Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

/**
 * NetIO interface structures and macros.
 */

#ifndef __NETIO_INTF_H__
#define __NETIO_INTF_H__

#include <hv/netio_errors.h>

#ifdef __KERNEL__
#include <linux/types.h>
#else
#include <stdint.h>
#endif

#if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__)
#include <assert.h>
#define netio_assert assert  /**< Enable assertions from macros */
#else
#define netio_assert(...) ((void)(0))  /**< Disable assertions from macros */
#endif

/*
 * If none of these symbols are defined, we're building libnetio in an
 * environment where we have pthreads, so we'll enable locking.
 */
#if !defined(__HV__) && !defined(__BOGUX__) && !defined(__KERNEL__) && \
    !defined(__NEWLIB__)
#define _NETIO_PTHREAD       /**< Include a mutex in netio_queue_t below */

/*
 * If NETIO_UNLOCKED is defined, we don't do use per-cpu locks on
 * per-packet NetIO operations.  We still do pthread locking on things
 * like netio_input_register, though.  This is used for building
 * libnetio_unlocked.
 */
#ifndef NETIO_UNLOCKED

/* Avoid PLT overhead by using our own inlined per-cpu lock. */
#include <sched.h>
typedef int _netio_percpu_mutex_t;

static __inline int
_netio_percpu_mutex_init(_netio_percpu_mutex_t* lock)
{
  *lock = 0;
  return 0;
}

static __inline int
_netio_percpu_mutex_lock(_netio_percpu_mutex_t* lock)
{
  while (__builtin_expect(__insn_tns(lock), 0))
    sched_yield();
  return 0;
}

static __inline int
_netio_percpu_mutex_unlock(_netio_percpu_mutex_t* lock)
{
  *lock = 0;
  return 0;
}

#else /* NETIO_UNLOCKED */

/* Don't do any locking for per-packet NetIO operations. */
typedef int _netio_percpu_mutex_t;
#define _netio_percpu_mutex_init(L)
#define _netio_percpu_mutex_lock(L)
#define _netio_percpu_mutex_unlock(L)

#endif /* NETIO_UNLOCKED */
#endif /* !__HV__, !__BOGUX, !__KERNEL__, !__NEWLIB__ */

/** How many tiles can register for a given queue.
 *  @ingroup setup */
#define NETIO_MAX_TILES_PER_QUEUE  64


/** Largest permissible queue identifier.
 *  @ingroup setup  */
#define NETIO_MAX_QUEUE_ID        255


#ifndef __DOXYGEN__

/* Metadata packet checksum/ethertype flags. */

/** The L4 checksum has not been calculated. */
#define _NETIO_PKT_NO_L4_CSUM_SHIFT           0
#define _NETIO_PKT_NO_L4_CSUM_RMASK           1
#define _NETIO_PKT_NO_L4_CSUM_MASK \
         (_NETIO_PKT_NO_L4_CSUM_RMASK << _NETIO_PKT_NO_L4_CSUM_SHIFT)

/** The L3 checksum has not been calculated. */
#define _NETIO_PKT_NO_L3_CSUM_SHIFT           1
#define _NETIO_PKT_NO_L3_CSUM_RMASK           1
#define _NETIO_PKT_NO_L3_CSUM_MASK \
         (_NETIO_PKT_NO_L3_CSUM_RMASK << _NETIO_PKT_NO_L3_CSUM_SHIFT)

/** The L3 checksum is incorrect (or perhaps has not been calculated). */
#define _NETIO_PKT_BAD_L3_CSUM_SHIFT          2
#define _NETIO_PKT_BAD_L3_CSUM_RMASK          1
#define _NETIO_PKT_BAD_L3_CSUM_MASK \
         (_NETIO_PKT_BAD_L3_CSUM_RMASK << _NETIO_PKT_BAD_L3_CSUM_SHIFT)

/** The Ethernet packet type is unrecognized. */
#define _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT    3
#define _NETIO_PKT_TYPE_UNRECOGNIZED_RMASK    1
#define _NETIO_PKT_TYPE_UNRECOGNIZED_MASK \
         (_NETIO_PKT_TYPE_UNRECOGNIZED_RMASK << \
          _NETIO_PKT_TYPE_UNRECOGNIZED_SHIFT)

/* Metadata packet type flags. */

/** Where the packet type bits are; this field is the index into
 *  _netio_pkt_info. */
#define _NETIO_PKT_TYPE_SHIFT        4
#define _NETIO_PKT_TYPE_RMASK        0x3F

/** How many VLAN tags the packet has, and, if we have two, which one we
 *  actually grouped on.  A VLAN within a proprietary (Marvell or Broadcom)
 *  tag is counted here. */
#define _NETIO_PKT_VLAN_SHIFT        4
#define _NETIO_PKT_VLAN_RMASK        0x3
#define _NETIO_PKT_VLAN_MASK \
         (_NETIO_PKT_VLAN_RMASK << _NETIO_PKT_VLAN_SHIFT)
#define _NETIO_PKT_VLAN_NONE         0   /* No VLAN tag. */
#define _NETIO_PKT_VLAN_ONE          1   /* One VLAN tag. */
#define _NETIO_PKT_VLAN_TWO_OUTER    2   /* Two VLAN tags, outer one used. */
#define _NETIO_PKT_VLAN_TWO_INNER    3   /* Two VLAN tags, inner one used. */

/** Which proprietary tags the packet has. */
#define _NETIO_PKT_TAG_SHIFT         6
#define _NETIO_PKT_TAG_RMASK         0x3
#define _NETIO_PKT_TAG_MASK \
          (_NETIO_PKT_TAG_RMASK << _NETIO_PKT_TAG_SHIFT)
#define _NETIO_PKT_TAG_NONE          0   /* No proprietary tags. */
#define _NETIO_PKT_TAG_MRVL          1   /* Marvell HyperG.Stack tags. */
#define _NETIO_PKT_TAG_MRVL_EXT      2   /* HyperG.Stack extended tags. */
#define _NETIO_PKT_TAG_BRCM          3   /* Broadcom HiGig tags. */

/** Whether a packet has an LLC + SNAP header. */
#define _NETIO_PKT_SNAP_SHIFT        8
#define _NETIO_PKT_SNAP_RMASK        0x1
#define _NETIO_PKT_SNAP_MASK \
          (_NETIO_PKT_SNAP_RMASK << _NETIO_PKT_SNAP_SHIFT)

/* NOTE: Bits 9 and 10 are unused. */

/** Length of any custom data before the L2 header, in words. */
#define _NETIO_PKT_CUSTOM_LEN_SHIFT  11
#define _NETIO_PKT_CUSTOM_LEN_RMASK  0x1F
#define _NETIO_PKT_CUSTOM_LEN_MASK \
          (_NETIO_PKT_CUSTOM_LEN_RMASK << _NETIO_PKT_CUSTOM_LEN_SHIFT)

/** The L4 checksum is incorrect (or perhaps has not been calculated). */
#define _NETIO_PKT_BAD_L4_CSUM_SHIFT 16
#define _NETIO_PKT_BAD_L4_CSUM_RMASK 0x1
#define _NETIO_PKT_BAD_L4_CSUM_MASK \
          (_NETIO_PKT_BAD_L4_CSUM_RMASK << _NETIO_PKT_BAD_L4_CSUM_SHIFT)

/** Length of the L2 header, in words. */
#define _NETIO_PKT_L2_LEN_SHIFT  17
#define _NETIO_PKT_L2_LEN_RMASK  0x1F
#define _NETIO_PKT_L2_LEN_MASK \
          (_NETIO_PKT_L2_LEN_RMASK << _NETIO_PKT_L2_LEN_SHIFT)


/* Flags in minimal packet metadata. */

/** We need an eDMA checksum on this packet. */
#define _NETIO_PKT_NEED_EDMA_CSUM_SHIFT            0
#define _NETIO_PKT_NEED_EDMA_CSUM_RMASK            1
#define _NETIO_PKT_NEED_EDMA_CSUM_MASK \
         (_NETIO_PKT_NEED_EDMA_CSUM_RMASK << _NETIO_PKT_NEED_EDMA_CSUM_SHIFT)

/* Data within the packet information table. */

/* Note that, for efficiency, code which uses these fields assumes that none
 * of the shift values below are zero.  See uses below for an explanation. */

/** Offset within the L2 header of the innermost ethertype (in halfwords). */
#define _NETIO_PKT_INFO_ETYPE_SHIFT       6
#define _NETIO_PKT_INFO_ETYPE_RMASK    0x1F

/** Offset within the L2 header of the VLAN tag (in halfwords). */
#define _NETIO_PKT_INFO_VLAN_SHIFT       11
#define _NETIO_PKT_INFO_VLAN_RMASK     0x1F

#endif


/** The size of a memory buffer representing a small packet.
 *  @ingroup egress */
#define SMALL_PACKET_SIZE 256

/** The size of a memory buffer representing a large packet.
 *  @ingroup egress */
#define LARGE_PACKET_SIZE 2048

/** The size of a memory buffer representing a jumbo packet.
 *  @ingroup egress */
#define JUMBO_PACKET_SIZE (12 * 1024)


/* Common ethertypes.
 * @ingroup ingress */
/** @{ */
/** The ethertype of IPv4. */
#define ETHERTYPE_IPv4 (0x0800)
/** The ethertype of ARP. */
#define ETHERTYPE_ARP (0x0806)
/** The ethertype of VLANs. */
#define ETHERTYPE_VLAN (0x8100)
/** The ethertype of a Q-in-Q header. */
#define ETHERTYPE_Q_IN_Q (0x9100)
/** The ethertype of IPv6. */
#define ETHERTYPE_IPv6 (0x86DD)
/** The ethertype of MPLS. */
#define ETHERTYPE_MPLS (0x8847)
/** @} */


/** The possible return values of NETIO_PKT_STATUS.
 * @ingroup ingress
 */
typedef enum
{
  /** No problems were detected with this packet. */
  NETIO_PKT_STATUS_OK,
  /** The packet is undersized; this is expected behavior if the packet's
    * ethertype is unrecognized, but otherwise the packet is likely corrupt. */
  NETIO_PKT_STATUS_UNDERSIZE,
  /** The packet is oversized and some trailing bytes have been discarded.
      This is expected behavior for short packets, since it's impossible to
      precisely determine the amount of padding which may have been added to
      them to make them meet the minimum Ethernet packet size. */
  NETIO_PKT_STATUS_OVERSIZE,
  /** The packet was judged to be corrupt by hardware (for instance, it had
      a bad CRC, or part of it was discarded due to lack of buffer space in
      the I/O shim) and should be discarded. */
  NETIO_PKT_STATUS_BAD
} netio_pkt_status_t;


/** Log2 of how many buckets we have. */
#define NETIO_LOG2_NUM_BUCKETS (10)

/** How many buckets we have.
 * @ingroup ingress */
#define NETIO_NUM_BUCKETS (1 << NETIO_LOG2_NUM_BUCKETS)


/**
 * @brief A group-to-bucket identifier.
 *
 * @ingroup setup
 *
 * This tells us what to do with a given group.
 */
typedef union {
  /** The header broken down into bits. */
  struct {
    /** Whether we should balance on L4, if available */
    unsigned int __balance_on_l4:1;
    /** Whether we should balance on L3, if available */
    unsigned int __balance_on_l3:1;
    /** Whether we should balance on L2, if available */
    unsigned int __balance_on_l2:1;
    /** Reserved for future use */
    unsigned int __reserved:1;
    /** The base bucket to use to send traffic */
    unsigned int __bucket_base:NETIO_LOG2_NUM_BUCKETS;
    /** The mask to apply to the balancing value. This must be one less
     * than a power of two, e.g. 0x3 or 0xFF.
     */
    unsigned int __bucket_mask:NETIO_LOG2_NUM_BUCKETS;
    /** Pad to 32 bits */
    unsigned int __padding:(32 - 4 - 2 * NETIO_LOG2_NUM_BUCKETS);
  } bits;
  /** To send out the IDN. */
  unsigned int word;
}
netio_group_t;


/**
 * @brief A VLAN-to-bucket identifier.
 *
 * @ingroup setup
 *
 * This tells us what to do with a given VLAN.
 */
typedef netio_group_t netio_vlan_t;


/**
 * A bucket-to-queue mapping.
 * @ingroup setup
 */
typedef unsigned char netio_bucket_t;


/**
 * A packet size can always fit in a netio_size_t.
 * @ingroup setup
 */
typedef unsigned int netio_size_t;


/**
 * @brief Ethernet standard (ingress) packet metadata.
 *
 * @ingroup ingress
 *
 * This is additional data associated with each packet.
 * This structure is opaque and accessed through the @ref ingress.
 *
 * Also, the buffer population operation currently assumes that standard
 * metadata is at least as large as minimal metadata, and will need to be
 * modified if that is no longer the case.
 */
typedef struct
{
#ifdef __DOXYGEN__
  /** This structure is opaque. */
  unsigned char opaque[24];
#else
  /** The overall ordinal of the packet */
  unsigned int __packet_ordinal;
  /** The ordinal of the packet within the group */
  unsigned int __group_ordinal;
  /** The best flow hash IPP could compute. */
  unsigned int __flow_hash;
  /** Flags pertaining to checksum calculation, packet type, etc. */
  unsigned int __flags;
  /** The first word of "user data". */
  unsigned int __user_data_0;
  /** The second word of "user data". */
  unsigned int __user_data_1;
#endif
}
netio_pkt_metadata_t;


/** To ensure that the L3 header is aligned mod 4, the L2 header should be
 * aligned mod 4 plus 2, since every supported L2 header is 4n + 2 bytes
 * long.  The standard way to do this is to simply add 2 bytes of padding
 * before the L2 header.
 */
#define NETIO_PACKET_PADDING 2



/**
 * @brief Ethernet minimal (egress) packet metadata.
 *
 * @ingroup egress
 *
 * This structure represents information about packets which have
 * been processed by @ref netio_populate_buffer() or
 * @ref netio_populate_prepend_buffer().  This structure is opaque
 * and accessed through the @ref egress.
 *
 * @internal This structure is actually copied into the memory used by
 * standard metadata, which is assumed to be large enough.
 */
typedef struct
{
#ifdef __DOXYGEN__
  /** This structure is opaque. */
  unsigned char opaque[14];
#else
  /** The offset of the L2 header from the start of the packet data. */
  unsigned short l2_offset;
  /** The offset of the L3 header from the start of the packet data. */
  unsigned short l3_offset;
  /** Where to write the checksum. */
  unsigned char csum_location;
  /** Where to start checksumming from. */
  unsigned char csum_start;
  /** Flags pertaining to checksum calculation etc. */
  unsigned short flags;
  /** The L2 length of the packet. */
  unsigned short l2_length;
  /** The checksum with which to seed the checksum generator. */
  unsigned short csum_seed;
  /** How much to checksum. */
  unsigned short csum_length;
#endif
}
netio_pkt_minimal_metadata_t;


#ifndef __DOXYGEN__

/**
 * @brief An I/O notification header.
 *
 * This is the first word of data received from an I/O shim in a notification
 * packet. It contains framing and status information.
 */
typedef union
{
  unsigned int word; /**< The whole word. */
  /** The various fields. */
  struct
  {
    unsigned int __channel:7;    /**< Resource channel. */
    unsigned int __type:4;       /**< Type. */
    unsigned int __ack:1;        /**< Whether an acknowledgement is needed. */
    unsigned int __reserved:1;   /**< Reserved. */
    unsigned int __protocol:1;   /**< A protocol-specific word is added. */
    unsigned int __status:2;     /**< Status of the transfer. */
    unsigned int __framing:2;    /**< Framing of the transfer. */
    unsigned int __transfer_size:14; /**< Transfer size in bytes (total). */
  } bits;
}
__netio_pkt_notif_t;


/**
 * Returns the base address of the packet.
 */
#define _NETIO_PKT_HANDLE_BASE(p) \
  ((unsigned char*)((p).word & 0xFFFFFFC0))

/**
 * Returns the base address of the packet.
 */
#define _NETIO_PKT_BASE(p) \
  _NETIO_PKT_HANDLE_BASE(p->__packet)

/**
 * @brief An I/O notification packet (second word)
 *
 * This is the second word of data received from an I/O shim in a notification
 * packet.  This is the virtual address of the packet buffer, plus some flag
 * bits.  (The virtual address of the packet is always 256-byte aligned so we
 * have room for 8 bits' worth of flags in the low 8 bits.)
 *
 * @internal
 * NOTE: The low two bits must contain "__queue", so the "packet size"
 * (SIZE_SMALL, SIZE_LARGE, or SIZE_JUMBO) can be determined quickly.
 *
 * If __addr or __offset are moved, _NETIO_PKT_BASE
 * (defined right below this) must be changed.
 */
typedef union
{
  unsigned int word; /**< The whole word. */
  /** The various fields. */
  struct
  {
    /** Which queue the packet will be returned to once it is sent back to
        the IPP.  This is one of the SIZE_xxx values. */
    unsigned int __queue:2;

    /** The IPP handle of the sending IPP. */
    unsigned int __ipp_handle:2;

    /** Reserved for future use. */
    unsigned int __reserved:1;

    /** If 1, this packet has minimal (egress) metadata; otherwise, it
        has standard (ingress) metadata. */
    unsigned int __minimal:1;

    /** Offset of the metadata within the packet.  This value is multiplied
     *  by 64 and added to the base packet address to get the metadata
     *  address.  Note that this field is aligned within the word such that
     *  you can easily extract the metadata address with a 26-bit mask. */
    unsigned int __offset:2;

    /** The top 24 bits of the packet's virtual address. */
    unsigned int __addr:24;
  } bits;
}
__netio_pkt_handle_t;

#endif /* !__DOXYGEN__ */


/**
 * @brief A handle for an I/O packet's storage.
 * @ingroup ingress
 *
 * netio_pkt_handle_t encodes the concept of a ::netio_pkt_t with its
 * packet metadata removed.  It is a much smaller type that exists to
 * facilitate applications where the full ::netio_pkt_t type is too
 * large, such as those that cache enormous numbers of packets or wish
 * to transmit packet descriptors over the UDN.
 *
 * Because there is no metadata, most ::netio_pkt_t operations cannot be
 * performed on a netio_pkt_handle_t.  It supports only
 * netio_free_handle() (to free the buffer) and
 * NETIO_PKT_CUSTOM_DATA_H() (to access a pointer to its contents).
 * The application must acquire any additional metadata it wants from the
 * original ::netio_pkt_t and record it separately.
 *
 * A netio_pkt_handle_t can be extracted from a ::netio_pkt_t by calling
 * NETIO_PKT_HANDLE().  An invalid handle (analogous to NULL) can be
 * created by assigning the value ::NETIO_PKT_HANDLE_NONE. A handle can
 * be tested for validity with NETIO_PKT_HANDLE_IS_VALID().
 */
typedef struct
{
  unsigned int word; /**< Opaque bits. */
} netio_pkt_handle_t;

/**
 * @brief A packet descriptor.
 *
 * @ingroup ingress
 * @ingroup egress
 *
 * This data structure represents a packet.  The structure is manipulated
 * through the @ref ingress and the @ref egress.
 *
 * While the contents of a netio_pkt_t are opaque, the structure itself is
 * portable.  This means that it may be shared between all tiles which have
 * done a netio_input_register() call for the interface on which the pkt_t
 * was initially received (via netio_get_packet()) or retrieved (via
 * netio_get_buffer()).  The contents of a netio_pkt_t can be transmitted to
 * another tile via shared memory, or via a UDN message, or by other means.
 * The destination tile may then use the pkt_t as if it had originally been
 * received locally; it may read or write the packet's data, read its
 * metadata, free the packet, send the packet, transfer the netio_pkt_t to
 * yet another tile, and so forth.
 *
 * Once a netio_pkt_t has been transferred to a second tile, the first tile
 * should not reference the original copy; in particular, if more than one
 * tile frees or sends the same netio_pkt_t, the IPP's packet free lists will
 * become corrupted.  Note also that each tile which reads or modifies
 * packet data must obey the memory coherency rules outlined in @ref input.
 */
typedef struct
{
#ifdef __DOXYGEN__
  /** This structure is opaque. */
  unsigned char opaque[32];
#else
  /** For an ingress packet (one with standard metadata), this is the
   *  notification header we got from the I/O shim.  For an egress packet
   *  (one with minimal metadata), this word is zero if the packet has not
   *  been populated, and nonzero if it has. */
  __netio_pkt_notif_t __notif_header;

  /** Virtual address of the packet buffer, plus state flags. */
  __netio_pkt_handle_t __packet;

  /** Metadata associated with the packet. */
  netio_pkt_metadata_t __metadata;
#endif
}
netio_pkt_t;


#ifndef __DOXYGEN__

#define __NETIO_PKT_NOTIF_HEADER(pkt) ((pkt)->__notif_header)
#define __NETIO_PKT_IPP_HANDLE(pkt) ((pkt)->__packet.bits.__ipp_handle)
#define __NETIO_PKT_QUEUE(pkt) ((pkt)->__packet.bits.__queue)
#define __NETIO_PKT_NOTIF_HEADER_M(mda, pkt) ((pkt)->__notif_header)
#define __NETIO_PKT_IPP_HANDLE_M(mda, pkt) ((pkt)->__packet.bits.__ipp_handle)
#define __NETIO_PKT_MINIMAL(pkt) ((pkt)->__packet.bits.__minimal)
#define __NETIO_PKT_QUEUE_M(mda, pkt) ((pkt)->__packet.bits.__queue)
#define __NETIO_PKT_FLAGS_M(mda, pkt) ((mda)->__flags)

/* Packet information table, used by the attribute access functions below. */
extern const uint16_t _netio_pkt_info[];

#endif /* __DOXYGEN__ */


#ifndef __DOXYGEN__
/* These macros are deprecated and will disappear in a future MDE release. */
#define NETIO_PKT_GOOD_CHECKSUM(pkt) \
  NETIO_PKT_L4_CSUM_CORRECT(pkt)
#define NETIO_PKT_GOOD_CHECKSUM_M(mda, pkt) \
  NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt)
#endif /* __DOXYGEN__ */


/* Packet attribute access functions. */

/** Return a pointer to the metadata for a packet.
 * @ingroup ingress
 *
 * Calling this function once and passing the result to other retrieval
 * functions with a "_M" suffix usually improves performance.  This
 * function must be called on an 'ingress' packet (i.e. one retrieved
 * by @ref netio_get_packet(), on which @ref netio_populate_buffer() or
 * @ref netio_populate_prepend_buffer have not been called). Use of this
 * function on an 'egress' packet will cause an assertion failure.
 *
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to the packet's standard metadata.
 */
static __inline netio_pkt_metadata_t*
NETIO_PKT_METADATA(netio_pkt_t* pkt)
{
  netio_assert(!pkt->__packet.bits.__minimal);
  return &pkt->__metadata;
}


/** Return a pointer to the minimal metadata for a packet.
 * @ingroup egress
 *
 * Calling this function once and passing the result to other retrieval
 * functions with a "_MM" suffix usually improves performance.  This
 * function must be called on an 'egress' packet (i.e. one on which
 * @ref netio_populate_buffer() or @ref netio_populate_prepend_buffer()
 * have been called, or one retrieved by @ref netio_get_buffer()). Use of
 * this function on an 'ingress' packet will cause an assertion failure.
 *
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to the packet's standard metadata.
 */
static __inline netio_pkt_minimal_metadata_t*
NETIO_PKT_MINIMAL_METADATA(netio_pkt_t* pkt)
{
  netio_assert(pkt->__packet.bits.__minimal);
  return (netio_pkt_minimal_metadata_t*) &pkt->__metadata;
}


/** Determine whether a packet has 'minimal' metadata.
 * @ingroup pktfuncs
 *
 * This function will return nonzero if the packet is an 'egress'
 * packet (i.e. one on which @ref netio_populate_buffer() or
 * @ref netio_populate_prepend_buffer() have been called, or one
 * retrieved by @ref netio_get_buffer()), and zero if the packet
 * is an 'ingress' packet (i.e. one retrieved by @ref netio_get_packet(),
 * which has not been converted into an 'egress' packet).
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the packet has minimal metadata.
 */
static __inline unsigned int
NETIO_PKT_IS_MINIMAL(netio_pkt_t* pkt)
{
  return pkt->__packet.bits.__minimal;
}


/** Return a handle for a packet's storage.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return A handle for the packet's storage.
 */
static __inline netio_pkt_handle_t
NETIO_PKT_HANDLE(netio_pkt_t* pkt)
{
  netio_pkt_handle_t h;
  h.word = pkt->__packet.word;
  return h;
}


/** A special reserved value indicating the absence of a packet handle.
 *
 * @ingroup pktfuncs
 */
#define NETIO_PKT_HANDLE_NONE ((netio_pkt_handle_t) { 0 })


/** Test whether a packet handle is valid.
 *
 * Applications may wish to use the reserved value NETIO_PKT_HANDLE_NONE
 * to indicate no packet at all.  This function tests to see if a packet
 * handle is a real handle, not this special reserved value.
 *
 * @ingroup pktfuncs
 *
 * @param[in] handle Handle on which to operate.
 * @return One if the packet handle is valid, else zero.
 */
static __inline unsigned int
NETIO_PKT_HANDLE_IS_VALID(netio_pkt_handle_t handle)
{
  return handle.word != 0;
}



/** Return a pointer to the start of the packet's custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup ingress
 *
 * @param[in] handle Handle on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_CUSTOM_DATA_H(netio_pkt_handle_t handle)
{
  return _NETIO_PKT_HANDLE_BASE(handle) + NETIO_PACKET_PADDING;
}


/** Return the length of the packet's custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 *
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet's custom header, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_CUSTOM_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  /*
   * Note that we effectively need to extract a quantity from the flags word
   * which is measured in words, and then turn it into bytes by shifting
   * it left by 2.  We do this all at once by just shifting right two less
   * bits, and shifting the mask up two bits.
   */
  return ((mda->__flags >> (_NETIO_PKT_CUSTOM_LEN_SHIFT - 2)) &
          (_NETIO_PKT_CUSTOM_LEN_RMASK << 2));
}


/** Return the length of the packet, starting with the custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_CUSTOM_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (__NETIO_PKT_NOTIF_HEADER(pkt).bits.__transfer_size -
          NETIO_PACKET_PADDING);
}


/** Return a pointer to the start of the packet's custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_CUSTOM_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return NETIO_PKT_CUSTOM_DATA_H(NETIO_PKT_HANDLE(pkt));
}


/** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet's L2 header, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_HEADER_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  /*
   * Note that we effectively need to extract a quantity from the flags word
   * which is measured in words, and then turn it into bytes by shifting
   * it left by 2.  We do this all at once by just shifting right two less
   * bits, and shifting the mask up two bits.  We then add two bytes.
   */
  return ((mda->__flags >> (_NETIO_PKT_L2_LEN_SHIFT - 2)) &
          (_NETIO_PKT_L2_LEN_RMASK << 2)) + 2;
}


/** Return the length of the packet, starting with the L2 (Ethernet) header.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt) -
          NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda,pkt));
}


/** Return a pointer to the start of the packet's L2 (Ethernet) header.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_L2_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (NETIO_PKT_CUSTOM_DATA_M(mda, pkt) +
          NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt));
}


/** Retrieve the length of the packet, starting with the L3 (generally,
 *  the IP) header.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Length of the packet's L3 header and data, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L3_LENGTH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (NETIO_PKT_L2_LENGTH_M(mda, pkt) -
          NETIO_PKT_L2_HEADER_LENGTH_M(mda,pkt));
}


/** Return a pointer to the packet's L3 (generally, the IP) header.
 * @ingroup ingress
 *
 * Note that we guarantee word alignment of the L3 header.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to the packet's L3 header.
 */
static __inline unsigned char*
NETIO_PKT_L3_DATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (NETIO_PKT_L2_DATA_M(mda, pkt) +
          NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt));
}


/** Return the ordinal of the packet.
 * @ingroup ingress
 *
 * Each packet is given an ordinal number when it is delivered by the IPP.
 * In the medium term, the ordinal is unique and monotonically increasing,
 * being incremented by 1 for each packet; the ordinal of the first packet
 * delivered after the IPP starts is zero.  (Since the ordinal is of finite
 * size, given enough input packets, it will eventually wrap around to zero;
 * in the long term, therefore, ordinals are not unique.)  The ordinals
 * handed out by different IPPs are not disjoint, so two packets from
 * different IPPs may have identical ordinals.  Packets dropped by the
 * IPP or by the I/O shim are not assigned ordinals.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's per-IPP packet ordinal.
 */
static __inline unsigned int
NETIO_PKT_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return mda->__packet_ordinal;
}


/** Return the per-group ordinal of the packet.
 * @ingroup ingress
 *
 * Each packet is given a per-group ordinal number when it is
 * delivered by the IPP. By default, the group is the packet's VLAN,
 * although IPP can be recompiled to use different values.  In
 * the medium term, the ordinal is unique and monotonically
 * increasing, being incremented by 1 for each packet; the ordinal of
 * the first packet distributed to a particular group is zero.
 * (Since the ordinal is of finite size, given enough input packets,
 * it will eventually wrap around to zero; in the long term,
 * therefore, ordinals are not unique.)  The ordinals handed out by
 * different IPPs are not disjoint, so two packets from different IPPs
 * may have identical ordinals; similarly, packets distributed to
 * different groups may have identical ordinals.  Packets dropped by
 * the IPP or by the I/O shim are not assigned ordinals.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's per-IPP, per-group ordinal.
 */
static __inline unsigned int
NETIO_PKT_GROUP_ORDINAL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return mda->__group_ordinal;
}


/** Return the VLAN ID assigned to the packet.
 * @ingroup ingress
 *
 * This value is usually contained within the packet header.
 *
 * This value will be zero if the packet does not have a VLAN tag, or if
 * this value was not extracted from the packet.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's VLAN ID.
 */
static __inline unsigned short
NETIO_PKT_VLAN_ID_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  int vl = (mda->__flags >> _NETIO_PKT_VLAN_SHIFT) & _NETIO_PKT_VLAN_RMASK;
  unsigned short* pkt_p;
  int index;
  unsigned short val;

  if (vl == _NETIO_PKT_VLAN_NONE)
    return 0;

  pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt);
  index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK;

  val = pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_VLAN_SHIFT) &
              _NETIO_PKT_INFO_VLAN_RMASK];

#ifdef __TILECC__
  return (__insn_bytex(val) >> 16) & 0xFFF;
#else
  return (__builtin_bswap32(val) >> 16) & 0xFFF;
#endif
}


/** Return the ethertype of the packet.
 * @ingroup ingress
 *
 * This value is usually contained within the packet header.
 *
 * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED_M()
 * returns true, and otherwise, may not be well defined.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's ethertype.
 */
static __inline unsigned short
NETIO_PKT_ETHERTYPE_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  unsigned short* pkt_p = (unsigned short*) NETIO_PKT_L2_DATA_M(mda, pkt);
  int index = (mda->__flags >> _NETIO_PKT_TYPE_SHIFT) & _NETIO_PKT_TYPE_RMASK;

  unsigned short val =
    pkt_p[(_netio_pkt_info[index] >> _NETIO_PKT_INFO_ETYPE_SHIFT) &
          _NETIO_PKT_INFO_ETYPE_RMASK];

  return __builtin_bswap32(val) >> 16;
}


/** Return the flow hash computed on the packet.
 * @ingroup ingress
 *
 * For TCP and UDP packets, this hash is calculated by hashing together
 * the "5-tuple" values, specifically the source IP address, destination
 * IP address, protocol type, source port and destination port.
 * The hash value is intended to be helpful for millions of distinct
 * flows.
 *
 * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is
 * derived by hashing together the source and destination IP addresses.
 *
 * For MPLS-encapsulated packets, the flow hash is derived by hashing
 * the first MPLS label.
 *
 * For all other packets the flow hash is computed from the source
 * and destination Ethernet addresses.
 *
 * The hash is symmetric, meaning it produces the same value if the
 * source and destination are swapped. The only exceptions are
 * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple
 * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32
 * (Encap Security Payload), which use only the destination address
 * since the source address is not meaningful.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's 32-bit flow hash.
 */
static __inline unsigned int
NETIO_PKT_FLOW_HASH_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return mda->__flow_hash;
}


/** Return the first word of "user data" for the packet.
 *
 * The contents of the user data words depend on the IPP.
 *
 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first
 * word of user data contains the least significant bits of the 64-bit
 * arrival cycle count (see @c get_cycle_count_low()).
 *
 * See the <em>System Programmer's Guide</em> for details.
 *
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's first word of "user data".
 */
static __inline unsigned int
NETIO_PKT_USER_DATA_0_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return mda->__user_data_0;
}


/** Return the second word of "user data" for the packet.
 *
 * The contents of the user data words depend on the IPP.
 *
 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second
 * word of user data contains the most significant bits of the 64-bit
 * arrival cycle count (see @c get_cycle_count_high()).
 *
 * See the <em>System Programmer's Guide</em> for details.
 *
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's second word of "user data".
 */
static __inline unsigned int
NETIO_PKT_USER_DATA_1_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return mda->__user_data_1;
}


/** Determine whether the L4 (TCP/UDP) checksum was calculated.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the L4 checksum was calculated.
 */
static __inline unsigned int
NETIO_PKT_L4_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return !(mda->__flags & _NETIO_PKT_NO_L4_CSUM_MASK);
}


/** Determine whether the L4 (TCP/UDP) checksum was calculated and found to
 *  be correct.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the checksum was calculated and is correct.
 */
static __inline unsigned int
NETIO_PKT_L4_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return !(mda->__flags &
           (_NETIO_PKT_BAD_L4_CSUM_MASK | _NETIO_PKT_NO_L4_CSUM_MASK));
}


/** Determine whether the L3 (IP) checksum was calculated.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the L3 (IP) checksum was calculated.
*/
static __inline unsigned int
NETIO_PKT_L3_CSUM_CALCULATED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return !(mda->__flags & _NETIO_PKT_NO_L3_CSUM_MASK);
}


/** Determine whether the L3 (IP) checksum was calculated and found to be
 *  correct.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the checksum was calculated and is correct.
 */
static __inline unsigned int
NETIO_PKT_L3_CSUM_CORRECT_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return !(mda->__flags &
           (_NETIO_PKT_BAD_L3_CSUM_MASK | _NETIO_PKT_NO_L3_CSUM_MASK));
}


/** Determine whether the ethertype was recognized and L3 packet data was
 *  processed.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the ethertype was recognized and L3 packet data was
 *   processed.
 */
static __inline unsigned int
NETIO_PKT_ETHERTYPE_RECOGNIZED_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return !(mda->__flags & _NETIO_PKT_TYPE_UNRECOGNIZED_MASK);
}


/** Retrieve the status of a packet and any errors that may have occurred
 * during ingress processing (length mismatches, CRC errors, etc.).
 * @ingroup ingress
 *
 * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
 * returns zero are always reported as underlength, as there is no a priori
 * means to determine their length.  Normally, applications should use
 * @ref NETIO_PKT_BAD_M() instead of explicitly checking status with this
 * function.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The packet's status.
 */
static __inline netio_pkt_status_t
NETIO_PKT_STATUS_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status;
}


/** Report whether a packet is bad (i.e., was shorter than expected based on
 *  its headers, or had a bad CRC).
 * @ingroup ingress
 *
 * Note that this function does not verify L3 or L4 checksums.
 *
 * @param[in] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the packet is bad and should be discarded.
 */
static __inline unsigned int
NETIO_PKT_BAD_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return ((NETIO_PKT_STATUS_M(mda, pkt) & 1) &&
          (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt) ||
           NETIO_PKT_STATUS_M(mda, pkt) == NETIO_PKT_STATUS_BAD));
}


/** Return the length of the packet, starting with the L2 (Ethernet) header.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
{
  return mmd->l2_length;
}


/** Return the length of the L2 (Ethernet) header.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet's L2 header, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd,
                              netio_pkt_t* pkt)
{
  return mmd->l3_offset - mmd->l2_offset;
}


/** Return the length of the packet, starting with the L3 (IP) header.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @return Length of the packet's L3 header and data, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L3_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
{
  return (NETIO_PKT_L2_LENGTH_MM(mmd, pkt) -
          NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt));
}


/** Return a pointer to the packet's L3 (generally, the IP) header.
 * @ingroup egress
 *
 * Note that we guarantee word alignment of the L3 header.
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to the packet's L3 header.
 */
static __inline unsigned char*
NETIO_PKT_L3_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
{
  return _NETIO_PKT_BASE(pkt) + mmd->l3_offset;
}


/** Return a pointer to the packet's L2 (Ethernet) header.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_L2_DATA_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
{
  return _NETIO_PKT_BASE(pkt) + mmd->l2_offset;
}


/** Retrieve the status of a packet and any errors that may have occurred
 * during ingress processing (length mismatches, CRC errors, etc.).
 * @ingroup ingress
 *
 * Note that packets for which @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
 * returns zero are always reported as underlength, as there is no a priori
 * means to determine their length.  Normally, applications should use
 * @ref NETIO_PKT_BAD() instead of explicitly checking status with this
 * function.
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's status.
 */
static __inline netio_pkt_status_t
NETIO_PKT_STATUS(netio_pkt_t* pkt)
{
  netio_assert(!pkt->__packet.bits.__minimal);

  return (netio_pkt_status_t) __NETIO_PKT_NOTIF_HEADER(pkt).bits.__status;
}


/** Report whether a packet is bad (i.e., was shorter than expected based on
 *  its headers, or had a bad CRC).
 * @ingroup ingress
 *
 * Note that this function does not verify L3 or L4 checksums.
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the packet is bad and should be discarded.
 */
static __inline unsigned int
NETIO_PKT_BAD(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_BAD_M(mda, pkt);
}


/** Return the length of the packet's custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet's custom header, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_CUSTOM_HEADER_LENGTH(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt);
}


/** Return the length of the packet, starting with the custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return  The length of the packet, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_CUSTOM_LENGTH(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_CUSTOM_LENGTH_M(mda, pkt);
}


/** Return a pointer to the packet's custom header.
 *  A custom header may or may not be present, depending upon the IPP; its
 *  contents and alignment are also IPP-dependent.  Currently, none of the
 *  standard IPPs supplied by Tilera produce a custom header.  If present,
 *  the custom header precedes the L2 header in the packet buffer.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_CUSTOM_DATA(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_CUSTOM_DATA_M(mda, pkt);
}


/** Return the length of the packet's L2 (Ethernet plus VLAN or SNAP) header.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return The length of the packet's L2 header, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_HEADER_LENGTH(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_L2_HEADER_LENGTH_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_L2_HEADER_LENGTH_M(mda, pkt);
  }
}


/** Return the length of the packet, starting with the L2 (Ethernet) header.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return  The length of the packet, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L2_LENGTH(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_L2_LENGTH_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_L2_LENGTH_M(mda, pkt);
  }
}


/** Return a pointer to the packet's L2 (Ethernet) header.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to start of the packet.
 */
static __inline unsigned char*
NETIO_PKT_L2_DATA(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_L2_DATA_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_L2_DATA_M(mda, pkt);
  }
}


/** Retrieve the length of the packet, starting with the L3 (generally, the IP)
 * header.
 * @ingroup pktfuncs
 *
 * @param[in] pkt Packet on which to operate.
 * @return Length of the packet's L3 header and data, in bytes.
 */
static __inline netio_size_t
NETIO_PKT_L3_LENGTH(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_L3_LENGTH_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_L3_LENGTH_M(mda, pkt);
  }
}


/** Return a pointer to the packet's L3 (generally, the IP) header.
 * @ingroup pktfuncs
 *
 * Note that we guarantee word alignment of the L3 header.
 *
 * @param[in] pkt Packet on which to operate.
 * @return A pointer to the packet's L3 header.
 */
static __inline unsigned char*
NETIO_PKT_L3_DATA(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_L3_DATA_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_L3_DATA_M(mda, pkt);
  }
}


/** Return the ordinal of the packet.
 * @ingroup ingress
 *
 * Each packet is given an ordinal number when it is delivered by the IPP.
 * In the medium term, the ordinal is unique and monotonically increasing,
 * being incremented by 1 for each packet; the ordinal of the first packet
 * delivered after the IPP starts is zero.  (Since the ordinal is of finite
 * size, given enough input packets, it will eventually wrap around to zero;
 * in the long term, therefore, ordinals are not unique.)  The ordinals
 * handed out by different IPPs are not disjoint, so two packets from
 * different IPPs may have identical ordinals.  Packets dropped by the
 * IPP or by the I/O shim are not assigned ordinals.
 *
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's per-IPP packet ordinal.
 */
static __inline unsigned int
NETIO_PKT_ORDINAL(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_ORDINAL_M(mda, pkt);
}


/** Return the per-group ordinal of the packet.
 * @ingroup ingress
 *
 * Each packet is given a per-group ordinal number when it is
 * delivered by the IPP. By default, the group is the packet's VLAN,
 * although IPP can be recompiled to use different values.  In
 * the medium term, the ordinal is unique and monotonically
 * increasing, being incremented by 1 for each packet; the ordinal of
 * the first packet distributed to a particular group is zero.
 * (Since the ordinal is of finite size, given enough input packets,
 * it will eventually wrap around to zero; in the long term,
 * therefore, ordinals are not unique.)  The ordinals handed out by
 * different IPPs are not disjoint, so two packets from different IPPs
 * may have identical ordinals; similarly, packets distributed to
 * different groups may have identical ordinals.  Packets dropped by
 * the IPP or by the I/O shim are not assigned ordinals.
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's per-IPP, per-group ordinal.
 */
static __inline unsigned int
NETIO_PKT_GROUP_ORDINAL(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_GROUP_ORDINAL_M(mda, pkt);
}


/** Return the VLAN ID assigned to the packet.
 * @ingroup ingress
 *
 * This is usually also contained within the packet header.  If the packet
 * does not have a VLAN tag, the VLAN ID returned by this function is zero.
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's VLAN ID.
 */
static __inline unsigned short
NETIO_PKT_VLAN_ID(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_VLAN_ID_M(mda, pkt);
}


/** Return the ethertype of the packet.
 * @ingroup ingress
 *
 * This value is reliable if @ref NETIO_PKT_ETHERTYPE_RECOGNIZED()
 * returns true, and otherwise, may not be well defined.
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's ethertype.
 */
static __inline unsigned short
NETIO_PKT_ETHERTYPE(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_ETHERTYPE_M(mda, pkt);
}


/** Return the flow hash computed on the packet.
 * @ingroup ingress
 *
 * For TCP and UDP packets, this hash is calculated by hashing together
 * the "5-tuple" values, specifically the source IP address, destination
 * IP address, protocol type, source port and destination port.
 * The hash value is intended to be helpful for millions of distinct
 * flows.
 *
 * For IPv4 or IPv6 packets which are neither TCP nor UDP, the flow hash is
 * derived by hashing together the source and destination IP addresses.
 *
 * For MPLS-encapsulated packets, the flow hash is derived by hashing
 * the first MPLS label.
 *
 * For all other packets the flow hash is computed from the source
 * and destination Ethernet addresses.
 *
 * The hash is symmetric, meaning it produces the same value if the
 * source and destination are swapped. The only exceptions are
 * tunneling protocols 0x04 (IP in IP Encapsulation), 0x29 (Simple
 * Internet Protocol), 0x2F (General Routing Encapsulation) and 0x32
 * (Encap Security Payload), which use only the destination address
 * since the source address is not meaningful.
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's 32-bit flow hash.
 */
static __inline unsigned int
NETIO_PKT_FLOW_HASH(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_FLOW_HASH_M(mda, pkt);
}


/** Return the first word of "user data" for the packet.
 *
 * The contents of the user data words depend on the IPP.
 *
 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the first
 * word of user data contains the least significant bits of the 64-bit
 * arrival cycle count (see @c get_cycle_count_low()).
 *
 * See the <em>System Programmer's Guide</em> for details.
 *
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's first word of "user data".
 */
static __inline unsigned int
NETIO_PKT_USER_DATA_0(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_USER_DATA_0_M(mda, pkt);
}


/** Return the second word of "user data" for the packet.
 *
 * The contents of the user data words depend on the IPP.
 *
 * When using the standard ipp1, ipp2, or ipp4 sub-drivers, the second
 * word of user data contains the most significant bits of the 64-bit
 * arrival cycle count (see @c get_cycle_count_high()).
 *
 * See the <em>System Programmer's Guide</em> for details.
 *
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return The packet's second word of "user data".
 */
static __inline unsigned int
NETIO_PKT_USER_DATA_1(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_USER_DATA_1_M(mda, pkt);
}


/** Determine whether the L4 (TCP/UDP) checksum was calculated.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the L4 checksum was calculated.
 */
static __inline unsigned int
NETIO_PKT_L4_CSUM_CALCULATED(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_L4_CSUM_CALCULATED_M(mda, pkt);
}


/** Determine whether the L4 (TCP/UDP) checksum was calculated and found to
 *  be correct.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the checksum was calculated and is correct.
 */
static __inline unsigned int
NETIO_PKT_L4_CSUM_CORRECT(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_L4_CSUM_CORRECT_M(mda, pkt);
}


/** Determine whether the L3 (IP) checksum was calculated.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the L3 (IP) checksum was calculated.
*/
static __inline unsigned int
NETIO_PKT_L3_CSUM_CALCULATED(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_L3_CSUM_CALCULATED_M(mda, pkt);
}


/** Determine whether the L3 (IP) checksum was calculated and found to be
 *  correct.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the checksum was calculated and is correct.
 */
static __inline unsigned int
NETIO_PKT_L3_CSUM_CORRECT(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_L3_CSUM_CORRECT_M(mda, pkt);
}


/** Determine whether the Ethertype was recognized and L3 packet data was
 *  processed.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 * @return Nonzero if the Ethertype was recognized and L3 packet data was
 *   processed.
 */
static __inline unsigned int
NETIO_PKT_ETHERTYPE_RECOGNIZED(netio_pkt_t* pkt)
{
  netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

  return NETIO_PKT_ETHERTYPE_RECOGNIZED_M(mda, pkt);
}


/** Set an egress packet's L2 length, using a metadata pointer to speed the
 * computation.
 * @ingroup egress
 *
 * @param[in,out] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @param[in] len Packet L2 length, in bytes.
 */
static __inline void
NETIO_PKT_SET_L2_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt,
                           int len)
{
  mmd->l2_length = len;
}


/** Set an egress packet's L2 length.
 * @ingroup egress
 *
 * @param[in,out] pkt Packet on which to operate.
 * @param[in] len Packet L2 length, in bytes.
 */
static __inline void
NETIO_PKT_SET_L2_LENGTH(netio_pkt_t* pkt, int len)
{
  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

  NETIO_PKT_SET_L2_LENGTH_MM(mmd, pkt, len);
}


/** Set an egress packet's L2 header length, using a metadata pointer to
 *  speed the computation.
 * @ingroup egress
 *
 * It is not normally necessary to call this routine; only the L2 length,
 * not the header length, is needed to transmit a packet.  It may be useful if
 * the egress packet will later be processed by code which expects to use
 * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload.
 *
 * @param[in,out] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @param[in] len Packet L2 header length, in bytes.
 */
static __inline void
NETIO_PKT_SET_L2_HEADER_LENGTH_MM(netio_pkt_minimal_metadata_t* mmd,
                                  netio_pkt_t* pkt, int len)
{
  mmd->l3_offset = mmd->l2_offset + len;
}


/** Set an egress packet's L2 header length.
 * @ingroup egress
 *
 * It is not normally necessary to call this routine; only the L2 length,
 * not the header length, is needed to transmit a packet.  It may be useful if
 * the egress packet will later be processed by code which expects to use
 * functions like @ref NETIO_PKT_L3_DATA() to get a pointer to the L3 payload.
 *
 * @param[in,out] pkt Packet on which to operate.
 * @param[in] len Packet L2 header length, in bytes.
 */
static __inline void
NETIO_PKT_SET_L2_HEADER_LENGTH(netio_pkt_t* pkt, int len)
{
  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

  NETIO_PKT_SET_L2_HEADER_LENGTH_MM(mmd, pkt, len);
}


/** Set up an egress packet for hardware checksum computation, using a
 *  metadata pointer to speed the operation.
 * @ingroup egress
 *
 *  NetIO provides the ability to automatically calculate a standard
 *  16-bit Internet checksum on transmitted packets.  The application
 *  may specify the point in the packet where the checksum starts, the
 *  number of bytes to be checksummed, and the two bytes in the packet
 *  which will be replaced with the completed checksum.  (If the range
 *  of bytes to be checksummed includes the bytes to be replaced, the
 *  initial values of those bytes will be included in the checksum.)
 *
 *  For some protocols, the packet checksum covers data which is not present
 *  in the packet, or is at least not contiguous to the main data payload.
 *  For instance, the TCP checksum includes a "pseudo-header" which includes
 *  the source and destination IP addresses of the packet.  To accommodate
 *  this, the checksum engine may be "seeded" with an initial value, which
 *  the application would need to compute based on the specific protocol's
 *  requirements.  Note that the seed is given in host byte order (little-
 *  endian), not network byte order (big-endian); code written to compute a
 *  pseudo-header checksum in network byte order will need to byte-swap it
 *  before use as the seed.
 *
 *  Note that the checksum is computed as part of the transmission process,
 *  so it will not be present in the packet upon completion of this routine.
 *
 * @param[in,out] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 * @param[in] start Offset within L2 packet of the first byte to include in
 *   the checksum.
 * @param[in] length Number of bytes to include in the checksum.
 *   the checksum.
 * @param[in] location Offset within L2 packet of the first of the two bytes
 *   to be replaced with the calculated checksum.
 * @param[in] seed Initial value of the running checksum before any of the
 *   packet data is added.
 */
static __inline void
NETIO_PKT_DO_EGRESS_CSUM_MM(netio_pkt_minimal_metadata_t* mmd,
                            netio_pkt_t* pkt, int start, int length,
                            int location, uint16_t seed)
{
  mmd->csum_start = start;
  mmd->csum_length = length;
  mmd->csum_location = location;
  mmd->csum_seed = seed;
  mmd->flags |= _NETIO_PKT_NEED_EDMA_CSUM_MASK;
}


/** Set up an egress packet for hardware checksum computation.
 * @ingroup egress
 *
 *  NetIO provides the ability to automatically calculate a standard
 *  16-bit Internet checksum on transmitted packets.  The application
 *  may specify the point in the packet where the checksum starts, the
 *  number of bytes to be checksummed, and the two bytes in the packet
 *  which will be replaced with the completed checksum.  (If the range
 *  of bytes to be checksummed includes the bytes to be replaced, the
 *  initial values of those bytes will be included in the checksum.)
 *
 *  For some protocols, the packet checksum covers data which is not present
 *  in the packet, or is at least not contiguous to the main data payload.
 *  For instance, the TCP checksum includes a "pseudo-header" which includes
 *  the source and destination IP addresses of the packet.  To accommodate
 *  this, the checksum engine may be "seeded" with an initial value, which
 *  the application would need to compute based on the specific protocol's
 *  requirements.  Note that the seed is given in host byte order (little-
 *  endian), not network byte order (big-endian); code written to compute a
 *  pseudo-header checksum in network byte order will need to byte-swap it
 *  before use as the seed.
 *
 *  Note that the checksum is computed as part of the transmission process,
 *  so it will not be present in the packet upon completion of this routine.
 *
 * @param[in,out] pkt Packet on which to operate.
 * @param[in] start Offset within L2 packet of the first byte to include in
 *   the checksum.
 * @param[in] length Number of bytes to include in the checksum.
 *   the checksum.
 * @param[in] location Offset within L2 packet of the first of the two bytes
 *   to be replaced with the calculated checksum.
 * @param[in] seed Initial value of the running checksum before any of the
 *   packet data is added.
 */
static __inline void
NETIO_PKT_DO_EGRESS_CSUM(netio_pkt_t* pkt, int start, int length,
                         int location, uint16_t seed)
{
  netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

  NETIO_PKT_DO_EGRESS_CSUM_MM(mmd, pkt, start, length, location, seed);
}


/** Return the number of bytes which could be prepended to a packet, using a
 *  metadata pointer to speed the operation.
 *  See @ref netio_populate_prepend_buffer() to get a full description of
 *  prepending.
 *
 * @param[in,out] mda Pointer to packet's standard metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline int
NETIO_PKT_PREPEND_AVAIL_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
  return (pkt->__packet.bits.__offset << 6) +
         NETIO_PKT_CUSTOM_HEADER_LENGTH_M(mda, pkt);
}


/** Return the number of bytes which could be prepended to a packet, using a
 *  metadata pointer to speed the operation.
 *  See @ref netio_populate_prepend_buffer() to get a full description of
 *  prepending.
 * @ingroup egress
 *
 * @param[in,out] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline int
NETIO_PKT_PREPEND_AVAIL_MM(netio_pkt_minimal_metadata_t* mmd, netio_pkt_t* pkt)
{
  return (pkt->__packet.bits.__offset << 6) + mmd->l2_offset;
}


/** Return the number of bytes which could be prepended to a packet.
 *  See @ref netio_populate_prepend_buffer() to get a full description of
 *  prepending.
 * @ingroup egress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline int
NETIO_PKT_PREPEND_AVAIL(netio_pkt_t* pkt)
{
  if (NETIO_PKT_IS_MINIMAL(pkt))
  {
    netio_pkt_minimal_metadata_t* mmd = NETIO_PKT_MINIMAL_METADATA(pkt);

    return NETIO_PKT_PREPEND_AVAIL_MM(mmd, pkt);
  }
  else
  {
    netio_pkt_metadata_t* mda = NETIO_PKT_METADATA(pkt);

    return NETIO_PKT_PREPEND_AVAIL_M(mda, pkt);
  }
}


/** Flush a packet's minimal metadata from the cache, using a metadata pointer
 *  to speed the operation.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
                                    netio_pkt_t* pkt)
{
}


/** Invalidate a packet's minimal metadata from the cache, using a metadata
 *  pointer to speed the operation.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
                                  netio_pkt_t* pkt)
{
}


/** Flush and then invalidate a packet's minimal metadata from the cache,
 *  using a metadata pointer to speed the operation.
 * @ingroup egress
 *
 * @param[in] mmd Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_INV_MINIMAL_METADATA_MM(netio_pkt_minimal_metadata_t* mmd,
                                        netio_pkt_t* pkt)
{
}


/** Flush a packet's metadata from the cache, using a metadata pointer
 *  to speed the operation.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's minimal metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
}


/** Invalidate a packet's metadata from the cache, using a metadata
 *  pointer to speed the operation.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
}


/** Flush and then invalidate a packet's metadata from the cache,
 *  using a metadata pointer to speed the operation.
 * @ingroup ingress
 *
 * @param[in] mda Pointer to packet's metadata.
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_INV_METADATA_M(netio_pkt_metadata_t* mda, netio_pkt_t* pkt)
{
}


/** Flush a packet's minimal metadata from the cache.
 * @ingroup egress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_MINIMAL_METADATA(netio_pkt_t* pkt)
{
}


/** Invalidate a packet's minimal metadata from the cache.
 * @ingroup egress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_INV_MINIMAL_METADATA(netio_pkt_t* pkt)
{
}


/** Flush and then invalidate a packet's minimal metadata from the cache.
 * @ingroup egress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_INV_MINIMAL_METADATA(netio_pkt_t* pkt)
{
}


/** Flush a packet's metadata from the cache.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_METADATA(netio_pkt_t* pkt)
{
}


/** Invalidate a packet's metadata from the cache.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_INV_METADATA(netio_pkt_t* pkt)
{
}


/** Flush and then invalidate a packet's metadata from the cache.
 * @ingroup ingress
 *
 * @param[in] pkt Packet on which to operate.
 */
static __inline void
NETIO_PKT_FLUSH_INV_METADATA(netio_pkt_t* pkt)
{
}

/** Number of NUMA nodes we can distribute buffers to.
 * @ingroup setup */
#define NETIO_NUM_NODE_WEIGHTS  16

/**
 * @brief An object for specifying the characteristics of NetIO communication
 * endpoint.
 *
 * @ingroup setup
 *
 * The @ref netio_input_register() function uses this structure to define
 * how an application tile will communicate with an IPP.
 *
 *
 * Future updates to NetIO may add new members to this structure,
 * which can affect the success of the registration operation.  Thus,
 * if dynamically initializing the structure, applications are urged to
 * zero it out first, for example:
 *
 * @code
 * netio_input_config_t config;
 * memset(&config, 0, sizeof (config));
 * config.flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE;
 * config.num_receive_packets = NETIO_MAX_RECEIVE_PKTS;
 * config.queue_id = 0;
 *     .
 *     .
 *     .
 * @endcode
 *
 * since that guarantees that any unused structure members, including
 * members which did not exist when the application was first developed,
 * will not have unexpected values.
 *
 * If statically initializing the structure, we strongly recommend use of
 * C99-style named initializers, for example:
 *
 * @code
 * netio_input_config_t config = {
 *    .flags = NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE,
 *    .num_receive_packets = NETIO_MAX_RECEIVE_PKTS,
 *    .queue_id = 0,
 * },
 * @endcode
 *
 * instead of the old-style structure initialization:
 *
 * @code
 * // Bad example! Currently equivalent to the above, but don't do this.
 * netio_input_config_t config = {
 *    NETIO_RECV | NETIO_XMIT_CSUM | NETIO_TAG_NONE, NETIO_MAX_RECEIVE_PKTS, 0
 * },
 * @endcode
 *
 * since the C99 style requires no changes to the code if elements of the
 * config structure are rearranged.  (It also makes the initialization much
 * easier to understand.)
 *
 * Except for items which address a particular tile's transmit or receive
 * characteristics, such as the ::NETIO_RECV flag, applications are advised
 * to specify the same set of configuration data on all registrations.
 * This prevents differing results if multiple tiles happen to do their
 * registration operations in a different order on different invocations of
 * the application.  This is particularly important for things like link
 * management flags, and buffer size and homing specifications.
 *
 * Unless the ::NETIO_FIXED_BUFFER_VA flag is specified in flags, the NetIO
 * buffer pool is automatically created and mapped into the application's
 * virtual address space at an address chosen by the operating system,
 * using the common memory (cmem) facility in the Tilera Multicore
 * Components library.  The cmem facility allows multiple processes to gain
 * access to shared memory which is mapped into each process at an
 * identical virtual address.  In order for this to work, the processes
 * must have a common ancestor, which must create the common memory using
 * tmc_cmem_init().
 *
 * In programs using the iLib process creation API, or in programs which use
 * only one process (which include programs using the pthreads library),
 * tmc_cmem_init() is called automatically.  All other applications
 * must call it explicitly, before any child processes which might call
 * netio_input_register() are created.
 */
typedef struct
{
  /** Registration characteristics.

      This value determines several characteristics of the registration;
      flags for different types of behavior are ORed together to make the
      final flag value.  Generally applications should specify exactly
      one flag from each of the following categories:

      - Whether the application will be receiving packets on this queue
        (::NETIO_RECV or ::NETIO_NO_RECV).

      - Whether the application will be transmitting packets on this queue,
        and if so, whether it will request egress checksum calculation
        (::NETIO_XMIT, ::NETIO_XMIT_CSUM, or ::NETIO_NO_XMIT).  It is
        legal to call netio_get_buffer() without one of the XMIT flags,
        as long as ::NETIO_RECV is specified; in this case, the retrieved
        buffers must be passed to another tile for transmission.

      - Whether the application expects any vendor-specific tags in
        its packets' L2 headers (::NETIO_TAG_NONE, ::NETIO_TAG_BRCM,
        or ::NETIO_TAG_MRVL).  This must match the configuration of the
        target IPP.

      To accommodate applications written to previous versions of the NetIO
      interface, none of the flags above are currently required; if omitted,
      NetIO behaves more or less as if ::NETIO_RECV | ::NETIO_XMIT_CSUM |
      ::NETIO_TAG_NONE were used.  However, explicit specification of
      the relevant flags allows NetIO to do a better job of resource
      allocation, allows earlier detection of certain configuration errors,
      and may enable advanced features or higher performance in the future,
      so their use is strongly recommended.

      Note that specifying ::NETIO_NO_RECV along with ::NETIO_NO_XMIT
      is a special case, intended primarily for use by programs which
      retrieve network statistics or do link management operations.
      When these flags are both specified, the resulting queue may not
      be used with NetIO routines other than netio_get(), netio_set(),
      and netio_input_unregister().  See @ref link for more information
      on link management.

      Other flags are optional; their use is described below.
  */
  int flags;

  /** Interface name.  This is a string which identifies the specific
      Ethernet controller hardware to be used.  The format of the string
      is a device type and a device index, separated by a slash; so,
      the first 10 Gigabit Ethernet controller is named "xgbe/0", while
      the second 10/100/1000 Megabit Ethernet controller is named "gbe/1".
   */
  const char* interface;

  /** Receive packet queue size.  This specifies the maximum number
      of ingress packets that can be received on this queue without
      being retrieved by @ref netio_get_packet().  If the IPP's distribution
      algorithm calls for a packet to be sent to this queue, and this
      number of packets are already pending there, the new packet
      will either be discarded, or sent to another tile registered
      for the same queue_id (see @ref drops).  This value must
      be at least ::NETIO_MIN_RECEIVE_PKTS, can always be at least
      ::NETIO_MAX_RECEIVE_PKTS, and may be larger than that on certain
      interfaces.
   */
  int num_receive_packets;

  /** The queue ID being requested.  Legal values for this range from 0
      to ::NETIO_MAX_QUEUE_ID, inclusive.  ::NETIO_MAX_QUEUE_ID is always
      greater than or equal to the number of tiles; this allows one queue
      for each tile, plus at least one additional queue.  Some applications
      may wish to use the additional queue as a destination for unwanted
      packets, since packets delivered to queues for which no tiles have
      registered are discarded.
   */
  unsigned int queue_id;

  /** Maximum number of small send buffers to be held in the local empty
      buffer cache.  This specifies the size of the area which holds
      empty small egress buffers requested from the IPP but not yet
      retrieved via @ref netio_get_buffer().  This value must be greater
      than zero if the application will ever use @ref netio_get_buffer()
      to allocate empty small egress buffers; it may be no larger than
      ::NETIO_MAX_SEND_BUFFERS.  See @ref epp for more details on empty
      buffer caching.
   */
  int num_send_buffers_small_total;

  /** Number of small send buffers to be preallocated at registration.
      If this value is nonzero, the specified number of empty small egress
      buffers will be requested from the IPP during the netio_input_register
      operation; this may speed the execution of @ref netio_get_buffer().
      This may be no larger than @ref num_send_buffers_small_total.  See @ref
      epp for more details on empty buffer caching.
   */
  int num_send_buffers_small_prealloc;

  /** Maximum number of large send buffers to be held in the local empty
      buffer cache.  This specifies the size of the area which holds empty
      large egress buffers requested from the IPP but not yet retrieved via
      @ref netio_get_buffer().  This value must be greater than zero if the
      application will ever use @ref netio_get_buffer() to allocate empty
      large egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS.
      See @ref epp for more details on empty buffer caching.
   */
  int num_send_buffers_large_total;

  /** Number of large send buffers to be preallocated at registration.
      If this value is nonzero, the specified number of empty large egress
      buffers will be requested from the IPP during the netio_input_register
      operation; this may speed the execution of @ref netio_get_buffer().
      This may be no larger than @ref num_send_buffers_large_total.  See @ref
      epp for more details on empty buffer caching.
   */
  int num_send_buffers_large_prealloc;

  /** Maximum number of jumbo send buffers to be held in the local empty
      buffer cache.  This specifies the size of the area which holds empty
      jumbo egress buffers requested from the IPP but not yet retrieved via
      @ref netio_get_buffer().  This value must be greater than zero if the
      application will ever use @ref netio_get_buffer() to allocate empty
      jumbo egress buffers; it may be no larger than ::NETIO_MAX_SEND_BUFFERS.
      See @ref epp for more details on empty buffer caching.
   */
  int num_send_buffers_jumbo_total;

  /** Number of jumbo send buffers to be preallocated at registration.
      If this value is nonzero, the specified number of empty jumbo egress
      buffers will be requested from the IPP during the netio_input_register
      operation; this may speed the execution of @ref netio_get_buffer().
      This may be no larger than @ref num_send_buffers_jumbo_total.  See @ref
      epp for more details on empty buffer caching.
   */
  int num_send_buffers_jumbo_prealloc;

  /** Total packet buffer size.  This determines the total size, in bytes,
      of the NetIO buffer pool.  Note that the maximum number of available
      buffers of each size is determined during hypervisor configuration
      (see the <em>System Programmer's Guide</em> for details); this just
      influences how much host memory is allocated for those buffers.

      The buffer pool is allocated from common memory, which will be
      automatically initialized if needed.  If your buffer pool is larger
      than 240 MB, you might need to explicitly call @c tmc_cmem_init(),
      as described in the Application Libraries Reference Manual (UG227).

      Packet buffers are currently allocated in chunks of 16 MB; this
      value will be rounded up to the next larger multiple of 16 MB.
      If this value is zero, a default of 32 MB will be used; this was
      the value used by previous versions of NetIO.  Note that taking this
      default also affects the placement of buffers on Linux NUMA nodes.
      See @ref buffer_node_weights for an explanation of buffer placement.

      In order to successfully allocate packet buffers, Linux must have
      available huge pages on the relevant Linux NUMA nodes.  See the
      <em>System Programmer's Guide</em> for information on configuring
      huge page support in Linux.
   */
  uint64_t total_buffer_size;

  /** Buffer placement weighting factors.

      This array specifies the relative amount of buffering to place
      on each of the available Linux NUMA nodes.  This array is
      indexed by the NUMA node, and the values in the array are
      proportional to the amount of buffer space to allocate on that
      node.

      If memory striping is enabled in the Hypervisor, then there is
      only one logical NUMA node (node 0). In that case, NetIO will by
      default ignore the suggested buffer node weights, and buffers
      will be striped across the physical memory controllers. See
      UG209 System Programmer's Guide for a description of the
      hypervisor option that controls memory striping.

      If memory striping is disabled, then there are up to four NUMA
      nodes, corresponding to the four DDRAM controllers in the TILE
      processor architecture.  See UG100 Tile Processor Architecture
      Overview for a diagram showing the location of each of the DDRAM
      controllers relative to the tile array.

      For instance, if memory striping is disabled, the following
      configuration strucure:

      @code
      netio_input_config_t config = {
            .
            .
            .
        .total_buffer_size = 4 * 16 * 1024 * 1024;
        .buffer_node_weights = { 1, 0, 1, 0 },
      },
      @endcode

      would result in 32 MB of buffers being placed on controller 0, and
      32 MB on controller 2.  (Since buffers are allocated in units of
      16 MB, some sets of weights will not be able to be matched exactly.)

      For the weights to be effective, @ref total_buffer_size must be
      nonzero.  If @ref total_buffer_size is zero, causing the default
      32 MB of buffer space to be used, then any specified weights will
      be ignored, and buffers will positioned as they were in previous
      versions of NetIO:

      - For xgbe/0 and gbe/0, 16 MB of buffers will be placed on controller 1,
        and the other 16 MB will be placed on controller 2.

      - For xgbe/1 and gbe/1, 16 MB of buffers will be placed on controller 2,
        and the other 16 MB will be placed on controller 3.

      If @ref total_buffer_size is nonzero, but all weights are zero,
      then all buffer space will be allocated on Linux NUMA node zero.

      By default, the specified buffer placement is treated as a hint;
      if sufficient free memory is not available on the specified
      controllers, the buffers will be allocated elsewhere.  However,
      if the ::NETIO_STRICT_HOMING flag is specified in @ref flags, then a
      failure to allocate buffer space exactly as requested will cause the
      registration operation to fail with an error of ::NETIO_CANNOT_HOME.

      Note that maximal network performance cannot be achieved with
      only one memory controller.
   */
  uint8_t buffer_node_weights[NETIO_NUM_NODE_WEIGHTS];

  /** Fixed virtual address for packet buffers.  Only valid when
      ::NETIO_FIXED_BUFFER_VA is specified in @ref flags; see the
      description of that flag for details.
   */
  void* fixed_buffer_va;

  /**
      Maximum number of outstanding send packet requests.  This value is
      only relevant when an EPP is in use; it determines the number of
      slots in the EPP's outgoing packet queue which this tile is allowed
      to consume, and thus the number of packets which may be sent before
      the sending tile must wait for an acknowledgment from the EPP.
      Modifying this value is generally only helpful when using @ref
      netio_send_packet_vector(), where it can help improve performance by
      allowing a single vector send operation to process more packets.
      Typically it is not specified, and the default, which divides the
      outgoing packet slots evenly between all tiles on the chip, is used.

      If a registration asks for more outgoing packet queue slots than are
      available, ::NETIO_TOOMANY_XMIT will be returned.  The total number
      of packet queue slots which are available for all tiles for each EPP
      is subject to change, but is currently ::NETIO_TOTAL_SENDS_OUTSTANDING.


      This value is ignored if ::NETIO_XMIT is not specified in flags.
      If you want to specify a large value here for a specific tile, you are
      advised to specify NETIO_NO_XMIT on other, non-transmitting tiles so
      that they do not consume a default number of packet slots.  Any tile
      transmitting is required to have at least ::NETIO_MIN_SENDS_OUTSTANDING
      slots allocated to it; values less than that will be silently
      increased by the NetIO library.
   */
  int num_sends_outstanding;
}
netio_input_config_t;


/** Registration flags; used in the @ref netio_input_config_t structure.
 * @addtogroup setup
 */
/** @{ */

/** Fail a registration request if we can't put packet buffers
    on the specified memory controllers. */
#define NETIO_STRICT_HOMING   0x00000002

/** This application expects no tags on its L2 headers. */
#define NETIO_TAG_NONE        0x00000004

/** This application expects Marvell extended tags on its L2 headers. */
#define NETIO_TAG_MRVL        0x00000008

/** This application expects Broadcom tags on its L2 headers. */
#define NETIO_TAG_BRCM        0x00000010

/** This registration may call routines which receive packets. */
#define NETIO_RECV            0x00000020

/** This registration may not call routines which receive packets. */
#define NETIO_NO_RECV         0x00000040

/** This registration may call routines which transmit packets. */
#define NETIO_XMIT            0x00000080

/** This registration may call routines which transmit packets with
    checksum acceleration. */
#define NETIO_XMIT_CSUM       0x00000100

/** This registration may not call routines which transmit packets. */
#define NETIO_NO_XMIT         0x00000200

/** This registration wants NetIO buffers mapped at an application-specified
    virtual address.

    NetIO buffers are by default created by the TMC common memory facility,
    which must be configured by a common ancestor of all processes sharing
    a network interface.  When this flag is specified, NetIO buffers are
    instead mapped at an address chosen by the application (and specified
    in @ref netio_input_config_t::fixed_buffer_va).  This allows multiple
    unrelated but cooperating processes to share a NetIO interface.
    All processes sharing the same interface must specify this flag,
    and all must specify the same fixed virtual address.

    @ref netio_input_config_t::fixed_buffer_va must be a
    multiple of 16 MB, and the packet buffers will occupy @ref
    netio_input_config_t::total_buffer_size bytes of virtual address
    space, beginning at that address.  If any of those virtual addresses
    are currently occupied by other memory objects, like application or
    shared library code or data, @ref netio_input_register() will return
    ::NETIO_FAULT.  While it is impossible to provide a fixed_buffer_va
    which will work for all applications, a good first guess might be to
    use 0xb0000000 minus @ref netio_input_config_t::total_buffer_size.
    If that fails, it might be helpful to consult the running application's
    virtual address description file (/proc/<em>pid</em>/maps) to see
    which regions of virtual address space are available.
 */
#define NETIO_FIXED_BUFFER_VA 0x00000400

/** This registration call will not complete unless the network link
    is up.  The process will wait several seconds for this to happen (the
    precise interval is link-dependent), but if the link does not come up,
    ::NETIO_LINK_DOWN will be returned.  This flag is the default if
    ::NETIO_NOREQUIRE_LINK_UP is not specified.  Note that this flag by
    itself does not request that the link be brought up; that can be done
    with the ::NETIO_AUTO_LINK_UPDN or ::NETIO_AUTO_LINK_UP flags (the
    latter is the default if no NETIO_AUTO_LINK_xxx flags are specified),
    or by explicitly setting the link's desired state via netio_set().
    If the link is not brought up by one of those methods, and this flag
    is specified, the registration operation will return ::NETIO_LINK_DOWN.
    This flag is ignored if it is specified along with ::NETIO_NO_XMIT and
    ::NETIO_NO_RECV.  See @ref link for more information on link
    management.
 */
#define NETIO_REQUIRE_LINK_UP    0x00000800

/** This registration call will complete even if the network link is not up.
    Whenever the link is not up, packets will not be sent or received:
    netio_get_packet() will return ::NETIO_NOPKT once all queued packets
    have been drained, and netio_send_packet() and similar routines will
    return NETIO_QUEUE_FULL once the outgoing packet queue in the EPP
    or the I/O shim is full.  See @ref link for more information on link
    management.
 */
#define NETIO_NOREQUIRE_LINK_UP  0x00001000

#ifndef __DOXYGEN__
/*
 * These are part of the implementation of the NETIO_AUTO_LINK_xxx flags,
 * but should not be used directly by applications, and are thus not
 * documented.
 */
#define _NETIO_AUTO_UP        0x00002000
#define _NETIO_AUTO_DN        0x00004000
#define _NETIO_AUTO_PRESENT   0x00008000
#endif

/** Set the desired state of the link to up, allowing any speeds which are
    supported by the link hardware, as part of this registration operation.
    Do not take down the link automatically.  This is the default if
    no other NETIO_AUTO_LINK_xxx flags are specified.  This flag is ignored
    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
    See @ref link for more information on link management.
 */
#define NETIO_AUTO_LINK_UP     (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP)

/** Set the desired state of the link to up, allowing any speeds which are
    supported by the link hardware, as part of this registration operation.
    Set the desired state of the link to down the next time no tiles are
    registered for packet reception or transmission.  This flag is ignored
    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
    See @ref link for more information on link management.
 */
#define NETIO_AUTO_LINK_UPDN   (_NETIO_AUTO_PRESENT | _NETIO_AUTO_UP | \
                                _NETIO_AUTO_DN)

/** Set the desired state of the link to down the next time no tiles are
    registered for packet reception or transmission.  This flag is ignored
    if it is specified along with ::NETIO_NO_XMIT and ::NETIO_NO_RECV.
    See @ref link for more information on link management.
 */
#define NETIO_AUTO_LINK_DN     (_NETIO_AUTO_PRESENT | _NETIO_AUTO_DN)

/** Do not bring up the link automatically as part of this registration
    operation.  Do not take down the link automatically.  This flag
    is ignored if it is specified along with ::NETIO_NO_XMIT and
    ::NETIO_NO_RECV.  See @ref link for more information on link management.
  */
#define NETIO_AUTO_LINK_NONE   _NETIO_AUTO_PRESENT


/** Minimum number of receive packets. */
#define NETIO_MIN_RECEIVE_PKTS            16

/** Lower bound on the maximum number of receive packets; may be higher
    than this on some interfaces. */
#define NETIO_MAX_RECEIVE_PKTS           128

/** Maximum number of send buffers, per packet size. */
#define NETIO_MAX_SEND_BUFFERS            16

/** Number of EPP queue slots, and thus outstanding sends, per EPP. */
#define NETIO_TOTAL_SENDS_OUTSTANDING   2015

/** Minimum number of EPP queue slots, and thus outstanding sends, per
 *  transmitting tile. */
#define NETIO_MIN_SENDS_OUTSTANDING       16


/**@}*/

#ifndef __DOXYGEN__

/**
 * An object for providing Ethernet packets to a process.
 */
struct __netio_queue_impl_t;

/**
 * An object for managing the user end of a NetIO queue.
 */
struct __netio_queue_user_impl_t;

#endif /* !__DOXYGEN__ */


/** A netio_queue_t describes a NetIO communications endpoint.
 * @ingroup setup
 */
typedef struct
{
#ifdef __DOXYGEN__
  uint8_t opaque[8];                 /**< This is an opaque structure. */
#else
  struct __netio_queue_impl_t* __system_part;    /**< The system part. */
  struct __netio_queue_user_impl_t* __user_part; /**< The user part. */
#ifdef _NETIO_PTHREAD
  _netio_percpu_mutex_t lock;                    /**< Queue lock. */
#endif
#endif
}
netio_queue_t;


/**
 * @brief Packet send context.
 *
 * @ingroup egress
 *
 * Packet send context for use with netio_send_packet_prepare and _commit.
 */
typedef struct
{
#ifdef __DOXYGEN__
  uint8_t opaque[44];   /**< This is an opaque structure. */
#else
  uint8_t flags;        /**< Defined below */
  uint8_t datalen;      /**< Number of valid words pointed to by data. */
  uint32_t request[9];  /**< Request to be sent to the EPP or shim.  Note
                             that this is smaller than the 11-word maximum
                             request size, since some constant values are
                             not saved in the context. */
  uint32_t *data;       /**< Data to be sent to the EPP or shim via IDN. */
#endif
}
netio_send_pkt_context_t;


#ifndef __DOXYGEN__
#define SEND_PKT_CTX_USE_EPP   1  /**< We're sending to an EPP. */
#define SEND_PKT_CTX_SEND_CSUM 2  /**< Request includes a checksum. */
#endif

/**
 * @brief Packet vector entry.
 *
 * @ingroup egress
 *
 * This data structure is used with netio_send_packet_vector() to send multiple
 * packets with one NetIO call.  The structure should be initialized by
 * calling netio_pkt_vector_set(), rather than by setting the fields
 * directly.
 *
 * This structure is guaranteed to be a power of two in size, no
 * bigger than one L2 cache line, and to be aligned modulo its size.
 */
typedef struct
#ifndef __DOXYGEN__
__attribute__((aligned(8)))
#endif
{
  /** Reserved for use by the user application.  When initialized with
   *  the netio_set_pkt_vector_entry() function, this field is guaranteed
   *  to be visible to readers only after all other fields are already
   *  visible.  This way it can be used as a valid flag or generation
   *  counter. */
  uint8_t user_data;

  /* Structure members below this point should not be accessed directly by
   * applications, as they may change in the future. */

  /** Low 8 bits of the packet address to send.  The high bits are
   *  acquired from the 'handle' field. */
  uint8_t buffer_address_low;

  /** Number of bytes to transmit. */
  uint16_t size;

  /** The raw handle from a netio_pkt_t.  If this is NETIO_PKT_HANDLE_NONE,
   *  this vector entry will be skipped and no packet will be transmitted. */
  netio_pkt_handle_t handle;
}
netio_pkt_vector_entry_t;


/**
 * @brief Initialize fields in a packet vector entry.
 *
 * @ingroup egress
 *
 * @param[out] v Pointer to the vector entry to be initialized.
 * @param[in] pkt Packet to be transmitted when the vector entry is passed to
 *        netio_send_packet_vector().  Note that the packet's attributes
 *        (e.g., its L2 offset and length) are captured at the time this
 *        routine is called; subsequent changes in those attributes will not
 *        be reflected in the packet which is actually transmitted.
 *        Changes in the packet's contents, however, will be so reflected.
 *        If this is NULL, no packet will be transmitted.
 * @param[in] user_data User data to be set in the vector entry.
 *        This function guarantees that the "user_data" field will become
 *        visible to a reader only after all other fields have become visible.
 *        This allows a structure in a ring buffer to be written and read
 *        by a polling reader without any locks or other synchronization.
 */
static __inline void
netio_pkt_vector_set(volatile netio_pkt_vector_entry_t* v, netio_pkt_t* pkt,
                     uint8_t user_data)
{
  if (pkt)
  {
    if (NETIO_PKT_IS_MINIMAL(pkt))
    {
      netio_pkt_minimal_metadata_t* mmd =
        (netio_pkt_minimal_metadata_t*) &pkt->__metadata;
      v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_MM(mmd, pkt) & 0xFF;
      v->size = NETIO_PKT_L2_LENGTH_MM(mmd, pkt);
    }
    else
    {
      netio_pkt_metadata_t* mda = &pkt->__metadata;
      v->buffer_address_low = (uintptr_t) NETIO_PKT_L2_DATA_M(mda, pkt) & 0xFF;
      v->size = NETIO_PKT_L2_LENGTH_M(mda, pkt);
    }
    v->handle.word = pkt->__packet.word;
  }
  else
  {
    v->handle.word = 0;   /* Set handle to NETIO_PKT_HANDLE_NONE. */
  }

  __asm__("" : : : "memory");

  v->user_data = user_data;
}


/**
 * Flags and structures for @ref netio_get() and @ref netio_set().
 * @ingroup config
 */

/** @{ */
/** Parameter class; addr is a NETIO_PARAM_xxx value. */
#define NETIO_PARAM       0
/** Interface MAC address. This address is only valid with @ref netio_get().
 *  The value is a 6-byte MAC address.  Depending upon the overall system
 *  design, a MAC address may or may not be available for each interface. */
#define NETIO_PARAM_MAC        0

/** Determine whether to suspend output on the receipt of pause frames.
 *  If the value is nonzero, the I/O shim will suspend output when a pause
 *  frame is received.  If the value is zero, pause frames will be ignored. */
#define NETIO_PARAM_PAUSE_IN   1

/** Determine whether to send pause frames if the I/O shim packet FIFOs are
 *  nearly full.  If the value is zero, pause frames are not sent.  If
 *  the value is nonzero, it is the delay value which will be sent in any
 *  pause frames which are output, in units of 512 bit times. */
#define NETIO_PARAM_PAUSE_OUT  2

/** Jumbo frame support.  The value is a 4-byte integer.  If the value is
 *  nonzero, the MAC will accept frames of up to 10240 bytes.  If the value
 *  is zero, the MAC will only accept frames of up to 1544 bytes. */
#define NETIO_PARAM_JUMBO      3

/** I/O shim's overflow statistics register.  The value is two 16-bit integers.
 *  The first 16-bit value (or the low 16 bits, if the value is treated as a
 *  32-bit number) is the count of packets which were completely dropped and
 *  not delivered by the shim.  The second 16-bit value (or the high 16 bits,
 *  if the value is treated as a 32-bit number) is the count of packets
 *  which were truncated and thus only partially delivered by the shim.  This
 *  register is automatically reset to zero after it has been read.
 */
#define NETIO_PARAM_OVERFLOW   4

/** IPP statistics.  This address is only valid with @ref netio_get().  The
 *  value is a netio_stat_t structure.  Unlike the I/O shim statistics, the
 *  IPP statistics are not all reset to zero on read; see the description
 *  of the netio_stat_t for details. */
#define NETIO_PARAM_STAT 5

/** Possible link state.  The value is a combination of "NETIO_LINK_xxx"
 *  flags.  With @ref netio_get(), this will indicate which flags are
 *  actually supported by the hardware.
 *
 *  For historical reasons, specifying this value to netio_set() will have
 *  the same behavior as using ::NETIO_PARAM_LINK_CONFIG, but this usage is
 *  discouraged.
 */
#define NETIO_PARAM_LINK_POSSIBLE_STATE 6

/** Link configuration. The value is a combination of "NETIO_LINK_xxx" flags.
 *  With @ref netio_set(), this will attempt to immediately bring up the
 *  link using whichever of the requested flags are supported by the
 *  hardware, or take down the link if the flags are zero; if this is
 *  not possible, an error will be returned.  Many programs will want
 *  to use ::NETIO_PARAM_LINK_DESIRED_STATE instead.
 *
 *  For historical reasons, specifying this value to netio_get() will
 *  have the same behavior as using ::NETIO_PARAM_LINK_POSSIBLE_STATE,
 *  but this usage is discouraged.
 */
#define NETIO_PARAM_LINK_CONFIG NETIO_PARAM_LINK_POSSIBLE_STATE

/** Current link state. This address is only valid with @ref netio_get().
 *  The value is zero or more of the "NETIO_LINK_xxx" flags, ORed together.
 *  If the link is down, the value ANDed with NETIO_LINK_SPEED will be
 *  zero; if the link is up, the value ANDed with NETIO_LINK_SPEED will
 *  result in exactly one of the NETIO_LINK_xxx values, indicating the
 *  current speed. */
#define NETIO_PARAM_LINK_CURRENT_STATE 7

/** Variant symbol for current state, retained for compatibility with
 *  pre-MDE-2.1 programs. */
#define NETIO_PARAM_LINK_STATUS NETIO_PARAM_LINK_CURRENT_STATE

/** Packet Coherence protocol. This address is only valid with @ref netio_get().
 *  The value is nonzero if the interface is configured for cache-coherent DMA.
 */
#define NETIO_PARAM_COHERENT 8

/** Desired link state. The value is a conbination of "NETIO_LINK_xxx"
 *  flags, which specify the desired state for the link.  With @ref
 *  netio_set(), this will, in the background, attempt to bring up the link
 *  using whichever of the requested flags are reasonable, or take down the
 *  link if the flags are zero.  The actual link up or down operation may
 *  happen after this call completes.  If the link state changes in the
 *  future, the system will continue to try to get back to the desired link
 *  state; for instance, if the link is brought up successfully, and then
 *  the network cable is disconnected, the link will go down.  However, the
 *  desired state of the link is still up, so if the cable is reconnected,
 *  the link will be brought up again.
 *
 *  With @ref netio_get(), this will indicate the desired state for the
 *  link, as set with a previous netio_set() call, or implicitly by a
 *  netio_input_register() or netio_input_unregister() operation.  This may
 *  not reflect the current state of the link; to get that, use
 *  ::NETIO_PARAM_LINK_CURRENT_STATE. */
#define NETIO_PARAM_LINK_DESIRED_STATE 9

/** NetIO statistics structure.  Retrieved using the ::NETIO_PARAM_STAT
 *  address passed to @ref netio_get(). */
typedef struct
{
  /** Number of packets which have been received by the IPP and forwarded
   *  to a tile's receive queue for processing.  This value wraps at its
   *  maximum, and is not cleared upon read. */
  uint32_t packets_received;

  /** Number of packets which have been dropped by the IPP, because they could
   *  not be received, or could not be forwarded to a tile.  The former happens
   *  when the IPP does not have a free packet buffer of suitable size for an
   *  incoming frame.  The latter happens when all potential destination tiles
   *  for a packet, as defined by the group, bucket, and queue configuration,
   *  have full receive queues.   This value wraps at its maximum, and is not
   *  cleared upon read. */
  uint32_t packets_dropped;

  /*
   * Note: the #defines after each of the following four one-byte values
   * denote their location within the third word of the netio_stat_t.  They
   * are intended for use only by the IPP implementation and are thus omitted
   * from the Doxygen output.
   */

  /** Number of packets dropped because no worker was able to accept a new
   *  packet.  This value saturates at its maximum, and is cleared upon
   *  read. */
  uint8_t drops_no_worker;
#ifndef __DOXYGEN__
#define NETIO_STAT_DROPS_NO_WORKER   0
#endif

  /** Number of packets dropped because no small buffers were available.
   *  This value saturates at its maximum, and is cleared upon read. */
  uint8_t drops_no_smallbuf;
#ifndef __DOXYGEN__
#define NETIO_STAT_DROPS_NO_SMALLBUF 1
#endif

  /** Number of packets dropped because no large buffers were available.
   *  This value saturates at its maximum, and is cleared upon read. */
  uint8_t drops_no_largebuf;
#ifndef __DOXYGEN__
#define NETIO_STAT_DROPS_NO_LARGEBUF 2
#endif

  /** Number of packets dropped because no jumbo buffers were available.
   *  This value saturates at its maximum, and is cleared upon read. */
  uint8_t drops_no_jumbobuf;
#ifndef __DOXYGEN__
#define NETIO_STAT_DROPS_NO_JUMBOBUF 3
#endif
}
netio_stat_t;


/** Link can run, should run, or is running at 10 Mbps. */
#define NETIO_LINK_10M         0x01

/** Link can run, should run, or is running at 100 Mbps. */
#define NETIO_LINK_100M        0x02

/** Link can run, should run, or is running at 1 Gbps. */
#define NETIO_LINK_1G          0x04

/** Link can run, should run, or is running at 10 Gbps. */
#define NETIO_LINK_10G         0x08

/** Link should run at the highest speed supported by the link and by
 *  the device connected to the link.  Only usable as a value for
 *  the link's desired state; never returned as a value for the current
 *  or possible states. */
#define NETIO_LINK_ANYSPEED    0x10

/** All legal link speeds. */
#define NETIO_LINK_SPEED  (NETIO_LINK_10M  | \
                           NETIO_LINK_100M | \
                           NETIO_LINK_1G   | \
                           NETIO_LINK_10G  | \
                           NETIO_LINK_ANYSPEED)


/** MAC register class.  Addr is a register offset within the MAC.
 *  Registers within the XGbE and GbE MACs are documented in the Tile
 *  Processor I/O Device Guide (UG104). MAC registers start at address
 *  0x4000, and do not include the MAC_INTERFACE registers. */
#define NETIO_MAC             1

/** MDIO register class (IEEE 802.3 clause 22 format).  Addr is the "addr"
 *  member of a netio_mdio_addr_t structure. */
#define NETIO_MDIO            2

/** MDIO register class (IEEE 802.3 clause 45 format).  Addr is the "addr"
 *  member of a netio_mdio_addr_t structure. */
#define NETIO_MDIO_CLAUSE45   3

/** NetIO MDIO address type.  Retrieved or provided using the ::NETIO_MDIO
 *  address passed to @ref netio_get() or @ref netio_set(). */
typedef union
{
  struct
  {
    unsigned int reg:16;  /**< MDIO register offset.  For clause 22 access,
                               must be less than 32. */
    unsigned int phy:5;   /**< Which MDIO PHY to access. */
    unsigned int dev:5;   /**< Which MDIO device to access within that PHY.
                               Applicable for clause 45 access only; ignored
                               for clause 22 access. */
  }
  bits;                   /**< Container for bitfields. */
  uint64_t addr;          /**< Value to pass to @ref netio_get() or
                           *   @ref netio_set(). */
}
netio_mdio_addr_t;

/** @} */

#endif /* __NETIO_INTF_H__ */