/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2006-2012 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*
* Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details
*/
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include "efx.h"
#include "mdio_10g.h"
#include "phy.h"
#include "nic.h"
#define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS | \
MDIO_DEVS_PMAPMD | \
MDIO_DEVS_PHYXS)
#define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) | \
(1 << LOOPBACK_PMAPMD) | \
(1 << LOOPBACK_PHYXS_WS))
/****************************************************************************/
/* Quake-specific MDIO registers */
#define MDIO_QUAKE_LED0_REG (0xD006)
/* QT2025C only */
#define PCS_FW_HEARTBEAT_REG 0xd7ee
#define PCS_FW_HEARTB_LBN 0
#define PCS_FW_HEARTB_WIDTH 8
#define PCS_FW_PRODUCT_CODE_1 0xd7f0
#define PCS_FW_VERSION_1 0xd7f3
#define PCS_FW_BUILD_1 0xd7f6
#define PCS_UC8051_STATUS_REG 0xd7fd
#define PCS_UC_STATUS_LBN 0
#define PCS_UC_STATUS_WIDTH 8
#define PCS_UC_STATUS_FW_SAVE 0x20
#define PMA_PMD_MODE_REG 0xc301
#define PMA_PMD_RXIN_SEL_LBN 6
#define PMA_PMD_FTX_CTRL2_REG 0xc309
#define PMA_PMD_FTX_STATIC_LBN 13
#define PMA_PMD_VEND1_REG 0xc001
#define PMA_PMD_VEND1_LBTXD_LBN 15
#define PCS_VEND1_REG 0xc000
#define PCS_VEND1_LBTXD_LBN 5
void falcon_qt202x_set_led(struct ef4_nic *p, int led, int mode)
{
int addr = MDIO_QUAKE_LED0_REG + led;
ef4_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode);
}
struct qt202x_phy_data {
enum ef4_phy_mode phy_mode;
bool bug17190_in_bad_state;
unsigned long bug17190_timer;
u32 firmware_ver;
};
#define QT2022C2_MAX_RESET_TIME 500
#define QT2022C2_RESET_WAIT 10
#define QT2025C_MAX_HEARTB_TIME (5 * HZ)
#define QT2025C_HEARTB_WAIT 100
#define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10)
#define QT2025C_FWSTART_WAIT 100
#define BUG17190_INTERVAL (2 * HZ)
static int qt2025c_wait_heartbeat(struct ef4_nic *efx)
{
unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME;
int reg, old_counter = 0;
/* Wait for firmware heartbeat to start */
for (;;) {
int counter;
reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG);
if (reg < 0)
return reg;
counter = ((reg >> PCS_FW_HEARTB_LBN) &
((1 << PCS_FW_HEARTB_WIDTH) - 1));
if (old_counter == 0)
old_counter = counter;
else if (counter != old_counter)
break;
if (time_after(jiffies, timeout)) {
/* Some cables have EEPROMs that conflict with the
* PHY's on-board EEPROM so it cannot load firmware */
netif_err(efx, hw, efx->net_dev,
"If an SFP+ direct attach cable is"
" connected, please check that it complies"
" with the SFP+ specification\n");
return -ETIMEDOUT;
}
msleep(QT2025C_HEARTB_WAIT);
}
return 0;
}
static int qt2025c_wait_fw_status_good(struct ef4_nic *efx)
{
unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME;
int reg;
/* Wait for firmware status to look good */
for (;;) {
reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG);
if (reg < 0)
return reg;
if ((reg &
((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >=
PCS_UC_STATUS_FW_SAVE)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(QT2025C_FWSTART_WAIT);
}
return 0;
}
static void qt2025c_restart_firmware(struct ef4_nic *efx)
{
/* Restart microcontroller execution of firmware from RAM */
ef4_mdio_write(efx, 3, 0xe854, 0x00c0);
ef4_mdio_write(efx, 3, 0xe854, 0x0040);
msleep(50);
}
static int qt2025c_wait_reset(struct ef4_nic *efx)
{
int rc;
rc = qt2025c_wait_heartbeat(efx);
if (rc != 0)
return rc;
rc = qt2025c_wait_fw_status_good(efx);
if (rc == -ETIMEDOUT) {
/* Bug 17689: occasionally heartbeat starts but firmware status
* code never progresses beyond 0x00. Try again, once, after
* restarting execution of the firmware image. */
netif_dbg(efx, hw, efx->net_dev,
"bashing QT2025C microcontroller\n");
qt2025c_restart_firmware(efx);
rc = qt2025c_wait_heartbeat(efx);
if (rc != 0)
return rc;
rc = qt2025c_wait_fw_status_good(efx);
}
return rc;
}
static void qt2025c_firmware_id(struct ef4_nic *efx)
{
struct qt202x_phy_data *phy_data = efx->phy_data;
u8 firmware_id[9];
size_t i;
for (i = 0; i < sizeof(firmware_id); i++)
firmware_id[i] = ef4_mdio_read(efx, MDIO_MMD_PCS,
PCS_FW_PRODUCT_CODE_1 + i);
netif_info(efx, probe, efx->net_dev,
"QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n",
(firmware_id[0] << 8) | firmware_id[1], firmware_id[2],
firmware_id[3] >> 4, firmware_id[3] & 0xf,
firmware_id[4], firmware_id[5],
firmware_id[6], firmware_id[7], firmware_id[8]);
phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) |
((firmware_id[3] & 0x0f) << 16) |
(firmware_id[4] << 8) | firmware_id[5];
}
static void qt2025c_bug17190_workaround(struct ef4_nic *efx)
{
struct qt202x_phy_data *phy_data = efx->phy_data;
/* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD
* layers up, but PCS down (no block_lock). If we notice this state
* persisting for a couple of seconds, we switch PMA/PMD loopback
* briefly on and then off again, which is normally sufficient to
* recover it.
*/
if (efx->link_state.up ||
!ef4_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) {
phy_data->bug17190_in_bad_state = false;
return;
}
if (!phy_data->bug17190_in_bad_state) {
phy_data->bug17190_in_bad_state = true;
phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
return;
}
if (time_after_eq(jiffies, phy_data->bug17190_timer)) {
netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n");
ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
MDIO_PMA_CTRL1_LOOPBACK, true);
msleep(100);
ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
MDIO_PMA_CTRL1_LOOPBACK, false);
phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
}
}
static int qt2025c_select_phy_mode(struct ef4_nic *efx)
{
struct qt202x_phy_data *phy_data = efx->phy_data;
struct falcon_board *board = falcon_board(efx);
int reg, rc, i;
uint16_t phy_op_mode;
/* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+
* Self-Configure mode. Don't attempt any switching if we encounter
* older firmware. */
if (phy_data->firmware_ver < 0x02000100)
return 0;
/* In general we will get optimal behaviour in "SFP+ Self-Configure"
* mode; however, that powers down most of the PHY when no module is
* present, so we must use a different mode (any fixed mode will do)
* to be sure that loopbacks will work. */
phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020;
/* Only change mode if really necessary */
reg = ef4_mdio_read(efx, 1, 0xc319);
if ((reg & 0x0038) == phy_op_mode)
return 0;
netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n",
phy_op_mode);
/* This sequence replicates the register writes configured in the boot
* EEPROM (including the differences between board revisions), except
* that the operating mode is changed, and the PHY is prevented from
* unnecessarily reloading the main firmware image again. */
ef4_mdio_write(efx, 1, 0xc300, 0x0000);
/* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9
* STOPs onto the firmware/module I2C bus to reset it, varies across
* board revisions, as the bus is connected to different GPIO/LED
* outputs on the PHY.) */
if (board->major == 0 && board->minor < 2) {
ef4_mdio_write(efx, 1, 0xc303, 0x4498);
for (i = 0; i < 9; i++) {
ef4_mdio_write(efx, 1, 0xc303, 0x4488);
ef4_mdio_write(efx, 1, 0xc303, 0x4480);
ef4_mdio_write(efx, 1, 0xc303, 0x4490);
ef4_mdio_write(efx, 1, 0xc303, 0x4498);
}
} else {
ef4_mdio_write(efx, 1, 0xc303, 0x0920);
ef4_mdio_write(efx, 1, 0xd008, 0x0004);
for (i = 0; i < 9; i++) {
ef4_mdio_write(efx, 1, 0xc303, 0x0900);
ef4_mdio_write(efx, 1, 0xd008, 0x0005);
ef4_mdio_write(efx, 1, 0xc303, 0x0920);
ef4_mdio_write(efx, 1, 0xd008, 0x0004);
}
ef4_mdio_write(efx, 1, 0xc303, 0x4900);
}
ef4_mdio_write(efx, 1, 0xc303, 0x4900);
ef4_mdio_write(efx, 1, 0xc302, 0x0004);
ef4_mdio_write(efx, 1, 0xc316, 0x0013);
ef4_mdio_write(efx, 1, 0xc318, 0x0054);
ef4_mdio_write(efx, 1, 0xc319, phy_op_mode);
ef4_mdio_write(efx, 1, 0xc31a, 0x0098);
ef4_mdio_write(efx, 3, 0x0026, 0x0e00);
ef4_mdio_write(efx, 3, 0x0027, 0x0013);
ef4_mdio_write(efx, 3, 0x0028, 0xa528);
ef4_mdio_write(efx, 1, 0xd006, 0x000a);
ef4_mdio_write(efx, 1, 0xd007, 0x0009);
ef4_mdio_write(efx, 1, 0xd008, 0x0004);
/* This additional write is not present in the boot EEPROM. It
* prevents the PHY's internal boot ROM doing another pointless (and
* slow) reload of the firmware image (the microcontroller's code
* memory is not affected by the microcontroller reset). */
ef4_mdio_write(efx, 1, 0xc317, 0x00ff);
/* PMA/PMD loopback sets RXIN to inverse polarity and the firmware
* restart doesn't reset it. We need to do that ourselves. */
ef4_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG,
1 << PMA_PMD_RXIN_SEL_LBN, false);
ef4_mdio_write(efx, 1, 0xc300, 0x0002);
msleep(20);
/* Restart microcontroller execution of firmware from RAM */
qt2025c_restart_firmware(efx);
/* Wait for the microcontroller to be ready again */
rc = qt2025c_wait_reset(efx);
if (rc < 0) {
netif_err(efx, hw, efx->net_dev,
"PHY microcontroller reset during mode switch "
"timed out\n");
return rc;
}
return 0;
}
static int qt202x_reset_phy(struct ef4_nic *efx)
{
int rc;
if (efx->phy_type == PHY_TYPE_QT2025C) {
/* Wait for the reset triggered by falcon_reset_hw()
* to complete */
rc = qt2025c_wait_reset(efx);
if (rc < 0)
goto fail;
} else {
/* Reset the PHYXS MMD. This is documented as doing
* a complete soft reset. */
rc = ef4_mdio_reset_mmd(efx, MDIO_MMD_PHYXS,
QT2022C2_MAX_RESET_TIME /
QT2022C2_RESET_WAIT,
QT2022C2_RESET_WAIT);
if (rc < 0)
goto fail;
}
/* Wait 250ms for the PHY to complete bootup */
msleep(250);
falcon_board(efx)->type->init_phy(efx);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n");
return rc;
}
static int qt202x_phy_probe(struct ef4_nic *efx)
{
struct qt202x_phy_data *phy_data;
phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL);
if (!phy_data)
return -ENOMEM;
efx->phy_data = phy_data;
phy_data->phy_mode = efx->phy_mode;
phy_data->bug17190_in_bad_state = false;
phy_data->bug17190_timer = 0;
efx->mdio.mmds = QT202X_REQUIRED_DEVS;
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS;
return 0;
}
static int qt202x_phy_init(struct ef4_nic *efx)
{
u32 devid;
int rc;
rc = qt202x_reset_phy(efx);
if (rc) {
netif_err(efx, probe, efx->net_dev, "PHY init failed\n");
return rc;
}
devid = ef4_mdio_read_id(efx, MDIO_MMD_PHYXS);
netif_info(efx, probe, efx->net_dev,
"PHY ID reg %x (OUI %06x model %02x revision %x)\n",
devid, ef4_mdio_id_oui(devid), ef4_mdio_id_model(devid),
ef4_mdio_id_rev(devid));
if (efx->phy_type == PHY_TYPE_QT2025C)
qt2025c_firmware_id(efx);
return 0;
}
static int qt202x_link_ok(struct ef4_nic *efx)
{
return ef4_mdio_links_ok(efx, QT202X_REQUIRED_DEVS);
}
static bool qt202x_phy_poll(struct ef4_nic *efx)
{
bool was_up = efx->link_state.up;
efx->link_state.up = qt202x_link_ok(efx);
efx->link_state.speed = 10000;
efx->link_state.fd = true;
efx->link_state.fc = efx->wanted_fc;
if (efx->phy_type == PHY_TYPE_QT2025C)
qt2025c_bug17190_workaround(efx);
return efx->link_state.up != was_up;
}
static int qt202x_phy_reconfigure(struct ef4_nic *efx)
{
struct qt202x_phy_data *phy_data = efx->phy_data;
if (efx->phy_type == PHY_TYPE_QT2025C) {
int rc = qt2025c_select_phy_mode(efx);
if (rc)
return rc;
/* There are several different register bits which can
* disable TX (and save power) on direct-attach cables
* or optical transceivers, varying somewhat between
* firmware versions. Only 'static mode' appears to
* cover everything. */
mdio_set_flag(
&efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD,
PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN,
efx->phy_mode & PHY_MODE_TX_DISABLED ||
efx->phy_mode & PHY_MODE_LOW_POWER ||
efx->loopback_mode == LOOPBACK_PCS ||
efx->loopback_mode == LOOPBACK_PMAPMD);
} else {
/* Reset the PHY when moving from tx off to tx on */
if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) &&
(phy_data->phy_mode & PHY_MODE_TX_DISABLED))
qt202x_reset_phy(efx);
ef4_mdio_transmit_disable(efx);
}
ef4_mdio_phy_reconfigure(efx);
phy_data->phy_mode = efx->phy_mode;
return 0;
}
static void qt202x_phy_get_settings(struct ef4_nic *efx, struct ethtool_cmd *ecmd)
{
mdio45_ethtool_gset(&efx->mdio, ecmd);
}
static void qt202x_phy_remove(struct ef4_nic *efx)
{
/* Free the context block */
kfree(efx->phy_data);
efx->phy_data = NULL;
}
static int qt202x_phy_get_module_info(struct ef4_nic *efx,
struct ethtool_modinfo *modinfo)
{
modinfo->type = ETH_MODULE_SFF_8079;
modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
return 0;
}
static int qt202x_phy_get_module_eeprom(struct ef4_nic *efx,
struct ethtool_eeprom *ee, u8 *data)
{
int mmd, reg_base, rc, i;
if (efx->phy_type == PHY_TYPE_QT2025C) {
mmd = MDIO_MMD_PCS;
reg_base = 0xd000;
} else {
mmd = MDIO_MMD_PMAPMD;
reg_base = 0x8007;
}
for (i = 0; i < ee->len; i++) {
rc = ef4_mdio_read(efx, mmd, reg_base + ee->offset + i);
if (rc < 0)
return rc;
data[i] = rc;
}
return 0;
}
const struct ef4_phy_operations falcon_qt202x_phy_ops = {
.probe = qt202x_phy_probe,
.init = qt202x_phy_init,
.reconfigure = qt202x_phy_reconfigure,
.poll = qt202x_phy_poll,
.fini = ef4_port_dummy_op_void,
.remove = qt202x_phy_remove,
.get_settings = qt202x_phy_get_settings,
.set_settings = ef4_mdio_set_settings,
.test_alive = ef4_mdio_test_alive,
.get_module_eeprom = qt202x_phy_get_module_eeprom,
.get_module_info = qt202x_phy_get_module_info,
};