filtered.
 *		     1: specifies that deblocking is disabled for all block
 *			edges of the slice.
 *		     2: specifies that all luma and chroma block edges of
 *			the slice are filtered with exception of the block edges
 *			that coincide with slice boundaries
 * @slice_alpha_c0_offset_div2: to be written in slice header,
 *				controls deblocking
 * @slice_beta_offset_div2: to be written in slice header,
 *			    controls deblocking
 * @encoder_complexity: encoder complexity control (IME).
 *		     0 = I_16x16, P_16x16, Full ME Complexity
 *		     1 = I_16x16, I_NxN, P_16x16, Full ME Complexity
 *		     2 = I_16x16, I_NXN, P_16x16, P_WxH, Full ME Complexity
 *		     4 = I_16x16, P_16x16, Reduced ME Complexity
 *		     5 = I_16x16, I_NxN, P_16x16, Reduced ME Complexity
 *		     6 = I_16x16, I_NXN, P_16x16, P_WxH, Reduced ME Complexity
 *  @chroma_qp_index_offset: coming from picture parameter set
 *			     (PPS see [H.264 STD] 7.4.2.2)
 *  @entropy_coding_mode: entropy coding mode.
 *			  0 = CAVLC
 *			  1 = CABAC
 * @brc_type: selects the bit-rate control algorithm
 *		     0 = constant Qp, (no BRC)
 *		     1 = CBR
 *		     2 = VBR
 * @quant: Quantization param used in case of fix QP encoding (no BRC)
 * @non_VCL_NALU_Size: size of non-VCL NALUs (SPS, PPS, filler),
 *		       used by BRC
 * @cpb_buffer_size: size of Coded Picture Buffer, used by BRC
 * @bit_rate: target bitrate, for BRC
 * @qp_min: min QP threshold
 * @qp_max: max QP threshold
 * @framerate_num: target framerate numerator , used by BRC
 * @framerate_den: target framerate denomurator , used by BRC
 * @delay: End-to-End Initial Delay
 * @strict_HRD_compliancy: flag for HDR compliancy (1)
 *			   May impact quality encoding
 * @addr_source_buffer: address of input frame buffer for current frame
 * @addr_fwd_Ref_Buffer: address of reference frame buffer
 * @addr_rec_buffer: address of reconstructed frame buffer
 * @addr_output_bitstream_start: output bitstream start address
 * @addr_output_bitstream_end: output bitstream end address
 * @addr_external_sw : address of external search window
 * @addr_lctx : address of context picture buffer
 * @addr_local_rec_buffer: address of local reconstructed buffer
 * @addr_spatial_context: address of spatial context buffer
 * @bitstream_offset: offset in bits between aligned bitstream start
 *		      address and first bit to be written by HVA.
 *		      Range value is [0..63]
 * @sampling_mode: Input picture format .
 *		     0: YUV420 semi_planar Interleaved
 *		     1: YUV422 raster Interleaved
 * @addr_param_out: address of output parameters structure
 * @addr_scaling_matrix: address to the coefficient of
 *			 the inverse scaling matrix
 * @addr_scaling_matrix_dir: address to the coefficient of
 *			     the direct scaling matrix
 * @addr_cabac_context_buffer: address of cabac context buffer
 * @GmvX: Input information about the horizontal global displacement of
 *	  the encoded frame versus the previous one
 * @GmvY: Input information about the vertical global displacement of
 *	  the encoded frame versus the previous one
 * @window_width: width in pixels of the window to be encoded inside
 *		  the input frame
 * @window_height: width in pixels of the window to be encoded inside
 *		   the input frame
 * @window_horizontal_offset: horizontal offset in pels for input window
 *			      within input frame
 * @window_vertical_offset: vertical offset in pels for input window
 *			    within input frame
 * @addr_roi: Map of QP offset for the Region of Interest algorithm and
 *	      also used for Error map.
 *	      Bit 0-6 used for qp offset (value -64 to 63).
 *	      Bit 7 used to force intra
 * @addr_slice_header: address to slice header
 * @slice_header_size_in_bits: size in bits of the Slice header
 * @slice_header_offset0: Slice header offset where to insert
 *			  first_Mb_in_slice
 * @slice_header_offset1: Slice header offset where to insert
 *			  slice_qp_delta
 * @slice_header_offset2: Slice header offset where to insert
 *			  num_MBs_in_slice
 * @slice_synchro_enable: enable "slice ready" interrupt after each slice
 * @max_slice_number: Maximum number of slice in a frame
 *		      (0 is strictly forbidden)
 * @rgb2_yuv_y_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
 *		      YUV for the Y component.
 *		      Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
 * @rgb2_yuv_u_coeff: four coefficients (C0C1C2C3) to convert from RGB to
 *		      YUV for the Y component.
 *		      Y = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
 * @rgb2_yuv_v_coeff: Four coefficients (C0C1C2C3) to convert from RGB to
 *		      YUV for the U (Cb) component.
 *		      U = C0*R + C1*G + C2*B + C3 (C0 is on byte 0)
 * @slice_byte_size: maximum slice size in bytes
 *		     (used when slice_size_type=2 or slice_size_type=3)
 * @max_air_intra_mb_nb: Maximum number of intra macroblock in a frame
 *			 for the AIR algorithm
 * @brc_no_skip: Disable skipping in the Bitrate Controller
 * @addr_brc_in_out_parameter: address of static buffer for BRC parameters
 */
struct hva_h264_td {
	u16 frame_width;
	u16 frame_height;
	u32 frame_num;
	u16 picture_coding_type;
	u16 reserved1;
	u16 pic_order_cnt_type;
	u16 first_picture_in_sequence;
	u16 slice_size_type;
	u16 reserved2;
	u32 slice_mb_size;
	u16 ir_param_option;
	u16 intra_refresh_type;
	u16 use_constrained_intra_flag;
	u16 transform_mode;
	u16 disable_deblocking_filter_idc;
	s16 slice_alpha_c0_offset_div2;
	s16 slice_beta_offset_div2;
	u16 encoder_complexity;
	s16 chroma_qp_index_offset;
	u16 entropy_coding_mode;
	u16 brc_type;
	u16 quant;
	u32 non_vcl_nalu_size;
	u32 cpb_buffer_size;
	u32 bit_rate;
	u16 qp_min;
	u16 qp_max;
	u16 framerate_num;
	u16 framerate_den;
	u16 delay;
	u16 strict_hrd_compliancy;
	u32 addr_source_buffer;
	u32 addr_fwd_ref_buffer;
	u32 addr_rec_buffer;
	u32 addr_output_bitstream_start;
	u32 addr_output_bitstream_end;
	u32 addr_external_sw;
	u32 addr_lctx;
	u32 addr_local_rec_buffer;
	u32 addr_spatial_context;
	u16 bitstream_offset;
	u16 sampling_mode;
	u32 addr_param_out;
	u32 addr_scaling_matrix;
	u32 addr_scaling_matrix_dir;
	u32 addr_cabac_context_buffer;
	u32 reserved3;
	u32 reserved4;
	s16 gmv_x;
	s16 gmv_y;
	u16 window_width;
	u16 window_height;
	u16 window_horizontal_offset;
	u16 window_vertical_offset;
	u32 addr_roi;
	u32 addr_slice_header;
	u16 slice_header_size_in_bits;
	u16 slice_header_offset0;
	u16 slice_header_offset1;
	u16 slice_header_offset2;
	u32 reserved5;
	u32 reserved6;
	u16 reserved7;
	u16 reserved8;
	u16 slice_synchro_enable;
	u16 max_slice_number;
	u32 rgb2_yuv_y_coeff;
	u32 rgb2_yuv_u_coeff;
	u32 rgb2_yuv_v_coeff;
	u32 slice_byte_size;
	u16 max_air_intra_mb_nb;
	u16 brc_no_skip;
	u32 addr_temporal_context;
	u32 addr_brc_in_out_parameter;
};

/**
 * @ slice_size: slice size
 * @ slice_start_time: start time
 * @ slice_stop_time: stop time
 * @ slice_num: slice number
 */
struct hva_h264_slice_po {
	u32 slice_size;
	u32 slice_start_time;
	u32 slice_end_time;
	u32 slice_num;
};

/**
 * @ bitstream_size: bitstream size
 * @ dct_bitstream_size: dtc bitstream size
 * @ stuffing_bits: number of stuffing bits inserted by the encoder
 * @ removal_time: removal time of current frame (nb of ticks 1/framerate)
 * @ hvc_start_time: hvc start time
 * @ hvc_stop_time: hvc stop time
 * @ slice_count: slice count
 */
struct hva_h264_po {
	u32 bitstream_size;
	u32 dct_bitstream_size;
	u32 stuffing_bits;
	u32 removal_time;
	u32 hvc_start_time;
	u32 hvc_stop_time;
	u32 slice_count;
	u32 reserved0;
	struct hva_h264_slice_po slice_params[16];
};

struct hva_h264_task {
	struct hva_h264_td td;
	struct hva_h264_po po;
};

/**
 * @seq_info:  sequence information buffer
 * @ref_frame: reference frame buffer
 * @rec_frame: reconstructed frame buffer
 * @task:      task descriptor
 */
struct hva_h264_ctx {
	struct hva_buffer *seq_info;
	struct hva_buffer *ref_frame;
	struct hva_buffer *rec_frame;
	struct hva_buffer *task;
};

static int hva_h264_fill_slice_header(struct hva_ctx *pctx,
				      u8 *slice_header_addr,
				      struct hva_controls *ctrls,
				      int frame_num,
				      u16 *header_size,
				      u16 *header_offset0,
				      u16 *header_offset1,
				      u16 *header_offset2)
{
	/*
	 * with this HVA hardware version, part of the slice header is computed
	 * on host and part by hardware.
	 * The part of host is precomputed and available through this array.
	 */
	struct device *dev = ctx_to_dev(pctx);
	int  cabac = V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC;
	const unsigned char slice_header[] = { 0x00, 0x00, 0x00, 0x01,
					       0x41, 0x34, 0x07, 0x00};
	int idr_pic_id = frame_num % 2;
	enum hva_picture_coding_type type;
	u32 frame_order = frame_num % ctrls->gop_size;

	if (!(frame_num % ctrls->gop_size))
		type = PICTURE_CODING_TYPE_I;
	else
		type = PICTURE_CODING_TYPE_P;

	memcpy(slice_header_addr, slice_header, sizeof(slice_header));

	*header_size = 56;
	*header_offset0 = 40;
	*header_offset1 = 13;
	*header_offset2 = 0;

	if (type == PICTURE_CODING_TYPE_I) {
		slice_header_addr[4] = 0x65;
		slice_header_addr[5] = 0x11;

		/* toggle the I frame */
		if ((frame_num / ctrls->gop_size) % 2) {
			*header_size += 4;
			*header_offset1 += 4;
			slice_header_addr[6] = 0x04;
			slice_header_addr[7] = 0x70;

		} else {
			*header_size += 2;
			*header_offset1 += 2;
			slice_header_addr[6] = 0x09;
			slice_header_addr[7] = 0xC0;
		}
	} else {
		if (ctrls->entropy_mode == cabac) {
			*header_size += 1;
			*header_offset1 += 1;
			slice_header_addr[7] = 0x80;
		}
		/*
		 * update slice header with P frame order
		 * frame order is limited to 16 (coded on 4bits only)
		 */
		slice_header_addr[5] += ((frame_order & 0x0C) >> 2);
		slice_header_addr[6] += ((frame_order & 0x03) << 6);
	}

	dev_dbg(dev,
		"%s   %s slice header order %d idrPicId %d header size %d\n",
		pctx->name, __func__, frame_order, idr_pic_id, *header_size);
	return 0;
}

static int hva_h264_fill_data_nal(struct hva_ctx *pctx,
				  unsigned int stuffing_bytes, u8 *addr,
				  unsigned int stream_size, unsigned int *size)
{
	struct device *dev = ctx_to_dev(pctx);
	const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };

	dev_dbg(dev, "%s   %s stuffing bytes %d\n", pctx->name, __func__,
		stuffing_bytes);

	if ((*size + stuffing_bytes + H264_FILLER_DATA_SIZE) > stream_size) {
		dev_dbg(dev, "%s   %s too many stuffing bytes %d\n",
			pctx->name, __func__, stuffing_bytes);
		return 0;
	}

	/* start code */
	memcpy(addr + *size, start, sizeof(start));
	*size += sizeof(start);

	/* nal_unit_type */
	addr[*size] = NALU_TYPE_FILLER_DATA;
	*size += 1;

	memset(addr + *size, 0xff, stuffing_bytes);
	*size += stuffing_bytes;

	addr[*size] = 0x80;
	*size += 1;

	return 0;
}

static int hva_h264_fill_sei_nal(struct hva_ctx *pctx,
				 enum hva_h264_sei_payload_type type,
				 u8 *addr, u32 *size)
{
	struct device *dev = ctx_to_dev(pctx);
	const u8 start[] = { 0x00, 0x00, 0x00, 0x01 };
	struct hva_h264_stereo_video_sei info;
	u8 offset = 7;
	u8 msg = 0;

	/* start code */
	memcpy(addr + *size, start, sizeof(start));
	*size += sizeof(start);

	/* nal_unit_type */
	addr[*size] = NALU_TYPE_SEI;
	*size += 1;

	/* payload type */
	addr[*size] = type;
	*size += 1;

	switch (type) {
	case SEI_STEREO_VIDEO_INFO:
		memset(&info, 0, sizeof(info));

		/* set to top/bottom frame packing arrangement */
		info.field_views_flag = 1;
		info.top_field_is_left_view_flag = 1;

		/* payload size */
		addr[*size] = 1;
		*size += 1;

		/* payload */
		msg = info.field_views_flag << offset--;

		if (info.field_views_flag) {
			msg |= info.top_field_is_left_view_flag <<
			       offset--;
		} else {
			msg |= info.current_frame_is_left_view_flag <<
			       offset--;
			msg |= info.next_frame_is_second_view_flag <<
			       offset--;
		}
		msg |= info.left_view_self_contained_flag << offset--;
		msg |= info.right_view_self_contained_flag << offset--;

		addr[*size] = msg;
		*size += 1;

		addr[*size] = 0x80;
		*size += 1;

		return 0;
	case SEI_BUFFERING_PERIOD:
	case SEI_PICTURE_TIMING:
	case SEI_FRAME_PACKING_ARRANGEMENT:
	default:
		dev_err(dev, "%s   sei nal type not supported %d\n",
			pctx->name, type);
		return -EINVAL;
	}
}

static int hva_h264_prepare_task(struct hva_ctx *pctx,
				 struct hva_h264_task *task,
				 struct hva_frame *frame,
				 struct hva_stream *stream)
{
	struct hva_dev *hva = ctx_to_hdev(pctx);
	struct device *dev = ctx_to_dev(pctx);
	struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
	struct hva_buffer *seq_info = ctx->seq_info;
	struct hva_buffer *fwd_ref_frame = ctx->ref_frame;
	struct hva_buffer *loc_rec_frame = ctx->rec_frame;
	struct hva_h264_td *td = &task->td;
	struct hva_controls *ctrls = &pctx->ctrls;
	struct v4l2_fract *time_per_frame = &pctx->ctrls.time_per_frame;
	int cavlc =  V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CAVLC;
	u32 frame_num = pctx->stream_num;
	u32 addr_esram = hva->esram_addr;
	enum v4l2_mpeg_video_h264_level level;
	dma_addr_t paddr = 0;
	u8 *slice_header_vaddr;
	u32 frame_width = frame->info.aligned_width;
	u32 frame_height = frame->info.aligned_height;
	u32 max_cpb_buffer_size;
	unsigned int payload = stream->bytesused;
	u32 max_bitrate;

	/* check width and height parameters */
	if ((frame_width > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H)) ||
	    (frame_height > max(H264_MAX_SIZE_W, H264_MAX_SIZE_H))) {
		dev_err(dev,
			"%s   width(%d) or height(%d) exceeds limits (%dx%d)\n",
			pctx->name, frame_width, frame_height,
			H264_MAX_SIZE_W, H264_MAX_SIZE_H);
		return -EINVAL;
	}

	level = ctrls->level;

	memset(td, 0, sizeof(struct hva_h264_td));

	td->frame_width = frame_width;
	td->frame_height = frame_height;

	/* set frame alignement */
	td->window_width =  frame_width;
	td->window_height = frame_height;
	td->window_horizontal_offset = 0;
	td->window_vertical_offset = 0;

	td->first_picture_in_sequence = (!frame_num) ? 1 : 0;

	/* pic_order_cnt_type hard coded to '2' as only I & P frames */
	td->pic_order_cnt_type = 2;

	/* useConstrainedIntraFlag set to false for better coding efficiency */
	td->use_constrained_intra_flag = false;
	td->brc_type = (ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR)
			? BRC_TYPE_CBR : BRC_TYPE_VBR;

	td->entropy_coding_mode = (ctrls->entropy_mode == cavlc) ? CAVLC :
				  CABAC;

	td->bit_rate = ctrls->bitrate;

	/* set framerate, framerate = 1 n/ time per frame */
	if (time_per_frame->numerator >= 536) {
		/*
		 * due to a hardware bug, framerate denominator can't exceed
		 * 536 (BRC overflow). Compute nearest framerate
		 */
		td->framerate_den = 1;
		td->framerate_num = (time_per_frame->denominator +
				    (time_per_frame->numerator >> 1) - 1) /
				    time_per_frame->numerator;

		/*
		 * update bitrate to introduce a correction due to
		 * the new framerate
		 * new bitrate = (old bitrate * new framerate) / old framerate
		 */
		td->bit_rate /= time_per_frame->numerator;
		td->bit_rate *= time_per_frame->denominator;
		td->bit_rate /= td->framerate_num;
	} else {
		td->framerate_den = time_per_frame->numerator;
		td->framerate_num = time_per_frame->denominator;
	}

	/* compute maximum bitrate depending on profile */
	if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
		max_bitrate = h264_infos_list[level].max_bitrate *
			      H264_FACTOR_HIGH;
	else
		max_bitrate = h264_infos_list[level].max_bitrate *
			      H264_FACTOR_BASELINE;

	/* check if bitrate doesn't exceed max size */
	if (td->bit_rate > max_bitrate) {
		dev_dbg(dev,
			"%s   bitrate (%d) larger than level and profile allow, clip to %d\n",
			pctx->name, td->bit_rate, max_bitrate);
		td->bit_rate = max_bitrate;
	}

	/* convert cpb_buffer_size in bits */
	td->cpb_buffer_size = ctrls->cpb_size * 8000;

	/* compute maximum cpb buffer size depending on profile */
	if (ctrls->profile >= V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)
		max_cpb_buffer_size =
		    h264_infos_list[level].max_cpb_size * H264_FACTOR_HIGH;
	else
		max_cpb_buffer_size =
		    h264_infos_list[level].max_cpb_size * H264_FACTOR_BASELINE;

	/* check if cpb buffer size doesn't exceed max size */
	if (td->cpb_buffer_size > max_cpb_buffer_size) {
		dev_dbg(dev,
			"%s   cpb size larger than level %d allows, clip to %d\n",
			pctx->name, td->cpb_buffer_size, max_cpb_buffer_size);
		td->cpb_buffer_size = max_cpb_buffer_size;
	}

	/* enable skipping in the Bitrate Controller */
	td->brc_no_skip = 0;

	/* initial delay */
	if ((ctrls->bitrate_mode == V4L2_MPEG_VIDEO_BITRATE_MODE_CBR) &&
	    td->bit_rate)
		td->delay = 1000 * (td->cpb_buffer_size / td->bit_rate);
	else
		td->delay = 0;

	switch (frame->info.pixelformat) {
	case V4L2_PIX_FMT_NV12:
		td->sampling_mode = SAMPLING_MODE_NV12;
		break;
	case V4L2_PIX_FMT_NV21:
		td->sampling_mode = SAMPLING_MODE_NV21;
		break;
	default:
		dev_err(dev, "%s   invalid source pixel format\n",
			pctx->name);
		return -EINVAL;
	}

	/*
	 * fill matrix color converter (RGB to YUV)
	 * Y = 0,299 R + 0,587 G + 0,114 B
	 * Cb = -0,1687 R -0,3313 G + 0,5 B + 128
	 * Cr = 0,5 R - 0,4187 G - 0,0813 B + 128
	 */
	td->rgb2_yuv_y_coeff = 0x12031008;
	td->rgb2_yuv_u_coeff = 0x800EF7FB;
	td->rgb2_yuv_v_coeff = 0x80FEF40E;

	/* enable/disable transform mode */
	td->transform_mode = ctrls->dct8x8;

	/* encoder complexity fix to 2, ENCODE_I_16x16_I_NxN_P_16x16_P_WxH */
	td->encoder_complexity = 2;

	/* quant fix to 28, default VBR value */
	td->quant = 28;

	if (td->framerate_den == 0) {
		dev_err(dev, "%s   invalid framerate\n", pctx->name);
		return -EINVAL;
	}

	/* if automatic framerate, deactivate bitrate controller */
	if (td->framerate_num == 0)
		td->brc_type = 0;

	/* compliancy fix to true */
	td->strict_hrd_compliancy = 1;

	/* set minimum & maximum quantizers */
	td->qp_min = clamp_val(ctrls->qpmin, 0, 51);
	td->qp_max = clamp_val(ctrls->qpmax, 0, 51);

	td->addr_source_buffer = frame->paddr;
	td->addr_fwd_ref_buffer = fwd_ref_frame->paddr;
	td->addr_rec_buffer = loc_rec_frame->paddr;

	td->addr_output_bitstream_end = (u32)stream->paddr + stream->size;

	td->addr_output_bitstream_start = (u32)stream->paddr;
	td->bitstream_offset = (((u32)stream->paddr & 0xF) << 3) &
			       BITSTREAM_OFFSET_MASK;

	td->addr_param_out = (u32)ctx->task->paddr +
			     offsetof(struct hva_h264_task, po);

	/* swap spatial and temporal context */
	if (frame_num % 2) {
		paddr = seq_info->paddr;
		td->addr_spatial_context =  ALIGN(paddr, 0x100);
		paddr = seq_info->paddr + DATA_SIZE(frame_width,
							frame_height);
		td->addr_temporal_context = ALIGN(paddr, 0x100);
	} else {
		paddr = seq_info->paddr;
		td->addr_temporal_context = ALIGN(paddr, 0x100);
		paddr = seq_info->paddr + DATA_SIZE(frame_width,
							frame_height);
		td->addr_spatial_context =  ALIGN(paddr, 0x100);
	}

	paddr = seq_info->paddr + 2 * DATA_SIZE(frame_width, frame_height);

	td->addr_brc_in_out_parameter =  ALIGN(paddr, 0x100);

	paddr = td->addr_brc_in_out_parameter + BRC_DATA_SIZE;
	td->addr_slice_header =  ALIGN(paddr, 0x100);
	td->addr_external_sw =  ALIGN(addr_esram, 0x100);

	addr_esram += SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width);
	td->addr_local_rec_buffer = ALIGN(addr_esram, 0x100);

	addr_esram += LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width);
	td->addr_lctx = ALIGN(addr_esram, 0x100);

	addr_esram += CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height));
	td->addr_cabac_context_buffer = ALIGN(addr_esram, 0x100);

	if (!(frame_num % ctrls->gop_size)) {
		td->picture_coding_type = PICTURE_CODING_TYPE_I;
		stream->vbuf.flags |= V4L2_BUF_FLAG_KEYFRAME;
	} else {
		td->picture_coding_type = PICTURE_CODING_TYPE_P;
		stream->vbuf.flags &= ~V4L2_BUF_FLAG_KEYFRAME;
	}

	/* fill the slice header part */
	slice_header_vaddr = seq_info->vaddr + (td->addr_slice_header -
			     seq_info->paddr);

	hva_h264_fill_slice_header(pctx, slice_header_vaddr, ctrls, frame_num,
				   &td->slice_header_size_in_bits,
				   &td->slice_header_offset0,
				   &td->slice_header_offset1,
				   &td->slice_header_offset2);

	td->chroma_qp_index_offset = 2;
	td->slice_synchro_enable = 0;
	td->max_slice_number = 1;

	/*
	 * check the sps/pps header size for key frame only
	 * sps/pps header was previously fill by libv4l
	 * during qbuf of stream buffer
	 */
	if ((stream->vbuf.flags == V4L2_BUF_FLAG_KEYFRAME) &&
	    (payload > MAX_SPS_PPS_SIZE)) {
		dev_err(dev, "%s   invalid sps/pps size %d\n", pctx->name,
			payload);
		return -EINVAL;
	}

	if (stream->vbuf.flags != V4L2_BUF_FLAG_KEYFRAME)
		payload = 0;

	/* add SEI nal (video stereo info) */
	if (ctrls->sei_fp && hva_h264_fill_sei_nal(pctx, SEI_STEREO_VIDEO_INFO,
						   (u8 *)stream->vaddr,
						   &payload)) {
		dev_err(dev, "%s   fail to get SEI nal\n", pctx->name);
		return -EINVAL;
	}

	/* fill size of non-VCL NAL units (SPS, PPS, filler and SEI) */
	td->non_vcl_nalu_size = payload * 8;

	/* compute bitstream offset & new start address of bitstream */
	td->addr_output_bitstream_start += ((payload >> 4) << 4);
	td->bitstream_offset += (payload - ((payload >> 4) << 4)) * 8;

	stream->bytesused = payload;

	return 0;
}

static unsigned int hva_h264_get_stream_size(struct hva_h264_task *task)
{
	struct hva_h264_po *po = &task->po;

	return po->bitstream_size;
}

static u32 hva_h264_get_stuffing_bytes(struct hva_h264_task *task)
{
	struct hva_h264_po *po = &task->po;

	return po->stuffing_bits >> 3;
}

static int hva_h264_open(struct hva_ctx *pctx)
{
	struct device *dev = ctx_to_dev(pctx);
	struct hva_h264_ctx *ctx;
	struct hva_dev *hva = ctx_to_hdev(pctx);
	u32 frame_width = pctx->frameinfo.aligned_width;
	u32 frame_height = pctx->frameinfo.aligned_height;
	u32 size;
	int ret;

	/* check esram size necessary to encode a frame */
	size = SEARCH_WINDOW_BUFFER_MAX_SIZE(frame_width) +
	       LOCAL_RECONSTRUCTED_BUFFER_MAX_SIZE(frame_width) +
	       CTX_MB_BUFFER_MAX_SIZE(max(frame_width, frame_height)) +
	       CABAC_CONTEXT_BUFFER_MAX_SIZE(frame_width);

	if (hva->esram_size < size) {
		dev_err(dev, "%s   not enough esram (max:%d request:%d)\n",
			pctx->name, hva->esram_size, size);
		ret = -EINVAL;
		goto err;
	}

	/* allocate context for codec */
	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
	if (!ctx) {
		ret = -ENOMEM;
		goto err;
	}

	/* allocate sequence info buffer */
	ret = hva_mem_alloc(pctx,
			    2 * DATA_SIZE(frame_width, frame_height) +
			    SLICE_HEADER_SIZE +
			    BRC_DATA_SIZE,
			    "hva sequence info",
			    &ctx->seq_info);
	if (ret) {
		dev_err(dev,
			"%s   failed to allocate sequence info buffer\n",
			pctx->name);
		goto err_ctx;
	}

	/* allocate reference frame buffer */
	ret = hva_mem_alloc(pctx,
			    frame_width * frame_height * 3 / 2,
			    "hva reference frame",
			    &ctx->ref_frame);
	if (ret) {
		dev_err(dev, "%s   failed to allocate reference frame buffer\n",
			pctx->name);
		goto err_seq_info;
	}

	/* allocate reconstructed frame buffer */
	ret = hva_mem_alloc(pctx,
			    frame_width * frame_height * 3 / 2,
			    "hva reconstructed frame",
			    &ctx->rec_frame);
	if (ret) {
		dev_err(dev,
			"%s   failed to allocate reconstructed frame buffer\n",
			pctx->name);
		goto err_ref_frame;
	}

	/* allocate task descriptor */
	ret = hva_mem_alloc(pctx,
			    sizeof(struct hva_h264_task),
			    "hva task descriptor",
			    &ctx->task);
	if (ret) {
		dev_err(dev,
			"%s   failed to allocate task descriptor\n",
			pctx->name);
		goto err_rec_frame;
	}

	pctx->priv = (void *)ctx;

	return 0;

err_rec_frame:
	hva_mem_free(pctx, ctx->rec_frame);
err_ref_frame:
	hva_mem_free(pctx, ctx->ref_frame);
err_seq_info:
	hva_mem_free(pctx, ctx->seq_info);
err_ctx:
	devm_kfree(dev, ctx);
err:
	return ret;
}

static int hva_h264_close(struct hva_ctx *pctx)
{
	struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
	struct device *dev = ctx_to_dev(pctx);

	if (ctx->seq_info)
		hva_mem_free(pctx, ctx->seq_info);

	if (ctx->ref_frame)
		hva_mem_free(pctx, ctx->ref_frame);

	if (ctx->rec_frame)
		hva_mem_free(pctx, ctx->rec_frame);

	if (ctx->task)
		hva_mem_free(pctx, ctx->task);

	devm_kfree(dev, ctx);

	return 0;
}

static int hva_h264_encode(struct hva_ctx *pctx, struct hva_frame *frame,
			   struct hva_stream *stream)
{
	struct hva_h264_ctx *ctx = (struct hva_h264_ctx *)pctx->priv;
	struct hva_h264_task *task = (struct hva_h264_task *)ctx->task->vaddr;
	struct hva_buffer *tmp_frame;
	u32 stuffing_bytes = 0;
	int ret = 0;

	ret = hva_h264_prepare_task(pctx, task, frame, stream);
	if (ret)
		goto err;

	ret = hva_hw_execute_task(pctx, H264_ENC, ctx->task);
	if (ret)
		goto err;

	pctx->stream_num++;
	stream->bytesused += hva_h264_get_stream_size(task);

	stuffing_bytes = hva_h264_get_stuffing_bytes(task);

	if (stuffing_bytes)
		hva_h264_fill_data_nal(pctx, stuffing_bytes,
				       (u8 *)stream->vaddr,
				       stream->size,
				       &stream->bytesused);

	/* switch reference & reconstructed frame */
	tmp_frame = ctx->ref_frame;
	ctx->ref_frame = ctx->rec_frame;
	ctx->rec_frame = tmp_frame;

	return 0;
err:
	stream->bytesused = 0;
	return ret;
}

const struct hva_enc nv12h264enc = {
	.name = "H264(NV12)",
	.pixelformat = V4L2_PIX_FMT_NV12,
	.streamformat = V4L2_PIX_FMT_H264,
	.max_width = H264_MAX_SIZE_W,
	.max_height = H264_MAX_SIZE_H,
	.open = hva_h264_open,
	.close = hva_h264_close,
	.encode = hva_h264_encode,
};

const struct hva_enc nv21h264enc = {
	.name = "H264(NV21)",
	.pixelformat = V4L2_PIX_FMT_NV21,
	.streamformat = V4L2_PIX_FMT_H264,
	.max_width = H264_MAX_SIZE_W,
	.max_height = H264_MAX_SIZE_H,
	.open = hva_h264_open,
	.close = hva_h264_close,
	.encode = hva_h264_encode,
};