Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*
 * JZ4780 NAND/external memory controller (NEMC)
 *
 * Copyright (c) 2015 Imagination Technologies
 * Author: Alex Smith <alex@alex-smith.me.uk>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

#include <linux/clk.h>
#include <linux/init.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/jz4780-nemc.h>

#define NEMC_SMCRn(n)		(0x14 + (((n) - 1) * 4))
#define NEMC_NFCSR		0x50

#define NEMC_SMCR_SMT		BIT(0)
#define NEMC_SMCR_BW_SHIFT	6
#define NEMC_SMCR_BW_MASK	(0x3 << NEMC_SMCR_BW_SHIFT)
#define NEMC_SMCR_BW_8		(0 << 6)
#define NEMC_SMCR_TAS_SHIFT	8
#define NEMC_SMCR_TAS_MASK	(0xf << NEMC_SMCR_TAS_SHIFT)
#define NEMC_SMCR_TAH_SHIFT	12
#define NEMC_SMCR_TAH_MASK	(0xf << NEMC_SMCR_TAH_SHIFT)
#define NEMC_SMCR_TBP_SHIFT	16
#define NEMC_SMCR_TBP_MASK	(0xf << NEMC_SMCR_TBP_SHIFT)
#define NEMC_SMCR_TAW_SHIFT	20
#define NEMC_SMCR_TAW_MASK	(0xf << NEMC_SMCR_TAW_SHIFT)
#define NEMC_SMCR_TSTRV_SHIFT	24
#define NEMC_SMCR_TSTRV_MASK	(0x3f << NEMC_SMCR_TSTRV_SHIFT)

#define NEMC_NFCSR_NFEn(n)	BIT(((n) - 1) << 1)
#define NEMC_NFCSR_NFCEn(n)	BIT((((n) - 1) << 1) + 1)
#define NEMC_NFCSR_TNFEn(n)	BIT(16 + (n) - 1)

struct jz4780_nemc {
	spinlock_t lock;
	struct device *dev;
	void __iomem *base;
	struct clk *clk;
	uint32_t clk_period;
	unsigned long banks_present;
};

/**
 * jz4780_nemc_num_banks() - count the number of banks referenced by a device
 * @dev: device to count banks for, must be a child of the NEMC.
 *
 * Return: The number of unique NEMC banks referred to by the specified NEMC
 * child device. Unique here means that a device that references the same bank
 * multiple times in the its "reg" property will only count once.
 */
unsigned int jz4780_nemc_num_banks(struct device *dev)
{
	const __be32 *prop;
	unsigned int bank, count = 0;
	unsigned long referenced = 0;
	int i = 0;

	while ((prop = of_get_address(dev->of_node, i++, NULL, NULL))) {
		bank = of_read_number(prop, 1);
		if (!(referenced & BIT(bank))) {
			referenced |= BIT(bank);
			count++;
		}
	}

	return count;
}
EXPORT_SYMBOL(jz4780_nemc_num_banks);

/**
 * jz4780_nemc_set_type() - set the type of device connected to a bank
 * @dev: child device of the NEMC.
 * @bank: bank number to configure.
 * @type: type of device connected to the bank.
 */
void jz4780_nemc_set_type(struct device *dev, unsigned int bank,
			  enum jz4780_nemc_bank_type type)
{
	struct jz4780_nemc *nemc = dev_get_drvdata(dev->parent);
	uint32_t nfcsr;

	nfcsr = readl(nemc->base + NEMC_NFCSR);

	/* TODO: Support toggle NAND devices. */
	switch (type) {
	case JZ4780_NEMC_BANK_SRAM:
		nfcsr &= ~(NEMC_NFCSR_TNFEn(bank) | NEMC_NFCSR_NFEn(bank));
		break;
	case JZ4780_NEMC_BANK_NAND:
		nfcsr &= ~NEMC_NFCSR_TNFEn(bank);
		nfcsr |= NEMC_NFCSR_NFEn(bank);
		break;
	}

	writel(nfcsr, nemc->base + NEMC_NFCSR);
}
EXPORT_SYMBOL(jz4780_nemc_set_type);

/**
 * jz4780_nemc_assert() - (de-)assert a NAND device's chip enable pin
 * @dev: child device of the NEMC.
 * @bank: bank number of device.
 * @assert: whether the chip enable pin should be asserted.
 *
 * (De-)asserts the chip enable pin for the NAND device connected to the
 * specified bank.
 */
void jz4780_nemc_assert(struct device *dev, unsigned int bank, bool assert)
{
	struct jz4780_nemc *nemc = dev_get_drvdata(dev->parent);
	uint32_t nfcsr;

	nfcsr = readl(nemc->base + NEMC_NFCSR);

	if (assert)
		nfcsr |= NEMC_NFCSR_NFCEn(bank);
	else
		nfcsr &= ~NEMC_NFCSR_NFCEn(bank);

	writel(nfcsr, nemc->base + NEMC_NFCSR);
}
EXPORT_SYMBOL(jz4780_nemc_assert);

static uint32_t jz4780_nemc_clk_period(struct jz4780_nemc *nemc)
{
	unsigned long rate;

	rate = clk_get_rate(nemc->clk);
	if (!rate)
		return 0;

	/* Return in picoseconds. */
	return div64_ul(1000000000000ull, rate);
}

static uint32_t jz4780_nemc_ns_to_cycles(struct jz4780_nemc *nemc, uint32_t ns)
{
	return ((ns * 1000) + nemc->clk_period - 1) / nemc->clk_period;
}

static bool jz4780_nemc_configure_bank(struct jz4780_nemc *nemc,
				       unsigned int bank,
				       struct device_node *node)
{
	uint32_t smcr, val, cycles;

	/*
	 * Conversion of tBP and tAW cycle counts to values supported by the
	 * hardware (round up to the next supported value).
	 */
	static const uint32_t convert_tBP_tAW[] = {
		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

		/* 11 - 12 -> 12 cycles */
		11, 11,

		/* 13 - 15 -> 15 cycles */
		12, 12, 12,

		/* 16 - 20 -> 20 cycles */
		13, 13, 13, 13, 13,

		/* 21 - 25 -> 25 cycles */
		14, 14, 14, 14, 14,

		/* 26 - 31 -> 31 cycles */
		15, 15, 15, 15, 15, 15
	};

	smcr = readl(nemc->base + NEMC_SMCRn(bank));
	smcr &= ~NEMC_SMCR_SMT;

	if (!of_property_read_u32(node, "ingenic,nemc-bus-width", &val)) {
		smcr &= ~NEMC_SMCR_BW_MASK;
		switch (val) {
		case 8:
			smcr |= NEMC_SMCR_BW_8;
			break;
		default:
			/*
			 * Earlier SoCs support a 16 bit bus width (the 4780
			 * does not), until those are properly supported, error.
			 */
			dev_err(nemc->dev, "unsupported bus width: %u\n", val);
			return false;
		}
	}

	if (of_property_read_u32(node, "ingenic,nemc-tAS", &val) == 0) {
		smcr &= ~NEMC_SMCR_TAS_MASK;
		cycles = jz4780_nemc_ns_to_cycles(nemc, val);
		if (cycles > 15) {
			dev_err(nemc->dev, "tAS %u is too high (%u cycles)\n",
				val, cycles);
			return false;
		}

		smcr |= cycles << NEMC_SMCR_TAS_SHIFT;
	}

	if (of_property_read_u32(node, "ingenic,nemc-tAH", &val) == 0) {
		smcr &= ~NEMC_SMCR_TAH_MASK;
		cycles = jz4780_nemc_ns_to_cycles(nemc, val);
		if (cycles > 15) {
			dev_err(nemc->dev, "tAH %u is too high (%u cycles)\n",
				val, cycles);
			return false;
		}

		smcr |= cycles << NEMC_SMCR_TAH_SHIFT;
	}

	if (of_property_read_u32(node, "ingenic,nemc-tBP", &val) == 0) {
		smcr &= ~NEMC_SMCR_TBP_MASK;
		cycles = jz4780_nemc_ns_to_cycles(nemc, val);
		if (cycles > 31) {
			dev_err(nemc->dev, "tBP %u is too high (%u cycles)\n",
				val, cycles);
			return false;
		}

		smcr |= convert_tBP_tAW[cycles] << NEMC_SMCR_TBP_SHIFT;
	}

	if (of_property_read_u32(node, "ingenic,nemc-tAW", &val) == 0) {
		smcr &= ~NEMC_SMCR_TAW_MASK;
		cycles = jz4780_nemc_ns_to_cycles(nemc, val);
		if (cycles > 31) {
			dev_err(nemc->dev, "tAW %u is too high (%u cycles)\n",
				val, cycles);
			return false;
		}

		smcr |= convert_tBP_tAW[cycles] << NEMC_SMCR_TAW_SHIFT;
	}

	if (of_property_read_u32(node, "ingenic,nemc-tSTRV", &val) == 0) {
		smcr &= ~NEMC_SMCR_TSTRV_MASK;
		cycles = jz4780_nemc_ns_to_cycles(nemc, val);
		if (cycles > 63) {
			dev_err(nemc->dev, "tSTRV %u is too high (%u cycles)\n",
				val, cycles);
			return false;
		}

		smcr |= cycles << NEMC_SMCR_TSTRV_SHIFT;
	}

	writel(smcr, nemc->base + NEMC_SMCRn(bank));
	return true;
}

static int jz4780_nemc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct jz4780_nemc *nemc;
	struct resource *res;
	struct device_node *child;
	const __be32 *prop;
	unsigned int bank;
	unsigned long referenced;
	int i, ret;

	nemc = devm_kzalloc(dev, sizeof(*nemc), GFP_KERNEL);
	if (!nemc)
		return -ENOMEM;

	spin_lock_init(&nemc->lock);
	nemc->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nemc->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(nemc->base)) {
		dev_err(dev, "failed to get I/O memory\n");
		return PTR_ERR(nemc->base);
	}

	writel(0, nemc->base + NEMC_NFCSR);

	nemc->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(nemc->clk)) {
		dev_err(dev, "failed to get clock\n");
		return PTR_ERR(nemc->clk);
	}

	ret = clk_prepare_enable(nemc->clk);
	if (ret) {
		dev_err(dev, "failed to enable clock: %d\n", ret);
		return ret;
	}

	nemc->clk_period = jz4780_nemc_clk_period(nemc);
	if (!nemc->clk_period) {
		dev_err(dev, "failed to calculate clock period\n");
		clk_disable_unprepare(nemc->clk);
		return -EINVAL;
	}

	/*
	 * Iterate over child devices, check that they do not conflict with
	 * each other, and register child devices for them. If a child device
	 * has invalid properties, it is ignored and no platform device is
	 * registered for it.
	 */
	for_each_child_of_node(nemc->dev->of_node, child) {
		referenced = 0;
		i = 0;
		while ((prop = of_get_address(child, i++, NULL, NULL))) {
			bank = of_read_number(prop, 1);
			if (bank < 1 || bank >= JZ4780_NEMC_NUM_BANKS) {
				dev_err(nemc->dev,
					"%s requests invalid bank %u\n",
					child->full_name, bank);

				/* Will continue the outer loop below. */
				referenced = 0;
				break;
			}

			referenced |= BIT(bank);
		}

		if (!referenced) {
			dev_err(nemc->dev, "%s has no addresses\n",
				child->full_name);
			continue;
		} else if (nemc->banks_present & referenced) {
			dev_err(nemc->dev, "%s conflicts with another node\n",
				child->full_name);
			continue;
		}

		/* Configure bank parameters. */
		for_each_set_bit(bank, &referenced, JZ4780_NEMC_NUM_BANKS) {
			if (!jz4780_nemc_configure_bank(nemc, bank, child)) {
				referenced = 0;
				break;
			}
		}

		if (referenced) {
			if (of_platform_device_create(child, NULL, nemc->dev))
				nemc->banks_present |= referenced;
		}
	}

	platform_set_drvdata(pdev, nemc);
	dev_info(dev, "JZ4780 NEMC initialised\n");
	return 0;
}

static int jz4780_nemc_remove(struct platform_device *pdev)
{
	struct jz4780_nemc *nemc = platform_get_drvdata(pdev);

	clk_disable_unprepare(nemc->clk);
	return 0;
}

static const struct of_device_id jz4780_nemc_dt_match[] = {
	{ .compatible = "ingenic,jz4780-nemc" },
	{},
};

static struct platform_driver jz4780_nemc_driver = {
	.probe		= jz4780_nemc_probe,
	.remove		= jz4780_nemc_remove,
	.driver	= {
		.name	= "jz4780-nemc",
		.of_match_table = of_match_ptr(jz4780_nemc_dt_match),
	},
};

static int __init jz4780_nemc_init(void)
{
	return platform_driver_register(&jz4780_nemc_driver);
}
subsys_initcall(jz4780_nemc_init);