Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
/*
 * Intel Wireless WiMAX Connection 2400m
 * Firmware uploader
 *
 *
 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of Intel Corporation nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * Intel Corporation <linux-wimax@intel.com>
 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
 *  - Initial implementation
 *
 *
 * THE PROCEDURE
 *
 * The 2400m and derived devices work in two modes: boot-mode or
 * normal mode. In boot mode we can execute only a handful of commands
 * targeted at uploading the firmware and launching it.
 *
 * The 2400m enters boot mode when it is first connected to the
 * system, when it crashes and when you ask it to reboot. There are
 * two submodes of the boot mode: signed and non-signed. Signed takes
 * firmwares signed with a certain private key, non-signed takes any
 * firmware. Normal hardware takes only signed firmware.
 *
 * On boot mode, in USB, we write to the device using the bulk out
 * endpoint and read from it in the notification endpoint.
 *
 * Upon entrance to boot mode, the device sends (preceded with a few
 * zero length packets (ZLPs) on the notification endpoint in USB) a
 * reboot barker (4 le32 words with the same value). We ack it by
 * sending the same barker to the device. The device acks with a
 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
 * then is fully booted. At this point we can upload the firmware.
 *
 * Note that different iterations of the device and EEPROM
 * configurations will send different [re]boot barkers; these are
 * collected in i2400m_barker_db along with the firmware
 * characteristics they require.
 *
 * This process is accomplished by the i2400m_bootrom_init()
 * function. All the device interaction happens through the
 * i2400m_bm_cmd() [boot mode command]. Special return values will
 * indicate if the device did reset during the process.
 *
 * After this, we read the MAC address and then (if needed)
 * reinitialize the device. We need to read it ahead of time because
 * in the future, we might not upload the firmware until userspace
 * 'ifconfig up's the device.
 *
 * We can then upload the firmware file. The file is composed of a BCF
 * header (basic data, keys and signatures) and a list of write
 * commands and payloads. Optionally more BCF headers might follow the
 * main payload. We first upload the header [i2400m_dnload_init()] and
 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
 * the new firmware [i2400m_dnload_finalize()].
 *
 * Once firmware is uploaded, we are good to go :)
 *
 * When we don't know in which mode we are, we first try by sending a
 * warm reset request that will take us to boot-mode. If we time out
 * waiting for a reboot barker, that means maybe we are already in
 * boot mode, so we send a reboot barker.
 *
 * COMMAND EXECUTION
 *
 * This code (and process) is single threaded; for executing commands,
 * we post a URB to the notification endpoint, post the command, wait
 * for data on the notification buffer. We don't need to worry about
 * others as we know we are the only ones in there.
 *
 * BACKEND IMPLEMENTATION
 *
 * This code is bus-generic; the bus-specific driver provides back end
 * implementations to send a boot mode command to the device and to
 * read an acknolwedgement from it (or an asynchronous notification)
 * from it.
 *
 * FIRMWARE LOADING
 *
 * Note that in some cases, we can't just load a firmware file (for
 * example, when resuming). For that, we might cache the firmware
 * file. Thus, when doing the bootstrap, if there is a cache firmware
 * file, it is used; if not, loading from disk is attempted.
 *
 * ROADMAP
 *
 * i2400m_barker_db_init              Called by i2400m_driver_init()
 *   i2400m_barker_db_add
 *
 * i2400m_barker_db_exit              Called by i2400m_driver_exit()
 *
 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
 *   request_firmware
 *   i2400m_fw_bootstrap
 *     i2400m_fw_check
 *       i2400m_fw_hdr_check
 *     i2400m_fw_dnload
 *   release_firmware
 *
 * i2400m_fw_dnload
 *   i2400m_bootrom_init
 *     i2400m_bm_cmd
 *     i2400m_reset
 *   i2400m_dnload_init
 *     i2400m_dnload_init_signed
 *     i2400m_dnload_init_nonsigned
 *       i2400m_download_chunk
 *         i2400m_bm_cmd
 *   i2400m_dnload_bcf
 *     i2400m_bm_cmd
 *   i2400m_dnload_finalize
 *     i2400m_bm_cmd
 *
 * i2400m_bm_cmd
 *   i2400m->bus_bm_cmd_send()
 *   i2400m->bus_bm_wait_for_ack
 *   __i2400m_bm_ack_verify
 *     i2400m_is_boot_barker
 *
 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
 *                                    commands before sending
 *
 * i2400m_pm_notifier                 Called on Power Management events
 *   i2400m_fw_cache
 *   i2400m_fw_uncache
 */
#include <linux/firmware.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/export.h>
#include "i2400m.h"


#define D_SUBMODULE fw
#include "debug-levels.h"


static const __le32 i2400m_ACK_BARKER[4] = {
	cpu_to_le32(I2400M_ACK_BARKER),
	cpu_to_le32(I2400M_ACK_BARKER),
	cpu_to_le32(I2400M_ACK_BARKER),
	cpu_to_le32(I2400M_ACK_BARKER)
};


/**
 * Prepare a boot-mode command for delivery
 *
 * @cmd: pointer to bootrom header to prepare
 *
 * Computes checksum if so needed. After calling this function, DO NOT
 * modify the command or header as the checksum won't work anymore.
 *
 * We do it from here because some times we cannot do it in the
 * original context the command was sent (it is a const), so when we
 * copy it to our staging buffer, we add the checksum there.
 */
void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
{
	if (i2400m_brh_get_use_checksum(cmd)) {
		int i;
		u32 checksum = 0;
		const u32 *checksum_ptr = (void *) cmd->payload;
		for (i = 0; i < cmd->data_size / 4; i++)
			checksum += cpu_to_le32(*checksum_ptr++);
		checksum += cmd->command + cmd->target_addr + cmd->data_size;
		cmd->block_checksum = cpu_to_le32(checksum);
	}
}
EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);


/*
 * Database of known barkers.
 *
 * A barker is what the device sends indicating he is ready to be
 * bootloaded. Different versions of the device will send different
 * barkers. Depending on the barker, it might mean the device wants
 * some kind of firmware or the other.
 */
static struct i2400m_barker_db {
	__le32 data[4];
} *i2400m_barker_db;
static size_t i2400m_barker_db_used, i2400m_barker_db_size;


static
int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
		       gfp_t gfp_flags)
{
	size_t old_count = *_count,
		new_count = old_count ? 2 * old_count : 2,
		old_size = el_size * old_count,
		new_size = el_size * new_count;
	void *nptr = krealloc(*ptr, new_size, gfp_flags);
	if (nptr) {
		/* zero the other half or the whole thing if old_count
		 * was zero */
		if (old_size == 0)
			memset(nptr, 0, new_size);
		else
			memset(nptr + old_size, 0, old_size);
		*_count = new_count;
		*ptr = nptr;
		return 0;
	} else
		return -ENOMEM;
}


/*
 * Add a barker to the database
 *
 * This cannot used outside of this module and only at at module_init
 * time. This is to avoid the need to do locking.
 */
static
int i2400m_barker_db_add(u32 barker_id)
{
	int result;

	struct i2400m_barker_db *barker;
	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
		result = i2400m_zrealloc_2x(
			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
		if (result < 0)
			return result;
	}
	barker = i2400m_barker_db + i2400m_barker_db_used++;
	barker->data[0] = le32_to_cpu(barker_id);
	barker->data[1] = le32_to_cpu(barker_id);
	barker->data[2] = le32_to_cpu(barker_id);
	barker->data[3] = le32_to_cpu(barker_id);
	return 0;
}


void i2400m_barker_db_exit(void)
{
	kfree(i2400m_barker_db);
	i2400m_barker_db = NULL;
	i2400m_barker_db_size = 0;
	i2400m_barker_db_used = 0;
}


/*
 * Helper function to add all the known stable barkers to the barker
 * database.
 */
static
int i2400m_barker_db_known_barkers(void)
{
	int result;

	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
	if (result < 0)
		goto error_add;
	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
	if (result < 0)
		goto error_add;
	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
	if (result < 0)
		goto error_add;
error_add:
       return result;
}


/*
 * Initialize the barker database
 *
 * This can only be used from the module_init function for this
 * module; this is to avoid the need to do locking.
 *
 * @options: command line argument with extra barkers to
 *     recognize. This is a comma-separated list of 32-bit hex
 *     numbers. They are appended to the existing list. Setting 0
 *     cleans the existing list and starts a new one.
 */
int i2400m_barker_db_init(const char *_options)
{
	int result;
	char *options = NULL, *options_orig, *token;

	i2400m_barker_db = NULL;
	i2400m_barker_db_size = 0;
	i2400m_barker_db_used = 0;

	result = i2400m_barker_db_known_barkers();
	if (result < 0)
		goto error_add;
	/* parse command line options from i2400m.barkers */
	if (_options != NULL) {
		unsigned barker;

		options_orig = kstrdup(_options, GFP_KERNEL);
		if (options_orig == NULL) {
			result = -ENOMEM;
			goto error_parse;
		}
		options = options_orig;

		while ((token = strsep(&options, ",")) != NULL) {
			if (*token == '\0')	/* eat joint commas */
				continue;
			if (sscanf(token, "%x", &barker) != 1
			    || barker > 0xffffffff) {
				printk(KERN_ERR "%s: can't recognize "
				       "i2400m.barkers value '%s' as "
				       "a 32-bit number\n",
				       __func__, token);
				result = -EINVAL;
				goto error_parse;
			}
			if (barker == 0) {
				/* clean list and start new */
				i2400m_barker_db_exit();
				continue;
			}
			result = i2400m_barker_db_add(barker);
			if (result < 0)
				goto error_add;
		}
		kfree(options_orig);
	}
	return 0;

error_parse:
error_add:
	kfree(i2400m_barker_db);
	return result;
}


/*
 * Recognize a boot barker
 *
 * @buf: buffer where the boot barker.
 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
 *     here so the function can check it for the caller.
 *
 * Note that as a side effect, upon identifying the obtained boot
 * barker, this function will set i2400m->barker to point to the right
 * barker database entry. Subsequent calls to the function will result
 * in verifying that the same type of boot barker is returned when the
 * device [re]boots (as long as the same device instance is used).
 *
 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
 *     buffer in @buf doesn't match any boot barker in the database or
 *     -EILSEQ if the buffer doesn't have the right size.
 */
int i2400m_is_boot_barker(struct i2400m *i2400m,
			  const void *buf, size_t buf_size)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	struct i2400m_barker_db *barker;
	int i;

	result = -ENOENT;
	if (buf_size != sizeof(i2400m_barker_db[i].data))
		return result;

	/* Short circuit if we have already discovered the barker
	 * associated with the device. */
	if (i2400m->barker
	    && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
		unsigned index = (i2400m->barker - i2400m_barker_db)
			/ sizeof(*i2400m->barker);
		d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
			 index, le32_to_cpu(i2400m->barker->data[0]));
		return 0;
	}

	for (i = 0; i < i2400m_barker_db_used; i++) {
		barker = &i2400m_barker_db[i];
		BUILD_BUG_ON(sizeof(barker->data) != 16);
		if (memcmp(buf, barker->data, sizeof(barker->data)))
			continue;

		if (i2400m->barker == NULL) {
			i2400m->barker = barker;
			d_printf(1, dev, "boot barker set to #%u/%08x\n",
				 i, le32_to_cpu(barker->data[0]));
			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
				i2400m->sboot = 0;
			else
				i2400m->sboot = 1;
		} else if (i2400m->barker != barker) {
			dev_err(dev, "HW inconsistency: device "
				"reports a different boot barker "
				"than set (from %08x to %08x)\n",
				le32_to_cpu(i2400m->barker->data[0]),
				le32_to_cpu(barker->data[0]));
			result = -EIO;
		} else
			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
				 i, le32_to_cpu(barker->data[0]));
		result = 0;
		break;
	}
	return result;
}
EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);


/*
 * Verify the ack data received
 *
 * Given a reply to a boot mode command, chew it and verify everything
 * is ok.
 *
 * @opcode: opcode which generated this ack. For error messages.
 * @ack: pointer to ack data we received
 * @ack_size: size of that data buffer
 * @flags: I2400M_BM_CMD_* flags we called the command with.
 *
 * Way too long function -- maybe it should be further split
 */
static
ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
			       struct i2400m_bootrom_header *ack,
			       size_t ack_size, int flags)
{
	ssize_t result = -ENOMEM;
	struct device *dev = i2400m_dev(i2400m);

	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
		  i2400m, opcode, ack, ack_size);
	if (ack_size < sizeof(*ack)) {
		result = -EIO;
		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
			"return enough data (%zu bytes vs %zu expected)\n",
			opcode, ack_size, sizeof(*ack));
		goto error_ack_short;
	}
	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
	if (result >= 0) {
		result = -ERESTARTSYS;
		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
		goto error_reboot;
	}
	if (ack_size == sizeof(i2400m_ACK_BARKER)
		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
		result = -EISCONN;
		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
			 opcode);
		goto error_reboot_ack;
	}
	result = 0;
	if (flags & I2400M_BM_CMD_RAW)
		goto out_raw;
	ack->data_size = le32_to_cpu(ack->data_size);
	ack->target_addr = le32_to_cpu(ack->target_addr);
	ack->block_checksum = le32_to_cpu(ack->block_checksum);
	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
		 "response %u csum %u rr %u da %u\n",
		 opcode, i2400m_brh_get_opcode(ack),
		 i2400m_brh_get_response(ack),
		 i2400m_brh_get_use_checksum(ack),
		 i2400m_brh_get_response_required(ack),
		 i2400m_brh_get_direct_access(ack));
	result = -EIO;
	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
		goto error_ack_signature;
	}
	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
		dev_err(dev, "boot-mode cmd %d: HW BUG? "
			"received response for opcode %u, expected %u\n",
			opcode, i2400m_brh_get_opcode(ack), opcode);
		goto error_ack_opcode;
	}
	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
			opcode, i2400m_brh_get_response(ack));
		goto error_ack_failed;
	}
	if (ack_size < ack->data_size + sizeof(*ack)) {
		dev_err(dev, "boot-mode cmd %d: SW BUG "
			"driver provided only %zu bytes for %zu bytes "
			"of data\n", opcode, ack_size,
			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
		goto error_ack_short_buffer;
	}
	result = ack_size;
	/* Don't you love this stack of empty targets? Well, I don't
	 * either, but it helps track exactly who comes in here and
	 * why :) */
error_ack_short_buffer:
error_ack_failed:
error_ack_opcode:
error_ack_signature:
out_raw:
error_reboot_ack:
error_reboot:
error_ack_short:
	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
		i2400m, opcode, ack, ack_size, (int) result);
	return result;
}


/**
 * i2400m_bm_cmd - Execute a boot mode command
 *
 * @cmd: buffer containing the command data (pointing at the header).
 *     This data can be ANYWHERE (for USB, we will copy it to an
 *     specific buffer). Make sure everything is in proper little
 *     endian.
 *
 *     A raw buffer can be also sent, just cast it and set flags to
 *     I2400M_BM_CMD_RAW.
 *
 *     This function will generate a checksum for you if the
 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
 *     is set).
 *
 *     You can use the i2400m->bm_cmd_buf to stage your commands and
 *     send them.
 *
 *     If NULL, no command is sent (we just wait for an ack).
 *
 * @cmd_size: size of the command. Will be auto padded to the
 *     bus-specific drivers padding requirements.
 *
 * @ack: buffer where to place the acknowledgement. If it is a regular
 *     command response, all fields will be returned with the right,
 *     native endianess.
 *
 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
 *
 * @ack_size: size of @ack, 16 aligned; you need to provide at least
 *     sizeof(*ack) bytes and then enough to contain the return data
 *     from the command
 *
 * @flags: see I2400M_BM_CMD_* above.
 *
 * @returns: bytes received by the notification; if < 0, an errno code
 *     denoting an error or:
 *
 *     -ERESTARTSYS  The device has rebooted
 *
 * Executes a boot-mode command and waits for a response, doing basic
 * validation on it; if a zero length response is received, it retries
 * waiting for a response until a non-zero one is received (timing out
 * after %I2400M_BOOT_RETRIES retries).
 */
static
ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
		      struct i2400m_bootrom_header *ack, size_t ack_size,
		      int flags)
{
	ssize_t result = -ENOMEM, rx_bytes;
	struct device *dev = i2400m_dev(i2400m);
	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);

	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
		  i2400m, cmd, cmd_size, ack, ack_size);
	BUG_ON(ack_size < sizeof(*ack));
	BUG_ON(i2400m->boot_mode == 0);

	if (cmd != NULL) {		/* send the command */
		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
		if (result < 0)
			goto error_cmd_send;
		if ((flags & I2400M_BM_CMD_RAW) == 0)
			d_printf(5, dev,
				 "boot-mode cmd %d csum %u rr %u da %u: "
				 "addr 0x%04x size %u block csum 0x%04x\n",
				 opcode, i2400m_brh_get_use_checksum(cmd),
				 i2400m_brh_get_response_required(cmd),
				 i2400m_brh_get_direct_access(cmd),
				 cmd->target_addr, cmd->data_size,
				 cmd->block_checksum);
	}
	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
	if (result < 0) {
		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
			opcode, (int) result);	/* bah, %zd doesn't work */
		goto error_wait_for_ack;
	}
	rx_bytes = result;
	/* verify the ack and read more if necessary [result is the
	 * final amount of bytes we get in the ack]  */
	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
	if (result < 0)
		goto error_bad_ack;
	/* Don't you love this stack of empty targets? Well, I don't
	 * either, but it helps track exactly who comes in here and
	 * why :) */
	result = rx_bytes;
error_bad_ack:
error_wait_for_ack:
error_cmd_send:
	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
	return result;
}


/**
 * i2400m_download_chunk - write a single chunk of data to the device's memory
 *
 * @i2400m: device descriptor
 * @buf: the buffer to write
 * @buf_len: length of the buffer to write
 * @addr: address in the device memory space
 * @direct: bootrom write mode
 * @do_csum: should a checksum validation be performed
 */
static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
				 size_t __chunk_len, unsigned long addr,
				 unsigned int direct, unsigned int do_csum)
{
	int ret;
	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
	struct device *dev = i2400m_dev(i2400m);
	struct {
		struct i2400m_bootrom_header cmd;
		u8 cmd_payload[chunk_len];
	} __packed *buf;
	struct i2400m_bootrom_header ack;

	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
		  addr, direct, do_csum);
	buf = i2400m->bm_cmd_buf;
	memcpy(buf->cmd_payload, chunk, __chunk_len);
	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);

	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
					      __chunk_len & 0x3 ? 0 : do_csum,
					      __chunk_len & 0xf ? 0 : direct);
	buf->cmd.target_addr = cpu_to_le32(addr);
	buf->cmd.data_size = cpu_to_le32(__chunk_len);
	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
			    &ack, sizeof(ack), 0);
	if (ret >= 0)
		ret = 0;
	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
		addr, direct, do_csum, ret);
	return ret;
}


/*
 * Download a BCF file's sections to the device
 *
 * @i2400m: device descriptor
 * @bcf: pointer to firmware data (first header followed by the
 *     payloads). Assumed verified and consistent.
 * @bcf_len: length (in bytes) of the @bcf buffer.
 *
 * Returns: < 0 errno code on error or the offset to the jump instruction.
 *
 * Given a BCF file, downloads each section (a command and a payload)
 * to the device's address space. Actually, it just executes each
 * command i the BCF file.
 *
 * The section size has to be aligned to 4 bytes AND the padding has
 * to be taken from the firmware file, as the signature takes it into
 * account.
 */
static
ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
{
	ssize_t ret;
	struct device *dev = i2400m_dev(i2400m);
	size_t offset,		/* iterator offset */
		data_size,	/* Size of the data payload */
		section_size,	/* Size of the whole section (cmd + payload) */
		section = 1;
	const struct i2400m_bootrom_header *bh;
	struct i2400m_bootrom_header ack;

	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
		  i2400m, bcf, bcf_len);
	/* Iterate over the command blocks in the BCF file that start
	 * after the header */
	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
	while (1) {	/* start sending the file */
		bh = (void *) bcf + offset;
		data_size = le32_to_cpu(bh->data_size);
		section_size = ALIGN(sizeof(*bh) + data_size, 4);
		d_printf(7, dev,
			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
			 section, offset, sizeof(*bh) + data_size,
			 le32_to_cpu(bh->target_addr));
		/*
		 * We look for JUMP cmd from the bootmode header,
		 * either I2400M_BRH_SIGNED_JUMP for secure boot
		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
		 * should be the bootmode header with JUMP cmd.
		 */
		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
			d_printf(5, dev,  "jump found @%zu\n", offset);
			break;
		}
		if (offset + section_size > bcf_len) {
			dev_err(dev, "fw %s: bad section #%zu, "
				"end (@%zu) beyond EOF (@%zu)\n",
				i2400m->fw_name, section,
				offset + section_size,  bcf_len);
			ret = -EINVAL;
			goto error_section_beyond_eof;
		}
		__i2400m_msleep(20);
		ret = i2400m_bm_cmd(i2400m, bh, section_size,
				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
		if (ret < 0) {
			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
				"failed %d\n", i2400m->fw_name, section,
				offset, sizeof(*bh) + data_size, (int) ret);
			goto error_send;
		}
		offset += section_size;
		section++;
	}
	ret = offset;
error_section_beyond_eof:
error_send:
	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
		i2400m, bcf, bcf_len, (int) ret);
	return ret;
}


/*
 * Indicate if the device emitted a reboot barker that indicates
 * "signed boot"
 */
static
unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
{
	return likely(i2400m->sboot);
}


/*
 * Do the final steps of uploading firmware
 *
 * @bcf_hdr: BCF header we are actually using
 * @bcf: pointer to the firmware image (which matches the first header
 *     that is followed by the actual payloads).
 * @offset: [byte] offset into @bcf for the command we need to send.
 *
 * Depending on the boot mode (signed vs non-signed), different
 * actions need to be taken.
 */
static
int i2400m_dnload_finalize(struct i2400m *i2400m,
			   const struct i2400m_bcf_hdr *bcf_hdr,
			   const struct i2400m_bcf_hdr *bcf, size_t offset)
{
	int ret = 0;
	struct device *dev = i2400m_dev(i2400m);
	struct i2400m_bootrom_header *cmd, ack;
	struct {
		struct i2400m_bootrom_header cmd;
		u8 cmd_pl[0];
	} __packed *cmd_buf;
	size_t signature_block_offset, signature_block_size;

	d_fnstart(3, dev, "offset %zu\n", offset);
	cmd = (void *) bcf + offset;
	if (i2400m_boot_is_signed(i2400m) == 0) {
		struct i2400m_bootrom_header jump_ack;
		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
			le32_to_cpu(cmd->target_addr));
		cmd_buf = i2400m->bm_cmd_buf;
		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
		cmd = &cmd_buf->cmd;
		/* now cmd points to the actual bootrom_header in cmd_buf */
		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
		cmd->data_size = 0;
		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
				    &jump_ack, sizeof(jump_ack), 0);
	} else {
		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
			 le32_to_cpu(cmd->target_addr));
		cmd_buf = i2400m->bm_cmd_buf;
		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
		signature_block_offset =
			sizeof(*bcf_hdr)
			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
		signature_block_size =
			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
		memcpy(cmd_buf->cmd_pl,
		       (void *) bcf_hdr + signature_block_offset,
		       signature_block_size);
		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
				    sizeof(cmd_buf->cmd) + signature_block_size,
				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
	}
	d_fnend(3, dev, "returning %d\n", ret);
	return ret;
}


/**
 * i2400m_bootrom_init - Reboots a powered device into boot mode
 *
 * @i2400m: device descriptor
 * @flags:
 *      I2400M_BRI_SOFT: a reboot barker has been seen
 *          already, so don't wait for it.
 *
 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
 *          for a reboot barker notification. This is a one shot; if
 *          the state machine needs to send a reboot command it will.
 *
 * Returns:
 *
 *     < 0 errno code on error, 0 if ok.
 *
 * Description:
 *
 * Tries hard enough to put the device in boot-mode. There are two
 * main phases to this:
 *
 * a. (1) send a reboot command and (2) get a reboot barker
 *
 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
 *        getting an ack barker in return
 *
 * We want to skip (a) in some cases [soft]. The state machine is
 * horrible, but it is basically: on each phase, send what has to be
 * sent (if any), wait for the answer and act on the answer. We might
 * have to backtrack and retry, so we keep a max tries counter for
 * that.
 *
 * It sucks because we don't know ahead of time which is going to be
 * the reboot barker (the device might send different ones depending
 * on its EEPROM config) and once the device reboots and waits for the
 * echo/ack reboot barker being sent back, it doesn't understand
 * anything else. So we can be left at the point where we don't know
 * what to send to it -- cold reset and bus reset seem to have little
 * effect. So the function iterates (in this case) through all the
 * known barkers and tries them all until an ACK is
 * received. Otherwise, it gives up.
 *
 * If we get a timeout after sending a warm reset, we do it again.
 */
int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	struct i2400m_bootrom_header *cmd;
	struct i2400m_bootrom_header ack;
	int count = i2400m->bus_bm_retries;
	int ack_timeout_cnt = 1;
	unsigned i;

	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));

	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
	result = -ENOMEM;
	cmd = i2400m->bm_cmd_buf;
	if (flags & I2400M_BRI_SOFT)
		goto do_reboot_ack;
do_reboot:
	ack_timeout_cnt = 1;
	if (--count < 0)
		goto error_timeout;
	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
		 count);
	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
		i2400m_reset(i2400m, I2400M_RT_WARM);
	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
			       I2400M_BM_CMD_RAW);
	flags &= ~I2400M_BRI_NO_REBOOT;
	switch (result) {
	case -ERESTARTSYS:
		/*
		 * at this point, i2400m_bm_cmd(), through
		 * __i2400m_bm_ack_process(), has updated
		 * i2400m->barker and we are good to go.
		 */
		d_printf(4, dev, "device reboot: got reboot barker\n");
		break;
	case -EISCONN:	/* we don't know how it got here...but we follow it */
		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
		goto do_reboot;
	case -ETIMEDOUT:
		/*
		 * Device has timed out, we might be in boot mode
		 * already and expecting an ack; if we don't know what
		 * the barker is, we just send them all. Cold reset
		 * and bus reset don't work. Beats me.
		 */
		if (i2400m->barker != NULL) {
			dev_err(dev, "device boot: reboot barker timed out, "
				"trying (set) %08x echo/ack\n",
				le32_to_cpu(i2400m->barker->data[0]));
			goto do_reboot_ack;
		}
		for (i = 0; i < i2400m_barker_db_used; i++) {
			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
			memcpy(cmd, barker->data, sizeof(barker->data));
			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
					       &ack, sizeof(ack),
					       I2400M_BM_CMD_RAW);
			if (result == -EISCONN) {
				dev_warn(dev, "device boot: got ack barker "
					 "after sending echo/ack barker "
					 "#%d/%08x; rebooting j.i.c.\n",
					 i, le32_to_cpu(barker->data[0]));
				flags &= ~I2400M_BRI_NO_REBOOT;
				goto do_reboot;
			}
		}
		dev_err(dev, "device boot: tried all the echo/acks, could "
			"not get device to respond; giving up");
		result = -ESHUTDOWN;
	case -EPROTO:
	case -ESHUTDOWN:	/* dev is gone */
	case -EINTR:		/* user cancelled */
		goto error_dev_gone;
	default:
		dev_err(dev, "device reboot: error %d while waiting "
			"for reboot barker - rebooting\n", result);
		d_dump(1, dev, &ack, result);
		goto do_reboot;
	}
	/* At this point we ack back with 4 REBOOT barkers and expect
	 * 4 ACK barkers. This is ugly, as we send a raw command --
	 * hence the cast. _bm_cmd() will catch the reboot ack
	 * notification and report it as -EISCONN. */
do_reboot_ack:
	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
	switch (result) {
	case -ERESTARTSYS:
		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
		if (--count < 0)
			goto error_timeout;
		goto do_reboot_ack;
	case -EISCONN:
		d_printf(4, dev, "reboot ack: got ack barker - good\n");
		break;
	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
		if (ack_timeout_cnt-- < 0) {
			d_printf(4, dev, "reboot ack timedout: retrying\n");
			goto do_reboot_ack;
		} else {
			dev_err(dev, "reboot ack timedout too long: "
				"trying reboot\n");
			goto do_reboot;
		}
		break;
	case -EPROTO:
	case -ESHUTDOWN:	/* dev is gone */
		goto error_dev_gone;
	default:
		dev_err(dev, "device reboot ack: error %d while waiting for "
			"reboot ack barker - rebooting\n", result);
		goto do_reboot;
	}
	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
	result = 0;
exit_timeout:
error_dev_gone:
	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
		i2400m, flags, result);
	return result;

error_timeout:
	dev_err(dev, "Timed out waiting for reboot ack\n");
	result = -ETIMEDOUT;
	goto exit_timeout;
}


/*
 * Read the MAC addr
 *
 * The position this function reads is fixed in device memory and
 * always available, even without firmware.
 *
 * Note we specify we want to read only six bytes, but provide space
 * for 16, as we always get it rounded up.
 */
int i2400m_read_mac_addr(struct i2400m *i2400m)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
	struct i2400m_bootrom_header *cmd;
	struct {
		struct i2400m_bootrom_header ack;
		u8 ack_pl[16];
	} __packed ack_buf;

	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	cmd = i2400m->bm_cmd_buf;
	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
	cmd->target_addr = cpu_to_le32(0x00203fe8);
	cmd->data_size = cpu_to_le32(6);
	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
			       &ack_buf.ack, sizeof(ack_buf), 0);
	if (result < 0) {
		dev_err(dev, "BM: read mac addr failed: %d\n", result);
		goto error_read_mac;
	}
	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
	if (i2400m->bus_bm_mac_addr_impaired == 1) {
		ack_buf.ack_pl[0] = 0x00;
		ack_buf.ack_pl[1] = 0x16;
		ack_buf.ack_pl[2] = 0xd3;
		get_random_bytes(&ack_buf.ack_pl[3], 3);
		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
			"mac addr is %pM\n", ack_buf.ack_pl);
		result = 0;
	}
	net_dev->addr_len = ETH_ALEN;
	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
error_read_mac:
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
	return result;
}


/*
 * Initialize a non signed boot
 *
 * This implies sending some magic values to the device's memory. Note
 * we convert the values to little endian in the same array
 * declaration.
 */
static
int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
{
	unsigned i = 0;
	int ret = 0;
	struct device *dev = i2400m_dev(i2400m);
	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	if (i2400m->bus_bm_pokes_table) {
		while (i2400m->bus_bm_pokes_table[i].address) {
			ret = i2400m_download_chunk(
				i2400m,
				&i2400m->bus_bm_pokes_table[i].data,
				sizeof(i2400m->bus_bm_pokes_table[i].data),
				i2400m->bus_bm_pokes_table[i].address, 1, 1);
			if (ret < 0)
				break;
			i++;
		}
	}
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
	return ret;
}


/*
 * Initialize the signed boot process
 *
 * @i2400m: device descriptor
 *
 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
 *     memory (it has gone through basic validation).
 *
 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
 *     rebooted.
 *
 * This writes the firmware BCF header to the device using the
 * HASH_PAYLOAD_ONLY command.
 */
static
int i2400m_dnload_init_signed(struct i2400m *i2400m,
			      const struct i2400m_bcf_hdr *bcf_hdr)
{
	int ret;
	struct device *dev = i2400m_dev(i2400m);
	struct {
		struct i2400m_bootrom_header cmd;
		struct i2400m_bcf_hdr cmd_pl;
	} __packed *cmd_buf;
	struct i2400m_bootrom_header ack;

	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
	cmd_buf = i2400m->bm_cmd_buf;
	cmd_buf->cmd.command =
		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
	cmd_buf->cmd.target_addr = 0;
	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
			    &ack, sizeof(ack), 0);
	if (ret >= 0)
		ret = 0;
	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
	return ret;
}


/*
 * Initialize the firmware download at the device size
 *
 * Multiplex to the one that matters based on the device's mode
 * (signed or non-signed).
 */
static
int i2400m_dnload_init(struct i2400m *i2400m,
		       const struct i2400m_bcf_hdr *bcf_hdr)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);

	if (i2400m_boot_is_signed(i2400m)) {
		d_printf(1, dev, "signed boot\n");
		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
		if (result == -ERESTARTSYS)
			return result;
		if (result < 0)
			dev_err(dev, "firmware %s: signed boot download "
				"initialization failed: %d\n",
				i2400m->fw_name, result);
	} else {
		/* non-signed boot process without pokes */
		d_printf(1, dev, "non-signed boot\n");
		result = i2400m_dnload_init_nonsigned(i2400m);
		if (result == -ERESTARTSYS)
			return result;
		if (result < 0)
			dev_err(dev, "firmware %s: non-signed download "
				"initialization failed: %d\n",
				i2400m->fw_name, result);
	}
	return result;
}


/*
 * Run consistency tests on the firmware file and load up headers
 *
 * Check for the firmware being made for the i2400m device,
 * etc...These checks are mostly informative, as the device will make
 * them too; but the driver's response is more informative on what
 * went wrong.
 *
 * This will also look at all the headers present on the firmware
 * file, and update i2400m->fw_bcf_hdr to point to them.
 */
static
int i2400m_fw_hdr_check(struct i2400m *i2400m,
			const struct i2400m_bcf_hdr *bcf_hdr,
			size_t index, size_t offset)
{
	struct device *dev = i2400m_dev(i2400m);

	unsigned module_type, header_len, major_version, minor_version,
		module_id, module_vendor, date, size;

	module_type = le32_to_cpu(bcf_hdr->module_type);
	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
		>> 16;
	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
	module_id = le32_to_cpu(bcf_hdr->module_id);
	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
	date = le32_to_cpu(bcf_hdr->date);
	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);

	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
		 i2400m->fw_name, index, offset,
		 module_type, module_vendor, module_id,
		 major_version, minor_version, header_len, size, date);

	/* Hard errors */
	if (major_version != 1) {
		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
			"v%u.%u not supported\n",
			i2400m->fw_name, index, offset,
			major_version, minor_version);
		return -EBADF;
	}

	if (module_type != 6) {		/* built for the right hardware? */
		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
			"type 0x%x; aborting\n",
			i2400m->fw_name, index, offset,
			module_type);
		return -EBADF;
	}

	if (module_vendor != 0x8086) {
		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
			"vendor 0x%x; aborting\n",
			i2400m->fw_name, index, offset, module_vendor);
		return -EBADF;
	}

	if (date < 0x20080300)
		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
			 "too old; unsupported\n",
			 i2400m->fw_name, index, offset, date);
	return 0;
}


/*
 * Run consistency tests on the firmware file and load up headers
 *
 * Check for the firmware being made for the i2400m device,
 * etc...These checks are mostly informative, as the device will make
 * them too; but the driver's response is more informative on what
 * went wrong.
 *
 * This will also look at all the headers present on the firmware
 * file, and update i2400m->fw_hdrs to point to them.
 */
static
int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
{
	int result;
	struct device *dev = i2400m_dev(i2400m);
	size_t headers = 0;
	const struct i2400m_bcf_hdr *bcf_hdr;
	const void *itr, *next, *top;
	size_t slots = 0, used_slots = 0;

	for (itr = bcf, top = itr + bcf_size;
	     itr < top;
	     headers++, itr = next) {
		size_t leftover, offset, header_len, size;

		leftover = top - itr;
		offset = itr - bcf;
		if (leftover <= sizeof(*bcf_hdr)) {
			dev_err(dev, "firmware %s: %zu B left at @%zx, "
				"not enough for BCF header\n",
				i2400m->fw_name, leftover, offset);
			break;
		}
		bcf_hdr = itr;
		/* Only the first header is supposed to be followed by
		 * payload */
		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
		if (headers == 0)
			next = itr + size;
		else
			next = itr + header_len;

		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
		if (result < 0)
			continue;
		if (used_slots + 1 >= slots) {
			/* +1 -> we need to account for the one we'll
			 * occupy and at least an extra one for
			 * always being NULL */
			result = i2400m_zrealloc_2x(
				(void **) &i2400m->fw_hdrs, &slots,
				sizeof(i2400m->fw_hdrs[0]),
				GFP_KERNEL);
			if (result < 0)
				goto error_zrealloc;
		}
		i2400m->fw_hdrs[used_slots] = bcf_hdr;
		used_slots++;
	}
	if (headers == 0) {
		dev_err(dev, "firmware %s: no usable headers found\n",
			i2400m->fw_name);
		result = -EBADF;
	} else
		result = 0;
error_zrealloc:
	return result;
}


/*
 * Match a barker to a BCF header module ID
 *
 * The device sends a barker which tells the firmware loader which
 * header in the BCF file has to be used. This does the matching.
 */
static
unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
			      const struct i2400m_bcf_hdr *bcf_hdr)
{
	u32 barker = le32_to_cpu(i2400m->barker->data[0])
		& 0x7fffffff;
	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
		& 0x7fffffff;	/* high bit used for something else */

	/* special case for 5x50 */
	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
		return 1;
	if (module_id == barker)
		return 1;
	return 0;
}

static
const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
{
	struct device *dev = i2400m_dev(i2400m);
	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
	unsigned i = 0;
	u32 barker = le32_to_cpu(i2400m->barker->data[0]);

	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
	if (barker == I2400M_NBOOT_BARKER) {
		bcf_hdr = i2400m->fw_hdrs[0];
		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
		return bcf_hdr;
	}
	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
		bcf_hdr = *bcf_itr;
		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
				 i, le32_to_cpu(bcf_hdr->module_id));
			return bcf_hdr;
		} else
			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
				 i, le32_to_cpu(bcf_hdr->module_id));
	}
	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
		barker);
	return NULL;
}


/*
 * Download the firmware to the device
 *
 * @i2400m: device descriptor
 * @bcf: pointer to loaded (and minimally verified for consistency)
 *    firmware
 * @bcf_size: size of the @bcf buffer (header plus payloads)
 *
 * The process for doing this is described in this file's header.
 *
 * Note we only reinitialize boot-mode if the flags say so. Some hw
 * iterations need it, some don't. In any case, if we loop, we always
 * need to reinitialize the boot room, hence the flags modification.
 */
static
int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
		     size_t fw_size, enum i2400m_bri flags)
{
	int ret = 0;
	struct device *dev = i2400m_dev(i2400m);
	int count = i2400m->bus_bm_retries;
	const struct i2400m_bcf_hdr *bcf_hdr;
	size_t bcf_size;

	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
		  i2400m, bcf, fw_size);
	i2400m->boot_mode = 1;
	wmb();		/* Make sure other readers see it */
hw_reboot:
	if (count-- == 0) {
		ret = -ERESTARTSYS;
		dev_err(dev, "device rebooted too many times, aborting\n");
		goto error_too_many_reboots;
	}
	if (flags & I2400M_BRI_MAC_REINIT) {
		ret = i2400m_bootrom_init(i2400m, flags);
		if (ret < 0) {
			dev_err(dev, "bootrom init failed: %d\n", ret);
			goto error_bootrom_init;
		}
	}
	flags |= I2400M_BRI_MAC_REINIT;

	/*
	 * Initialize the download, push the bytes to the device and
	 * then jump to the new firmware. Note @ret is passed with the
	 * offset of the jump instruction to _dnload_finalize()
	 *
	 * Note we need to use the BCF header in the firmware image
	 * that matches the barker that the device sent when it
	 * rebooted, so it has to be passed along.
	 */
	ret = -EBADF;
	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
	if (bcf_hdr == NULL)
		goto error_bcf_hdr_find;

	ret = i2400m_dnload_init(i2400m, bcf_hdr);
	if (ret == -ERESTARTSYS)
		goto error_dev_rebooted;
	if (ret < 0)
		goto error_dnload_init;

	/*
	 * bcf_size refers to one header size plus the fw sections size
	 * indicated by the header,ie. if there are other extended headers
	 * at the tail, they are not counted
	 */
	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
	if (ret == -ERESTARTSYS)
		goto error_dev_rebooted;
	if (ret < 0) {
		dev_err(dev, "fw %s: download failed: %d\n",
			i2400m->fw_name, ret);
		goto error_dnload_bcf;
	}

	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
	if (ret == -ERESTARTSYS)
		goto error_dev_rebooted;
	if (ret < 0) {
		dev_err(dev, "fw %s: "
			"download finalization failed: %d\n",
			i2400m->fw_name, ret);
		goto error_dnload_finalize;
	}

	d_printf(2, dev, "fw %s successfully uploaded\n",
		 i2400m->fw_name);
	i2400m->boot_mode = 0;
	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
error_dnload_finalize:
error_dnload_bcf:
error_dnload_init:
error_bcf_hdr_find:
error_bootrom_init:
error_too_many_reboots:
	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
		i2400m, bcf, fw_size, ret);
	return ret;

error_dev_rebooted:
	dev_err(dev, "device rebooted, %d tries left\n", count);
	/* we got the notification already, no need to wait for it again */
	flags |= I2400M_BRI_SOFT;
	goto hw_reboot;
}

static
int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
			enum i2400m_bri flags)
{
	int ret;
	struct device *dev = i2400m_dev(i2400m);
	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */

	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
	bcf = (void *) fw->data;
	ret = i2400m_fw_check(i2400m, bcf, fw->size);
	if (ret >= 0)
		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
	if (ret < 0)
		dev_err(dev, "%s: cannot use: %d, skipping\n",
			i2400m->fw_name, ret);
	kfree(i2400m->fw_hdrs);
	i2400m->fw_hdrs = NULL;
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
	return ret;
}


/* Refcounted container for firmware data */
struct i2400m_fw {
	struct kref kref;
	const struct firmware *fw;
};


static
void i2400m_fw_destroy(struct kref *kref)
{
	struct i2400m_fw *i2400m_fw =
		container_of(kref, struct i2400m_fw, kref);
	release_firmware(i2400m_fw->fw);
	kfree(i2400m_fw);
}


static
struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
{
	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
		kref_get(&i2400m_fw->kref);
	return i2400m_fw;
}


static
void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
{
	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
}


/**
 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
 *
 * @i2400m: device descriptor
 *
 * Returns: >= 0 if ok, < 0 errno code on error.
 *
 * This sets up the firmware upload environment, loads the firmware
 * file from disk, verifies and then calls the firmware upload process
 * per se.
 *
 * Can be called either from probe, or after a warm reset.  Can not be
 * called from within an interrupt.  All the flow in this code is
 * single-threade; all I/Os are synchronous.
 */
int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
{
	int ret, itr;
	struct device *dev = i2400m_dev(i2400m);
	struct i2400m_fw *i2400m_fw;
	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
	const struct firmware *fw;
	const char *fw_name;

	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);

	ret = -ENODEV;
	spin_lock(&i2400m->rx_lock);
	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
	spin_unlock(&i2400m->rx_lock);
	if (i2400m_fw == (void *) ~0) {
		dev_err(dev, "can't load firmware now!");
		goto out;
	} else if (i2400m_fw != NULL) {
		dev_info(dev, "firmware %s: loading from cache\n",
			 i2400m->fw_name);
		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
		i2400m_fw_put(i2400m_fw);
		goto out;
	}

	/* Load firmware files to memory. */
	for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
		fw_name = i2400m->bus_fw_names[itr];
		if (fw_name == NULL) {
			dev_err(dev, "Could not find a usable firmware image\n");
			break;
		}
		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
		ret = request_firmware(&fw, fw_name, dev);
		if (ret < 0) {
			dev_err(dev, "fw %s: cannot load file: %d\n",
				fw_name, ret);
			continue;
		}
		i2400m->fw_name = fw_name;
		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
		release_firmware(fw);
		if (ret >= 0)	/* firmware loaded successfully */
			break;
		i2400m->fw_name = NULL;
	}
out:
	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
	return ret;
}
EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);


void i2400m_fw_cache(struct i2400m *i2400m)
{
	int result;
	struct i2400m_fw *i2400m_fw;
	struct device *dev = i2400m_dev(i2400m);

	/* if there is anything there, free it -- now, this'd be weird */
	spin_lock(&i2400m->rx_lock);
	i2400m_fw = i2400m->fw_cached;
	spin_unlock(&i2400m->rx_lock);
	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
		i2400m_fw_put(i2400m_fw);
		WARN(1, "%s:%u: still cached fw still present?\n",
		     __func__, __LINE__);
	}

	if (i2400m->fw_name == NULL) {
		dev_err(dev, "firmware n/a: can't cache\n");
		i2400m_fw = (void *) ~0;
		goto out;
	}

	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
	if (i2400m_fw == NULL)
		goto out;
	kref_init(&i2400m_fw->kref);
	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
	if (result < 0) {
		dev_err(dev, "firmware %s: failed to cache: %d\n",
			i2400m->fw_name, result);
		kfree(i2400m_fw);
		i2400m_fw = (void *) ~0;
	} else
		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
out:
	spin_lock(&i2400m->rx_lock);
	i2400m->fw_cached = i2400m_fw;
	spin_unlock(&i2400m->rx_lock);
}


void i2400m_fw_uncache(struct i2400m *i2400m)
{
	struct i2400m_fw *i2400m_fw;

	spin_lock(&i2400m->rx_lock);
	i2400m_fw = i2400m->fw_cached;
	i2400m->fw_cached = NULL;
	spin_unlock(&i2400m->rx_lock);

	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
		i2400m_fw_put(i2400m_fw);
}