Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*******************************************************************************
  This is the driver for the GMAC on-chip Ethernet controller for ST SoCs.
  DWC Ether MAC 10/100/1000 Universal version 3.41a  has been used for
  developing this code.

  This only implements the mac core functions for this chip.

  Copyright (C) 2007-2009  STMicroelectronics Ltd

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/

#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/ethtool.h>
#include <asm/io.h>
#include "stmmac_pcs.h"
#include "dwmac1000.h"

static void dwmac1000_core_init(struct mac_device_info *hw, int mtu)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value = readl(ioaddr + GMAC_CONTROL);

	/* Configure GMAC core */
	value |= GMAC_CORE_INIT;

	if (mtu > 1500)
		value |= GMAC_CONTROL_2K;
	if (mtu > 2000)
		value |= GMAC_CONTROL_JE;

	if (hw->ps) {
		value |= GMAC_CONTROL_TE;

		if (hw->ps == SPEED_1000) {
			value &= ~GMAC_CONTROL_PS;
		} else {
			value |= GMAC_CONTROL_PS;

			if (hw->ps == SPEED_10)
				value &= ~GMAC_CONTROL_FES;
			else
				value |= GMAC_CONTROL_FES;
		}
	}

	writel(value, ioaddr + GMAC_CONTROL);

	/* Mask GMAC interrupts */
	value = GMAC_INT_DEFAULT_MASK;

	if (hw->pmt)
		value &= ~GMAC_INT_DISABLE_PMT;
	if (hw->pcs)
		value &= ~GMAC_INT_DISABLE_PCS;

	writel(value, ioaddr + GMAC_INT_MASK);

#ifdef STMMAC_VLAN_TAG_USED
	/* Tag detection without filtering */
	writel(0x0, ioaddr + GMAC_VLAN_TAG);
#endif
}

static int dwmac1000_rx_ipc_enable(struct mac_device_info *hw)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value = readl(ioaddr + GMAC_CONTROL);

	if (hw->rx_csum)
		value |= GMAC_CONTROL_IPC;
	else
		value &= ~GMAC_CONTROL_IPC;

	writel(value, ioaddr + GMAC_CONTROL);

	value = readl(ioaddr + GMAC_CONTROL);

	return !!(value & GMAC_CONTROL_IPC);
}

static void dwmac1000_dump_regs(struct mac_device_info *hw)
{
	void __iomem *ioaddr = hw->pcsr;
	int i;
	pr_info("\tDWMAC1000 regs (base addr = 0x%p)\n", ioaddr);

	for (i = 0; i < 55; i++) {
		int offset = i * 4;
		pr_info("\tReg No. %d (offset 0x%x): 0x%08x\n", i,
			offset, readl(ioaddr + offset));
	}
}

static void dwmac1000_set_umac_addr(struct mac_device_info *hw,
				    unsigned char *addr,
				    unsigned int reg_n)
{
	void __iomem *ioaddr = hw->pcsr;
	stmmac_set_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n),
			    GMAC_ADDR_LOW(reg_n));
}

static void dwmac1000_get_umac_addr(struct mac_device_info *hw,
				    unsigned char *addr,
				    unsigned int reg_n)
{
	void __iomem *ioaddr = hw->pcsr;
	stmmac_get_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n),
			    GMAC_ADDR_LOW(reg_n));
}

static void dwmac1000_set_mchash(void __iomem *ioaddr, u32 *mcfilterbits,
				 int mcbitslog2)
{
	int numhashregs, regs;

	switch (mcbitslog2) {
	case 6:
		writel(mcfilterbits[0], ioaddr + GMAC_HASH_LOW);
		writel(mcfilterbits[1], ioaddr + GMAC_HASH_HIGH);
		return;
		break;
	case 7:
		numhashregs = 4;
		break;
	case 8:
		numhashregs = 8;
		break;
	default:
		pr_debug("STMMAC: err in setting multicast filter\n");
		return;
		break;
	}
	for (regs = 0; regs < numhashregs; regs++)
		writel(mcfilterbits[regs],
		       ioaddr + GMAC_EXTHASH_BASE + regs * 4);
}

static void dwmac1000_set_filter(struct mac_device_info *hw,
				 struct net_device *dev)
{
	void __iomem *ioaddr = (void __iomem *)dev->base_addr;
	unsigned int value = 0;
	unsigned int perfect_addr_number = hw->unicast_filter_entries;
	u32 mc_filter[8];
	int mcbitslog2 = hw->mcast_bits_log2;

	pr_debug("%s: # mcasts %d, # unicast %d\n", __func__,
		 netdev_mc_count(dev), netdev_uc_count(dev));

	memset(mc_filter, 0, sizeof(mc_filter));

	if (dev->flags & IFF_PROMISC) {
		value = GMAC_FRAME_FILTER_PR;
	} else if (dev->flags & IFF_ALLMULTI) {
		value = GMAC_FRAME_FILTER_PM;	/* pass all multi */
	} else if (!netdev_mc_empty(dev)) {
		struct netdev_hw_addr *ha;

		/* Hash filter for multicast */
		value = GMAC_FRAME_FILTER_HMC;

		netdev_for_each_mc_addr(ha, dev) {
			/* The upper n bits of the calculated CRC are used to
			 * index the contents of the hash table. The number of
			 * bits used depends on the hardware configuration
			 * selected at core configuration time.
			 */
			int bit_nr = bitrev32(~crc32_le(~0, ha->addr,
					      ETH_ALEN)) >>
					      (32 - mcbitslog2);
			/* The most significant bit determines the register to
			 * use (H/L) while the other 5 bits determine the bit
			 * within the register.
			 */
			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
		}
	}

	dwmac1000_set_mchash(ioaddr, mc_filter, mcbitslog2);

	/* Handle multiple unicast addresses (perfect filtering) */
	if (netdev_uc_count(dev) > perfect_addr_number)
		/* Switch to promiscuous mode if more than unicast
		 * addresses are requested than supported by hardware.
		 */
		value |= GMAC_FRAME_FILTER_PR;
	else {
		int reg = 1;
		struct netdev_hw_addr *ha;

		netdev_for_each_uc_addr(ha, dev) {
			stmmac_set_mac_addr(ioaddr, ha->addr,
					    GMAC_ADDR_HIGH(reg),
					    GMAC_ADDR_LOW(reg));
			reg++;
		}
	}

#ifdef FRAME_FILTER_DEBUG
	/* Enable Receive all mode (to debug filtering_fail errors) */
	value |= GMAC_FRAME_FILTER_RA;
#endif
	writel(value, ioaddr + GMAC_FRAME_FILTER);
}


static void dwmac1000_flow_ctrl(struct mac_device_info *hw, unsigned int duplex,
				unsigned int fc, unsigned int pause_time)
{
	void __iomem *ioaddr = hw->pcsr;
	/* Set flow such that DZPQ in Mac Register 6 is 0,
	 * and unicast pause detect is enabled.
	 */
	unsigned int flow = GMAC_FLOW_CTRL_UP;

	pr_debug("GMAC Flow-Control:\n");
	if (fc & FLOW_RX) {
		pr_debug("\tReceive Flow-Control ON\n");
		flow |= GMAC_FLOW_CTRL_RFE;
	}
	if (fc & FLOW_TX) {
		pr_debug("\tTransmit Flow-Control ON\n");
		flow |= GMAC_FLOW_CTRL_TFE;
	}

	if (duplex) {
		pr_debug("\tduplex mode: PAUSE %d\n", pause_time);
		flow |= (pause_time << GMAC_FLOW_CTRL_PT_SHIFT);
	}

	writel(flow, ioaddr + GMAC_FLOW_CTRL);
}

static void dwmac1000_pmt(struct mac_device_info *hw, unsigned long mode)
{
	void __iomem *ioaddr = hw->pcsr;
	unsigned int pmt = 0;

	if (mode & WAKE_MAGIC) {
		pr_debug("GMAC: WOL Magic frame\n");
		pmt |= power_down | magic_pkt_en;
	}
	if (mode & WAKE_UCAST) {
		pr_debug("GMAC: WOL on global unicast\n");
		pmt |= power_down | global_unicast | wake_up_frame_en;
	}

	writel(pmt, ioaddr + GMAC_PMT);
}

/* RGMII or SMII interface */
static void dwmac1000_rgsmii(void __iomem *ioaddr, struct stmmac_extra_stats *x)
{
	u32 status;

	status = readl(ioaddr + GMAC_RGSMIIIS);
	x->irq_rgmii_n++;

	/* Check the link status */
	if (status & GMAC_RGSMIIIS_LNKSTS) {
		int speed_value;

		x->pcs_link = 1;

		speed_value = ((status & GMAC_RGSMIIIS_SPEED) >>
			       GMAC_RGSMIIIS_SPEED_SHIFT);
		if (speed_value == GMAC_RGSMIIIS_SPEED_125)
			x->pcs_speed = SPEED_1000;
		else if (speed_value == GMAC_RGSMIIIS_SPEED_25)
			x->pcs_speed = SPEED_100;
		else
			x->pcs_speed = SPEED_10;

		x->pcs_duplex = (status & GMAC_RGSMIIIS_LNKMOD_MASK);

		pr_info("Link is Up - %d/%s\n", (int)x->pcs_speed,
			x->pcs_duplex ? "Full" : "Half");
	} else {
		x->pcs_link = 0;
		pr_info("Link is Down\n");
	}
}

static int dwmac1000_irq_status(struct mac_device_info *hw,
				struct stmmac_extra_stats *x)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 intr_status = readl(ioaddr + GMAC_INT_STATUS);
	u32 intr_mask = readl(ioaddr + GMAC_INT_MASK);
	int ret = 0;

	/* Discard masked bits */
	intr_status &= ~intr_mask;

	/* Not used events (e.g. MMC interrupts) are not handled. */
	if ((intr_status & GMAC_INT_STATUS_MMCTIS))
		x->mmc_tx_irq_n++;
	if (unlikely(intr_status & GMAC_INT_STATUS_MMCRIS))
		x->mmc_rx_irq_n++;
	if (unlikely(intr_status & GMAC_INT_STATUS_MMCCSUM))
		x->mmc_rx_csum_offload_irq_n++;
	if (unlikely(intr_status & GMAC_INT_DISABLE_PMT)) {
		/* clear the PMT bits 5 and 6 by reading the PMT status reg */
		readl(ioaddr + GMAC_PMT);
		x->irq_receive_pmt_irq_n++;
	}

	/* MAC tx/rx EEE LPI entry/exit interrupts */
	if (intr_status & GMAC_INT_STATUS_LPIIS) {
		/* Clean LPI interrupt by reading the Reg 12 */
		ret = readl(ioaddr + LPI_CTRL_STATUS);

		if (ret & LPI_CTRL_STATUS_TLPIEN)
			x->irq_tx_path_in_lpi_mode_n++;
		if (ret & LPI_CTRL_STATUS_TLPIEX)
			x->irq_tx_path_exit_lpi_mode_n++;
		if (ret & LPI_CTRL_STATUS_RLPIEN)
			x->irq_rx_path_in_lpi_mode_n++;
		if (ret & LPI_CTRL_STATUS_RLPIEX)
			x->irq_rx_path_exit_lpi_mode_n++;
	}

	dwmac_pcs_isr(ioaddr, GMAC_PCS_BASE, intr_status, x);

	if (intr_status & PCS_RGSMIIIS_IRQ)
		dwmac1000_rgsmii(ioaddr, x);

	return ret;
}

static void dwmac1000_set_eee_mode(struct mac_device_info *hw)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value;

	/* Enable the link status receive on RGMII, SGMII ore SMII
	 * receive path and instruct the transmit to enter in LPI
	 * state.
	 */
	value = readl(ioaddr + LPI_CTRL_STATUS);
	value |= LPI_CTRL_STATUS_LPIEN | LPI_CTRL_STATUS_LPITXA;
	writel(value, ioaddr + LPI_CTRL_STATUS);
}

static void dwmac1000_reset_eee_mode(struct mac_device_info *hw)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value;

	value = readl(ioaddr + LPI_CTRL_STATUS);
	value &= ~(LPI_CTRL_STATUS_LPIEN | LPI_CTRL_STATUS_LPITXA);
	writel(value, ioaddr + LPI_CTRL_STATUS);
}

static void dwmac1000_set_eee_pls(struct mac_device_info *hw, int link)
{
	void __iomem *ioaddr = hw->pcsr;
	u32 value;

	value = readl(ioaddr + LPI_CTRL_STATUS);

	if (link)
		value |= LPI_CTRL_STATUS_PLS;
	else
		value &= ~LPI_CTRL_STATUS_PLS;

	writel(value, ioaddr + LPI_CTRL_STATUS);
}

static void dwmac1000_set_eee_timer(struct mac_device_info *hw, int ls, int tw)
{
	void __iomem *ioaddr = hw->pcsr;
	int value = ((tw & 0xffff)) | ((ls & 0x7ff) << 16);

	/* Program the timers in the LPI timer control register:
	 * LS: minimum time (ms) for which the link
	 *  status from PHY should be ok before transmitting
	 *  the LPI pattern.
	 * TW: minimum time (us) for which the core waits
	 *  after it has stopped transmitting the LPI pattern.
	 */
	writel(value, ioaddr + LPI_TIMER_CTRL);
}

static void dwmac1000_ctrl_ane(void __iomem *ioaddr, bool ane, bool srgmi_ral,
			       bool loopback)
{
	dwmac_ctrl_ane(ioaddr, GMAC_PCS_BASE, ane, srgmi_ral, loopback);
}

static void dwmac1000_rane(void __iomem *ioaddr, bool restart)
{
	dwmac_rane(ioaddr, GMAC_PCS_BASE, restart);
}

static void dwmac1000_get_adv_lp(void __iomem *ioaddr, struct rgmii_adv *adv)
{
	dwmac_get_adv_lp(ioaddr, GMAC_PCS_BASE, adv);
}

static void dwmac1000_debug(void __iomem *ioaddr, struct stmmac_extra_stats *x)
{
	u32 value = readl(ioaddr + GMAC_DEBUG);

	if (value & GMAC_DEBUG_TXSTSFSTS)
		x->mtl_tx_status_fifo_full++;
	if (value & GMAC_DEBUG_TXFSTS)
		x->mtl_tx_fifo_not_empty++;
	if (value & GMAC_DEBUG_TWCSTS)
		x->mmtl_fifo_ctrl++;
	if (value & GMAC_DEBUG_TRCSTS_MASK) {
		u32 trcsts = (value & GMAC_DEBUG_TRCSTS_MASK)
			     >> GMAC_DEBUG_TRCSTS_SHIFT;
		if (trcsts == GMAC_DEBUG_TRCSTS_WRITE)
			x->mtl_tx_fifo_read_ctrl_write++;
		else if (trcsts == GMAC_DEBUG_TRCSTS_TXW)
			x->mtl_tx_fifo_read_ctrl_wait++;
		else if (trcsts == GMAC_DEBUG_TRCSTS_READ)
			x->mtl_tx_fifo_read_ctrl_read++;
		else
			x->mtl_tx_fifo_read_ctrl_idle++;
	}
	if (value & GMAC_DEBUG_TXPAUSED)
		x->mac_tx_in_pause++;
	if (value & GMAC_DEBUG_TFCSTS_MASK) {
		u32 tfcsts = (value & GMAC_DEBUG_TFCSTS_MASK)
			      >> GMAC_DEBUG_TFCSTS_SHIFT;

		if (tfcsts == GMAC_DEBUG_TFCSTS_XFER)
			x->mac_tx_frame_ctrl_xfer++;
		else if (tfcsts == GMAC_DEBUG_TFCSTS_GEN_PAUSE)
			x->mac_tx_frame_ctrl_pause++;
		else if (tfcsts == GMAC_DEBUG_TFCSTS_WAIT)
			x->mac_tx_frame_ctrl_wait++;
		else
			x->mac_tx_frame_ctrl_idle++;
	}
	if (value & GMAC_DEBUG_TPESTS)
		x->mac_gmii_tx_proto_engine++;
	if (value & GMAC_DEBUG_RXFSTS_MASK) {
		u32 rxfsts = (value & GMAC_DEBUG_RXFSTS_MASK)
			     >> GMAC_DEBUG_RRCSTS_SHIFT;

		if (rxfsts == GMAC_DEBUG_RXFSTS_FULL)
			x->mtl_rx_fifo_fill_level_full++;
		else if (rxfsts == GMAC_DEBUG_RXFSTS_AT)
			x->mtl_rx_fifo_fill_above_thresh++;
		else if (rxfsts == GMAC_DEBUG_RXFSTS_BT)
			x->mtl_rx_fifo_fill_below_thresh++;
		else
			x->mtl_rx_fifo_fill_level_empty++;
	}
	if (value & GMAC_DEBUG_RRCSTS_MASK) {
		u32 rrcsts = (value & GMAC_DEBUG_RRCSTS_MASK) >>
			     GMAC_DEBUG_RRCSTS_SHIFT;

		if (rrcsts == GMAC_DEBUG_RRCSTS_FLUSH)
			x->mtl_rx_fifo_read_ctrl_flush++;
		else if (rrcsts == GMAC_DEBUG_RRCSTS_RSTAT)
			x->mtl_rx_fifo_read_ctrl_read_data++;
		else if (rrcsts == GMAC_DEBUG_RRCSTS_RDATA)
			x->mtl_rx_fifo_read_ctrl_status++;
		else
			x->mtl_rx_fifo_read_ctrl_idle++;
	}
	if (value & GMAC_DEBUG_RWCSTS)
		x->mtl_rx_fifo_ctrl_active++;
	if (value & GMAC_DEBUG_RFCFCSTS_MASK)
		x->mac_rx_frame_ctrl_fifo = (value & GMAC_DEBUG_RFCFCSTS_MASK)
					    >> GMAC_DEBUG_RFCFCSTS_SHIFT;
	if (value & GMAC_DEBUG_RPESTS)
		x->mac_gmii_rx_proto_engine++;
}

static const struct stmmac_ops dwmac1000_ops = {
	.core_init = dwmac1000_core_init,
	.rx_ipc = dwmac1000_rx_ipc_enable,
	.dump_regs = dwmac1000_dump_regs,
	.host_irq_status = dwmac1000_irq_status,
	.set_filter = dwmac1000_set_filter,
	.flow_ctrl = dwmac1000_flow_ctrl,
	.pmt = dwmac1000_pmt,
	.set_umac_addr = dwmac1000_set_umac_addr,
	.get_umac_addr = dwmac1000_get_umac_addr,
	.set_eee_mode = dwmac1000_set_eee_mode,
	.reset_eee_mode = dwmac1000_reset_eee_mode,
	.set_eee_timer = dwmac1000_set_eee_timer,
	.set_eee_pls = dwmac1000_set_eee_pls,
	.debug = dwmac1000_debug,
	.pcs_ctrl_ane = dwmac1000_ctrl_ane,
	.pcs_rane = dwmac1000_rane,
	.pcs_get_adv_lp = dwmac1000_get_adv_lp,
};

struct mac_device_info *dwmac1000_setup(void __iomem *ioaddr, int mcbins,
					int perfect_uc_entries,
					int *synopsys_id)
{
	struct mac_device_info *mac;
	u32 hwid = readl(ioaddr + GMAC_VERSION);

	mac = kzalloc(sizeof(const struct mac_device_info), GFP_KERNEL);
	if (!mac)
		return NULL;

	mac->pcsr = ioaddr;
	mac->multicast_filter_bins = mcbins;
	mac->unicast_filter_entries = perfect_uc_entries;
	mac->mcast_bits_log2 = 0;

	if (mac->multicast_filter_bins)
		mac->mcast_bits_log2 = ilog2(mac->multicast_filter_bins);

	mac->mac = &dwmac1000_ops;
	mac->dma = &dwmac1000_dma_ops;

	mac->link.port = GMAC_CONTROL_PS;
	mac->link.duplex = GMAC_CONTROL_DM;
	mac->link.speed = GMAC_CONTROL_FES;
	mac->mii.addr = GMAC_MII_ADDR;
	mac->mii.data = GMAC_MII_DATA;
	mac->mii.addr_shift = 11;
	mac->mii.addr_mask = 0x0000F800;
	mac->mii.reg_shift = 6;
	mac->mii.reg_mask = 0x000007C0;
	mac->mii.clk_csr_shift = 2;
	mac->mii.clk_csr_mask = GENMASK(5, 2);

	/* Get and dump the chip ID */
	*synopsys_id = stmmac_get_synopsys_id(hwid);

	return mac;
}