Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

/*
 *  GPL LICENSE SUMMARY
 *
 *  Copyright(c) 2010 Intel Corporation. All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of version 2 of the GNU General Public License as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *  The full GNU General Public License is included in this distribution
 *  in the file called LICENSE.GPL.
 *
 *  Contact Information:
 *    Intel Corporation
 *    2200 Mission College Blvd.
 *    Santa Clara, CA  97052
 *
 * This provides access methods for PCI registers that mis-behave on
 * the CE4100. Each register can be assigned a private init, read and
 * write routine. The exception to this is the bridge device.  The
 * bridge device is the only device on bus zero (0) that requires any
 * fixup so it is a special case ATM
 */

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>

#include <asm/ce4100.h>
#include <asm/pci_x86.h>

struct sim_reg {
	u32 value;
	u32 mask;
};

struct sim_dev_reg {
	int dev_func;
	int reg;
	void (*init)(struct sim_dev_reg *reg);
	void (*read)(struct sim_dev_reg *reg, u32 *value);
	void (*write)(struct sim_dev_reg *reg, u32 value);
	struct sim_reg sim_reg;
};

struct sim_reg_op {
	void (*init)(struct sim_dev_reg *reg);
	void (*read)(struct sim_dev_reg *reg, u32 value);
	void (*write)(struct sim_dev_reg *reg, u32 value);
};

#define MB (1024 * 1024)
#define KB (1024)
#define SIZE_TO_MASK(size) (~(size - 1))

#define DEFINE_REG(device, func, offset, size, init_op, read_op, write_op)\
{ PCI_DEVFN(device, func), offset, init_op, read_op, write_op,\
	{0, SIZE_TO_MASK(size)} },

static void reg_init(struct sim_dev_reg *reg)
{
	pci_direct_conf1.read(0, 1, reg->dev_func, reg->reg, 4,
			      &reg->sim_reg.value);
}

static void reg_read(struct sim_dev_reg *reg, u32 *value)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&pci_config_lock, flags);
	*value = reg->sim_reg.value;
	raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}

static void reg_write(struct sim_dev_reg *reg, u32 value)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&pci_config_lock, flags);
	reg->sim_reg.value = (value & reg->sim_reg.mask) |
		(reg->sim_reg.value & ~reg->sim_reg.mask);
	raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}

static void sata_reg_init(struct sim_dev_reg *reg)
{
	pci_direct_conf1.read(0, 1, PCI_DEVFN(14, 0), 0x10, 4,
			      &reg->sim_reg.value);
	reg->sim_reg.value += 0x400;
}

static void ehci_reg_read(struct sim_dev_reg *reg, u32 *value)
{
	reg_read(reg, value);
	if (*value != reg->sim_reg.mask)
		*value |= 0x100;
}

void sata_revid_init(struct sim_dev_reg *reg)
{
	reg->sim_reg.value = 0x01060100;
	reg->sim_reg.mask = 0;
}

static void sata_revid_read(struct sim_dev_reg *reg, u32 *value)
{
	reg_read(reg, value);
}

static void reg_noirq_read(struct sim_dev_reg *reg, u32 *value)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&pci_config_lock, flags);
	/* force interrupt pin value to 0 */
	*value = reg->sim_reg.value & 0xfff00ff;
	raw_spin_unlock_irqrestore(&pci_config_lock, flags);
}

static struct sim_dev_reg bus1_fixups[] = {
	DEFINE_REG(2, 0, 0x10, (16*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(2, 0, 0x14, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(2, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(3, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(4, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(4, 1, 0x10, (128*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(6, 0, 0x10, (512*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(6, 1, 0x10, (512*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(6, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(8, 0, 0x10, (1*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(8, 1, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(8, 2, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(9, 0, 0x10 , (1*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(9, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(10, 0, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(10, 0, 0x14, (256*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 0, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 0, 0x14, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 1, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 2, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 2, 0x14, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 2, 0x18, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 3, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 3, 0x14, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 4, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 5, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 6, 0x10, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 7, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(11, 7, 0x3c, 256, reg_init, reg_noirq_read, reg_write)
	DEFINE_REG(12, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(12, 0, 0x14, (256), reg_init, reg_read, reg_write)
	DEFINE_REG(12, 1, 0x10, (1024), reg_init, reg_read, reg_write)
	DEFINE_REG(13, 0, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
	DEFINE_REG(13, 1, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write)
	DEFINE_REG(14, 0, 0x8,  0, sata_revid_init, sata_revid_read, 0)
	DEFINE_REG(14, 0, 0x10, 0, reg_init, reg_read, reg_write)
	DEFINE_REG(14, 0, 0x14, 0, reg_init, reg_read, reg_write)
	DEFINE_REG(14, 0, 0x18, 0, reg_init, reg_read, reg_write)
	DEFINE_REG(14, 0, 0x1C, 0, reg_init, reg_read, reg_write)
	DEFINE_REG(14, 0, 0x20, 0, reg_init, reg_read, reg_write)
	DEFINE_REG(14, 0, 0x24, (0x200), sata_reg_init, reg_read, reg_write)
	DEFINE_REG(15, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(15, 0, 0x14, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(16, 0, 0x10, (64*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(16, 0, 0x14, (64*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(16, 0, 0x18, (64*MB), reg_init, reg_read, reg_write)
	DEFINE_REG(16, 0, 0x3c, 256, reg_init, reg_noirq_read, reg_write)
	DEFINE_REG(17, 0, 0x10, (128*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(18, 0, 0x10, (1*KB), reg_init, reg_read, reg_write)
	DEFINE_REG(18, 0, 0x3c, 256, reg_init, reg_noirq_read, reg_write)
};

static void __init init_sim_regs(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
		if (bus1_fixups[i].init)
			bus1_fixups[i].init(&bus1_fixups[i]);
	}
}

static inline void extract_bytes(u32 *value, int reg, int len)
{
	uint32_t mask;

	*value >>= ((reg & 3) * 8);
	mask = 0xFFFFFFFF >> ((4 - len) * 8);
	*value &= mask;
}

int bridge_read(unsigned int devfn, int reg, int len, u32 *value)
{
	u32 av_bridge_base, av_bridge_limit;
	int retval = 0;

	switch (reg) {
	/* Make BARs appear to not request any memory. */
	case PCI_BASE_ADDRESS_0:
	case PCI_BASE_ADDRESS_0 + 1:
	case PCI_BASE_ADDRESS_0 + 2:
	case PCI_BASE_ADDRESS_0 + 3:
		*value = 0;
		break;

		/* Since subordinate bus number register is hardwired
		 * to zero and read only, so do the simulation.
		 */
	case PCI_PRIMARY_BUS:
		if (len == 4)
			*value = 0x00010100;
		break;

	case PCI_SUBORDINATE_BUS:
		*value = 1;
		break;

	case PCI_MEMORY_BASE:
	case PCI_MEMORY_LIMIT:
		/* Get the A/V bridge base address. */
		pci_direct_conf1.read(0, 0, devfn,
				PCI_BASE_ADDRESS_0, 4, &av_bridge_base);

		av_bridge_limit = av_bridge_base + (512*MB - 1);
		av_bridge_limit >>= 16;
		av_bridge_limit &= 0xFFF0;

		av_bridge_base >>= 16;
		av_bridge_base &= 0xFFF0;

		if (reg == PCI_MEMORY_LIMIT)
			*value = av_bridge_limit;
		else if (len == 2)
			*value = av_bridge_base;
		else
			*value = (av_bridge_limit << 16) | av_bridge_base;
		break;
		/* Make prefetchable memory limit smaller than prefetchable
		 * memory base, so not claim prefetchable memory space.
		 */
	case PCI_PREF_MEMORY_BASE:
		*value = 0xFFF0;
		break;
	case PCI_PREF_MEMORY_LIMIT:
		*value = 0x0;
		break;
		/* Make IO limit smaller than IO base, so not claim IO space. */
	case PCI_IO_BASE:
		*value = 0xF0;
		break;
	case PCI_IO_LIMIT:
		*value = 0;
		break;
	default:
		retval = 1;
	}
	return retval;
}

static int ce4100_conf_read(unsigned int seg, unsigned int bus,
			    unsigned int devfn, int reg, int len, u32 *value)
{
	int i;

	WARN_ON(seg);
	if (bus == 1) {
		for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
			if (bus1_fixups[i].dev_func == devfn &&
			    bus1_fixups[i].reg == (reg & ~3) &&
			    bus1_fixups[i].read) {
				bus1_fixups[i].read(&(bus1_fixups[i]),
						    value);
				extract_bytes(value, reg, len);
				return 0;
			}
		}
	}

	if (bus == 0 && (PCI_DEVFN(1, 0) == devfn) &&
	    !bridge_read(devfn, reg, len, value))
		return 0;

	return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
}

static int ce4100_conf_write(unsigned int seg, unsigned int bus,
			     unsigned int devfn, int reg, int len, u32 value)
{
	int i;

	WARN_ON(seg);
	if (bus == 1) {
		for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) {
			if (bus1_fixups[i].dev_func == devfn &&
			    bus1_fixups[i].reg == (reg & ~3) &&
			    bus1_fixups[i].write) {
				bus1_fixups[i].write(&(bus1_fixups[i]),
						     value);
				return 0;
			}
		}
	}

	/* Discard writes to A/V bridge BAR. */
	if (bus == 0 && PCI_DEVFN(1, 0) == devfn &&
	    ((reg & ~3) == PCI_BASE_ADDRESS_0))
		return 0;

	return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
}

static const struct pci_raw_ops ce4100_pci_conf = {
	.read =	ce4100_conf_read,
	.write = ce4100_conf_write,
};

int __init ce4100_pci_init(void)
{
	init_sim_regs();
	raw_pci_ops = &ce4100_pci_conf;
	/* Indicate caller that it should invoke pci_legacy_init() */
	return 1;
}