Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * I/O Processor (IOP) management
 * Written and (C) 1999 by Joshua M. Thompson (funaho@jurai.org)
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice and this list of conditions.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice and this list of conditions in the documentation and/or other
 *    materials provided with the distribution.
 */

/*
 * The IOP chips are used in the IIfx and some Quadras (900, 950) to manage
 * serial and ADB. They are actually a 6502 processor and some glue logic.
 *
 * 990429 (jmt) - Initial implementation, just enough to knock the SCC IOP
 *		  into compatible mode so nobody has to fiddle with the
 *		  Serial Switch control panel anymore.
 * 990603 (jmt) - Added code to grab the correct ISM IOP interrupt for OSS
 *		  and non-OSS machines (at least I hope it's correct on a
 *		  non-OSS machine -- someone with a Q900 or Q950 needs to
 *		  check this.)
 * 990605 (jmt) - Rearranged things a bit wrt IOP detection; iop_present is
 *		  gone, IOP base addresses are now in an array and the
 *		  globally-visible functions take an IOP number instead of an
 *		  an actual base address.
 * 990610 (jmt) - Finished the message passing framework and it seems to work.
 *		  Sending _definitely_ works; my adb-bus.c mods can send
 *		  messages and receive the MSG_COMPLETED status back from the
 *		  IOP. The trick now is figuring out the message formats.
 * 990611 (jmt) - More cleanups. Fixed problem where unclaimed messages on a
 *		  receive channel were never properly acknowledged. Bracketed
 *		  the remaining debug printk's with #ifdef's and disabled
 *		  debugging. I can now type on the console.
 * 990612 (jmt) - Copyright notice added. Reworked the way replies are handled.
 *		  It turns out that replies are placed back in the send buffer
 *		  for that channel; messages on the receive channels are always
 *		  unsolicited messages from the IOP (and our replies to them
 *		  should go back in the receive channel.) Also added tracking
 *		  of device names to the listener functions ala the interrupt
 *		  handlers.
 * 990729 (jmt) - Added passing of pt_regs structure to IOP handlers. This is
 *		  used by the new unified ADB driver.
 *
 * TODO:
 *
 * o Something should be periodically checking iop_alive() to make sure the
 *   IOP hasn't died.
 * o Some of the IOP manager routines need better error checking and
 *   return codes. Nothing major, just prettying up.
 */

/*
 * -----------------------
 * IOP Message Passing 101
 * -----------------------
 *
 * The host talks to the IOPs using a rather simple message-passing scheme via
 * a shared memory area in the IOP RAM. Each IOP has seven "channels"; each
 * channel is connected to a specific software driver on the IOP. For example
 * on the SCC IOP there is one channel for each serial port. Each channel has
 * an incoming and and outgoing message queue with a depth of one.
 *
 * A message is 32 bytes plus a state byte for the channel (MSG_IDLE, MSG_NEW,
 * MSG_RCVD, MSG_COMPLETE). To send a message you copy the message into the
 * buffer, set the state to MSG_NEW and signal the IOP by setting the IRQ flag
 * in the IOP control to 1. The IOP will move the state to MSG_RCVD when it
 * receives the message and then to MSG_COMPLETE when the message processing
 * has completed. It is the host's responsibility at that point to read the
 * reply back out of the send channel buffer and reset the channel state back
 * to MSG_IDLE.
 *
 * To receive message from the IOP the same procedure is used except the roles
 * are reversed. That is, the IOP puts message in the channel with a state of
 * MSG_NEW, and the host receives the message and move its state to MSG_RCVD
 * and then to MSG_COMPLETE when processing is completed and the reply (if any)
 * has been placed back in the receive channel. The IOP will then reset the
 * channel state to MSG_IDLE.
 *
 * Two sets of host interrupts are provided, INT0 and INT1. Both appear on one
 * interrupt level; they are distinguished by a pair of bits in the IOP status
 * register. The IOP will raise INT0 when one or more messages in the send
 * channels have gone to the MSG_COMPLETE state and it will raise INT1 when one
 * or more messages on the receive channels have gone to the MSG_NEW state.
 *
 * Since each channel handles only one message we have to implement a small
 * interrupt-driven queue on our end. Messages to be sent are placed on the
 * queue for sending and contain a pointer to an optional callback function.
 * The handler for a message is called when the message state goes to
 * MSG_COMPLETE.
 *
 * For receiving message we maintain a list of handler functions to call when
 * a message is received on that IOP/channel combination. The handlers are
 * called much like an interrupt handler and are passed a copy of the message
 * from the IOP. The message state will be in MSG_RCVD while the handler runs;
 * it is the handler's responsibility to call iop_complete_message() when
 * finished; this function moves the message state to MSG_COMPLETE and signals
 * the IOP. This two-step process is provided to allow the handler to defer
 * message processing to a bottom-half handler if the processing will take
 * a significant amount of time (handlers are called at interrupt time so they
 * should execute quickly.)
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>

#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_iop.h>

/*#define DEBUG_IOP*/

/* Non-zero if the IOPs are present */

int iop_scc_present, iop_ism_present;

/* structure for tracking channel listeners */

struct listener {
	const char *devname;
	void (*handler)(struct iop_msg *);
};

/*
 * IOP structures for the two IOPs
 *
 * The SCC IOP controls both serial ports (A and B) as its two functions.
 * The ISM IOP controls the SWIM (floppy drive) and ADB.
 */

static volatile struct mac_iop *iop_base[NUM_IOPS];

/*
 * IOP message queues
 */

static struct iop_msg iop_msg_pool[NUM_IOP_MSGS];
static struct iop_msg *iop_send_queue[NUM_IOPS][NUM_IOP_CHAN];
static struct listener iop_listeners[NUM_IOPS][NUM_IOP_CHAN];

irqreturn_t iop_ism_irq(int, void *);

/*
 * Private access functions
 */

static __inline__ void iop_loadaddr(volatile struct mac_iop *iop, __u16 addr)
{
	iop->ram_addr_lo = addr;
	iop->ram_addr_hi = addr >> 8;
}

static __inline__ __u8 iop_readb(volatile struct mac_iop *iop, __u16 addr)
{
	iop->ram_addr_lo = addr;
	iop->ram_addr_hi = addr >> 8;
	return iop->ram_data;
}

static __inline__ void iop_writeb(volatile struct mac_iop *iop, __u16 addr, __u8 data)
{
	iop->ram_addr_lo = addr;
	iop->ram_addr_hi = addr >> 8;
	iop->ram_data = data;
}

static __inline__ void iop_stop(volatile struct mac_iop *iop)
{
	iop->status_ctrl &= ~IOP_RUN;
}

static __inline__ void iop_start(volatile struct mac_iop *iop)
{
	iop->status_ctrl = IOP_RUN | IOP_AUTOINC;
}

static __inline__ void iop_bypass(volatile struct mac_iop *iop)
{
	iop->status_ctrl |= IOP_BYPASS;
}

static __inline__ void iop_interrupt(volatile struct mac_iop *iop)
{
	iop->status_ctrl |= IOP_IRQ;
}

static int iop_alive(volatile struct mac_iop *iop)
{
	int retval;

	retval = (iop_readb(iop, IOP_ADDR_ALIVE) == 0xFF);
	iop_writeb(iop, IOP_ADDR_ALIVE, 0);
	return retval;
}

static struct iop_msg *iop_alloc_msg(void)
{
	int i;
	unsigned long flags;

	local_irq_save(flags);

	for (i = 0 ; i < NUM_IOP_MSGS ; i++) {
		if (iop_msg_pool[i].status == IOP_MSGSTATUS_UNUSED) {
			iop_msg_pool[i].status = IOP_MSGSTATUS_WAITING;
			local_irq_restore(flags);
			return &iop_msg_pool[i];
		}
	}

	local_irq_restore(flags);
	return NULL;
}

static void iop_free_msg(struct iop_msg *msg)
{
	msg->status = IOP_MSGSTATUS_UNUSED;
}

/*
 * This is called by the startup code before anything else. Its purpose
 * is to find and initialize the IOPs early in the boot sequence, so that
 * the serial IOP can be placed into bypass mode _before_ we try to
 * initialize the serial console.
 */

void __init iop_preinit(void)
{
	if (macintosh_config->scc_type == MAC_SCC_IOP) {
		if (macintosh_config->ident == MAC_MODEL_IIFX) {
			iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_IIFX;
		} else {
			iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_QUADRA;
		}
		iop_base[IOP_NUM_SCC]->status_ctrl = 0x87;
		iop_scc_present = 1;
	} else {
		iop_base[IOP_NUM_SCC] = NULL;
		iop_scc_present = 0;
	}
	if (macintosh_config->adb_type == MAC_ADB_IOP) {
		if (macintosh_config->ident == MAC_MODEL_IIFX) {
			iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_IIFX;
		} else {
			iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_QUADRA;
		}
		iop_base[IOP_NUM_ISM]->status_ctrl = 0;
		iop_ism_present = 1;
	} else {
		iop_base[IOP_NUM_ISM] = NULL;
		iop_ism_present = 0;
	}
}

/*
 * Initialize the IOPs, if present.
 */

void __init iop_init(void)
{
	int i;

	if (iop_scc_present) {
		printk("IOP: detected SCC IOP at %p\n", iop_base[IOP_NUM_SCC]);
	}
	if (iop_ism_present) {
		printk("IOP: detected ISM IOP at %p\n", iop_base[IOP_NUM_ISM]);
		iop_start(iop_base[IOP_NUM_ISM]);
		iop_alive(iop_base[IOP_NUM_ISM]); /* clears the alive flag */
	}

	/* Make the whole pool available and empty the queues */

	for (i = 0 ; i < NUM_IOP_MSGS ; i++) {
		iop_msg_pool[i].status = IOP_MSGSTATUS_UNUSED;
	}

	for (i = 0 ; i < NUM_IOP_CHAN ; i++) {
		iop_send_queue[IOP_NUM_SCC][i] = NULL;
		iop_send_queue[IOP_NUM_ISM][i] = NULL;
		iop_listeners[IOP_NUM_SCC][i].devname = NULL;
		iop_listeners[IOP_NUM_SCC][i].handler = NULL;
		iop_listeners[IOP_NUM_ISM][i].devname = NULL;
		iop_listeners[IOP_NUM_ISM][i].handler = NULL;
	}
}

/*
 * Register the interrupt handler for the IOPs.
 * TODO: might be wrong for non-OSS machines. Anyone?
 */

void __init iop_register_interrupts(void)
{
	if (iop_ism_present) {
		if (macintosh_config->ident == MAC_MODEL_IIFX) {
			if (request_irq(IRQ_MAC_ADB, iop_ism_irq, 0,
					"ISM IOP", (void *)IOP_NUM_ISM))
				pr_err("Couldn't register ISM IOP interrupt\n");
		} else {
			if (request_irq(IRQ_VIA2_0, iop_ism_irq, 0, "ISM IOP",
					(void *)IOP_NUM_ISM))
				pr_err("Couldn't register ISM IOP interrupt\n");
		}
		if (!iop_alive(iop_base[IOP_NUM_ISM])) {
			printk("IOP: oh my god, they killed the ISM IOP!\n");
		} else {
			printk("IOP: the ISM IOP seems to be alive.\n");
		}
	}
}

/*
 * Register or unregister a listener for a specific IOP and channel
 *
 * If the handler pointer is NULL the current listener (if any) is
 * unregistered. Otherwise the new listener is registered provided
 * there is no existing listener registered.
 */

int iop_listen(uint iop_num, uint chan,
		void (*handler)(struct iop_msg *),
		const char *devname)
{
	if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL;
	if (chan >= NUM_IOP_CHAN) return -EINVAL;
	if (iop_listeners[iop_num][chan].handler && handler) return -EINVAL;
	iop_listeners[iop_num][chan].devname = devname;
	iop_listeners[iop_num][chan].handler = handler;
	return 0;
}

/*
 * Complete reception of a message, which just means copying the reply
 * into the buffer, setting the channel state to MSG_COMPLETE and
 * notifying the IOP.
 */

void iop_complete_message(struct iop_msg *msg)
{
	int iop_num = msg->iop_num;
	int chan = msg->channel;
	int i,offset;

#ifdef DEBUG_IOP
	printk("iop_complete(%p): iop %d chan %d\n", msg, msg->iop_num, msg->channel);
#endif

	offset = IOP_ADDR_RECV_MSG + (msg->channel * IOP_MSG_LEN);

	for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
		iop_writeb(iop_base[iop_num], offset, msg->reply[i]);
	}

	iop_writeb(iop_base[iop_num],
		   IOP_ADDR_RECV_STATE + chan, IOP_MSG_COMPLETE);
	iop_interrupt(iop_base[msg->iop_num]);

	iop_free_msg(msg);
}

/*
 * Actually put a message into a send channel buffer
 */

static void iop_do_send(struct iop_msg *msg)
{
	volatile struct mac_iop *iop = iop_base[msg->iop_num];
	int i,offset;

	offset = IOP_ADDR_SEND_MSG + (msg->channel * IOP_MSG_LEN);

	for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
		iop_writeb(iop, offset, msg->message[i]);
	}

	iop_writeb(iop, IOP_ADDR_SEND_STATE + msg->channel, IOP_MSG_NEW);

	iop_interrupt(iop);
}

/*
 * Handle sending a message on a channel that
 * has gone into the IOP_MSG_COMPLETE state.
 */

static void iop_handle_send(uint iop_num, uint chan)
{
	volatile struct mac_iop *iop = iop_base[iop_num];
	struct iop_msg *msg,*msg2;
	int i,offset;

#ifdef DEBUG_IOP
	printk("iop_handle_send: iop %d channel %d\n", iop_num, chan);
#endif

	iop_writeb(iop, IOP_ADDR_SEND_STATE + chan, IOP_MSG_IDLE);

	if (!(msg = iop_send_queue[iop_num][chan])) return;

	msg->status = IOP_MSGSTATUS_COMPLETE;
	offset = IOP_ADDR_SEND_MSG + (chan * IOP_MSG_LEN);
	for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
		msg->reply[i] = iop_readb(iop, offset);
	}
	if (msg->handler) (*msg->handler)(msg);
	msg2 = msg;
	msg = msg->next;
	iop_free_msg(msg2);

	iop_send_queue[iop_num][chan] = msg;
	if (msg) iop_do_send(msg);
}

/*
 * Handle reception of a message on a channel that has
 * gone into the IOP_MSG_NEW state.
 */

static void iop_handle_recv(uint iop_num, uint chan)
{
	volatile struct mac_iop *iop = iop_base[iop_num];
	int i,offset;
	struct iop_msg *msg;

#ifdef DEBUG_IOP
	printk("iop_handle_recv: iop %d channel %d\n", iop_num, chan);
#endif

	msg = iop_alloc_msg();
	msg->iop_num = iop_num;
	msg->channel = chan;
	msg->status = IOP_MSGSTATUS_UNSOL;
	msg->handler = iop_listeners[iop_num][chan].handler;

	offset = IOP_ADDR_RECV_MSG + (chan * IOP_MSG_LEN);

	for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
		msg->message[i] = iop_readb(iop, offset);
	}

	iop_writeb(iop, IOP_ADDR_RECV_STATE + chan, IOP_MSG_RCVD);

	/* If there is a listener, call it now. Otherwise complete */
	/* the message ourselves to avoid possible stalls.         */

	if (msg->handler) {
		(*msg->handler)(msg);
	} else {
#ifdef DEBUG_IOP
		printk("iop_handle_recv: unclaimed message on iop %d channel %d\n", iop_num, chan);
		printk("iop_handle_recv:");
		for (i = 0 ; i < IOP_MSG_LEN ; i++) {
			printk(" %02X", (uint) msg->message[i]);
		}
		printk("\n");
#endif
		iop_complete_message(msg);
	}
}

/*
 * Send a message
 *
 * The message is placed at the end of the send queue. Afterwards if the
 * channel is idle we force an immediate send of the next message in the
 * queue.
 */

int iop_send_message(uint iop_num, uint chan, void *privdata,
		      uint msg_len, __u8 *msg_data,
		      void (*handler)(struct iop_msg *))
{
	struct iop_msg *msg, *q;

	if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL;
	if (chan >= NUM_IOP_CHAN) return -EINVAL;
	if (msg_len > IOP_MSG_LEN) return -EINVAL;

	msg = iop_alloc_msg();
	if (!msg) return -ENOMEM;

	msg->next = NULL;
	msg->status = IOP_MSGSTATUS_WAITING;
	msg->iop_num = iop_num;
	msg->channel = chan;
	msg->caller_priv = privdata;
	memcpy(msg->message, msg_data, msg_len);
	msg->handler = handler;

	if (!(q = iop_send_queue[iop_num][chan])) {
		iop_send_queue[iop_num][chan] = msg;
	} else {
		while (q->next) q = q->next;
		q->next = msg;
	}

	if (iop_readb(iop_base[iop_num],
	    IOP_ADDR_SEND_STATE + chan) == IOP_MSG_IDLE) {
		iop_do_send(msg);
	}

	return 0;
}

/*
 * Upload code to the shared RAM of an IOP.
 */

void iop_upload_code(uint iop_num, __u8 *code_start,
		     uint code_len, __u16 shared_ram_start)
{
	if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return;

	iop_loadaddr(iop_base[iop_num], shared_ram_start);

	while (code_len--) {
		iop_base[iop_num]->ram_data = *code_start++;
	}
}

/*
 * Download code from the shared RAM of an IOP.
 */

void iop_download_code(uint iop_num, __u8 *code_start,
		       uint code_len, __u16 shared_ram_start)
{
	if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return;

	iop_loadaddr(iop_base[iop_num], shared_ram_start);

	while (code_len--) {
		*code_start++ = iop_base[iop_num]->ram_data;
	}
}

/*
 * Compare the code in the shared RAM of an IOP with a copy in system memory
 * and return 0 on match or the first nonmatching system memory address on
 * failure.
 */

__u8 *iop_compare_code(uint iop_num, __u8 *code_start,
		       uint code_len, __u16 shared_ram_start)
{
	if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return code_start;

	iop_loadaddr(iop_base[iop_num], shared_ram_start);

	while (code_len--) {
		if (*code_start != iop_base[iop_num]->ram_data) {
			return code_start;
		}
		code_start++;
	}
	return (__u8 *) 0;
}

/*
 * Handle an ISM IOP interrupt
 */

irqreturn_t iop_ism_irq(int irq, void *dev_id)
{
	uint iop_num = (uint) dev_id;
	volatile struct mac_iop *iop = iop_base[iop_num];
	int i,state;

#ifdef DEBUG_IOP
	printk("iop_ism_irq: status = %02X\n", (uint) iop->status_ctrl);
#endif

	/* INT0 indicates a state change on an outgoing message channel */

	if (iop->status_ctrl & IOP_INT0) {
		iop->status_ctrl = IOP_INT0 | IOP_RUN | IOP_AUTOINC;
#ifdef DEBUG_IOP
		printk("iop_ism_irq: new status = %02X, send states",
			(uint) iop->status_ctrl);
#endif
		for (i = 0 ; i < NUM_IOP_CHAN  ; i++) {
			state = iop_readb(iop, IOP_ADDR_SEND_STATE + i);
#ifdef DEBUG_IOP
			printk(" %02X", state);
#endif
			if (state == IOP_MSG_COMPLETE) {
				iop_handle_send(iop_num, i);
			}
		}
#ifdef DEBUG_IOP
		printk("\n");
#endif
	}

	if (iop->status_ctrl & IOP_INT1) {	/* INT1 for incoming msgs */
		iop->status_ctrl = IOP_INT1 | IOP_RUN | IOP_AUTOINC;
#ifdef DEBUG_IOP
		printk("iop_ism_irq: new status = %02X, recv states",
			(uint) iop->status_ctrl);
#endif
		for (i = 0 ; i < NUM_IOP_CHAN ; i++) {
			state = iop_readb(iop, IOP_ADDR_RECV_STATE + i);
#ifdef DEBUG_IOP
			printk(" %02X", state);
#endif
			if (state == IOP_MSG_NEW) {
				iop_handle_recv(iop_num, i);
			}
		}
#ifdef DEBUG_IOP
		printk("\n");
#endif
	}
	return IRQ_HANDLED;
}