Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Copyright (C) 2013 Red Hat
 * Author: Rob Clark <robdclark@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#include "msm_drv.h"
#include "msm_gem.h"
#include "msm_mmu.h"
#include "mdp4_kms.h"

static struct mdp4_platform_config *mdp4_get_config(struct platform_device *dev);

static int mdp4_hw_init(struct msm_kms *kms)
{
	struct mdp4_kms *mdp4_kms = to_mdp4_kms(to_mdp_kms(kms));
	struct drm_device *dev = mdp4_kms->dev;
	uint32_t version, major, minor, dmap_cfg, vg_cfg;
	unsigned long clk;
	int ret = 0;

	pm_runtime_get_sync(dev->dev);

	mdp4_enable(mdp4_kms);
	version = mdp4_read(mdp4_kms, REG_MDP4_VERSION);
	mdp4_disable(mdp4_kms);

	major = FIELD(version, MDP4_VERSION_MAJOR);
	minor = FIELD(version, MDP4_VERSION_MINOR);

	DBG("found MDP4 version v%d.%d", major, minor);

	if (major != 4) {
		dev_err(dev->dev, "unexpected MDP version: v%d.%d\n",
				major, minor);
		ret = -ENXIO;
		goto out;
	}

	mdp4_kms->rev = minor;

	if (mdp4_kms->rev > 1) {
		mdp4_write(mdp4_kms, REG_MDP4_CS_CONTROLLER0, 0x0707ffff);
		mdp4_write(mdp4_kms, REG_MDP4_CS_CONTROLLER1, 0x03073f3f);
	}

	mdp4_write(mdp4_kms, REG_MDP4_PORTMAP_MODE, 0x3);

	/* max read pending cmd config, 3 pending requests: */
	mdp4_write(mdp4_kms, REG_MDP4_READ_CNFG, 0x02222);

	clk = clk_get_rate(mdp4_kms->clk);

	if ((mdp4_kms->rev >= 1) || (clk >= 90000000)) {
		dmap_cfg = 0x47;     /* 16 bytes-burst x 8 req */
		vg_cfg = 0x47;       /* 16 bytes-burs x 8 req */
	} else {
		dmap_cfg = 0x27;     /* 8 bytes-burst x 8 req */
		vg_cfg = 0x43;       /* 16 bytes-burst x 4 req */
	}

	DBG("fetch config: dmap=%02x, vg=%02x", dmap_cfg, vg_cfg);

	mdp4_write(mdp4_kms, REG_MDP4_DMA_FETCH_CONFIG(DMA_P), dmap_cfg);
	mdp4_write(mdp4_kms, REG_MDP4_DMA_FETCH_CONFIG(DMA_E), dmap_cfg);

	mdp4_write(mdp4_kms, REG_MDP4_PIPE_FETCH_CONFIG(VG1), vg_cfg);
	mdp4_write(mdp4_kms, REG_MDP4_PIPE_FETCH_CONFIG(VG2), vg_cfg);
	mdp4_write(mdp4_kms, REG_MDP4_PIPE_FETCH_CONFIG(RGB1), vg_cfg);
	mdp4_write(mdp4_kms, REG_MDP4_PIPE_FETCH_CONFIG(RGB2), vg_cfg);

	if (mdp4_kms->rev >= 2)
		mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG_UPDATE_METHOD, 1);
	mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG, 0);

	/* disable CSC matrix / YUV by default: */
	mdp4_write(mdp4_kms, REG_MDP4_PIPE_OP_MODE(VG1), 0);
	mdp4_write(mdp4_kms, REG_MDP4_PIPE_OP_MODE(VG2), 0);
	mdp4_write(mdp4_kms, REG_MDP4_DMA_P_OP_MODE, 0);
	mdp4_write(mdp4_kms, REG_MDP4_DMA_S_OP_MODE, 0);
	mdp4_write(mdp4_kms, REG_MDP4_OVLP_CSC_CONFIG(1), 0);
	mdp4_write(mdp4_kms, REG_MDP4_OVLP_CSC_CONFIG(2), 0);

	if (mdp4_kms->rev > 1)
		mdp4_write(mdp4_kms, REG_MDP4_RESET_STATUS, 1);

	dev->mode_config.allow_fb_modifiers = true;

out:
	pm_runtime_put_sync(dev->dev);

	return ret;
}

static void mdp4_prepare_commit(struct msm_kms *kms, struct drm_atomic_state *state)
{
	struct mdp4_kms *mdp4_kms = to_mdp4_kms(to_mdp_kms(kms));
	int i;
	struct drm_crtc *crtc;
	struct drm_crtc_state *crtc_state;

	mdp4_enable(mdp4_kms);

	/* see 119ecb7fd */
	for_each_crtc_in_state(state, crtc, crtc_state, i)
		drm_crtc_vblank_get(crtc);
}

static void mdp4_complete_commit(struct msm_kms *kms, struct drm_atomic_state *state)
{
	struct mdp4_kms *mdp4_kms = to_mdp4_kms(to_mdp_kms(kms));
	int i;
	struct drm_crtc *crtc;
	struct drm_crtc_state *crtc_state;

	/* see 119ecb7fd */
	for_each_crtc_in_state(state, crtc, crtc_state, i)
		drm_crtc_vblank_put(crtc);

	mdp4_disable(mdp4_kms);
}

static void mdp4_wait_for_crtc_commit_done(struct msm_kms *kms,
						struct drm_crtc *crtc)
{
	mdp4_crtc_wait_for_commit_done(crtc);
}

static long mdp4_round_pixclk(struct msm_kms *kms, unsigned long rate,
		struct drm_encoder *encoder)
{
	/* if we had >1 encoder, we'd need something more clever: */
	switch (encoder->encoder_type) {
	case DRM_MODE_ENCODER_TMDS:
		return mdp4_dtv_round_pixclk(encoder, rate);
	case DRM_MODE_ENCODER_LVDS:
	case DRM_MODE_ENCODER_DSI:
	default:
		return rate;
	}
}

static const char * const iommu_ports[] = {
	"mdp_port0_cb0", "mdp_port1_cb0",
};

static void mdp4_destroy(struct msm_kms *kms)
{
	struct mdp4_kms *mdp4_kms = to_mdp4_kms(to_mdp_kms(kms));
	struct device *dev = mdp4_kms->dev->dev;
	struct msm_gem_address_space *aspace = mdp4_kms->aspace;

	if (mdp4_kms->blank_cursor_iova)
		msm_gem_put_iova(mdp4_kms->blank_cursor_bo, mdp4_kms->id);
	drm_gem_object_unreference_unlocked(mdp4_kms->blank_cursor_bo);

	if (aspace) {
		aspace->mmu->funcs->detach(aspace->mmu,
				iommu_ports, ARRAY_SIZE(iommu_ports));
		msm_gem_address_space_destroy(aspace);
	}

	if (mdp4_kms->rpm_enabled)
		pm_runtime_disable(dev);

	kfree(mdp4_kms);
}

static const struct mdp_kms_funcs kms_funcs = {
	.base = {
		.hw_init         = mdp4_hw_init,
		.irq_preinstall  = mdp4_irq_preinstall,
		.irq_postinstall = mdp4_irq_postinstall,
		.irq_uninstall   = mdp4_irq_uninstall,
		.irq             = mdp4_irq,
		.enable_vblank   = mdp4_enable_vblank,
		.disable_vblank  = mdp4_disable_vblank,
		.prepare_commit  = mdp4_prepare_commit,
		.complete_commit = mdp4_complete_commit,
		.wait_for_crtc_commit_done = mdp4_wait_for_crtc_commit_done,
		.get_format      = mdp_get_format,
		.round_pixclk    = mdp4_round_pixclk,
		.destroy         = mdp4_destroy,
	},
	.set_irqmask         = mdp4_set_irqmask,
};

int mdp4_disable(struct mdp4_kms *mdp4_kms)
{
	DBG("");

	clk_disable_unprepare(mdp4_kms->clk);
	if (mdp4_kms->pclk)
		clk_disable_unprepare(mdp4_kms->pclk);
	clk_disable_unprepare(mdp4_kms->lut_clk);
	if (mdp4_kms->axi_clk)
		clk_disable_unprepare(mdp4_kms->axi_clk);

	return 0;
}

int mdp4_enable(struct mdp4_kms *mdp4_kms)
{
	DBG("");

	clk_prepare_enable(mdp4_kms->clk);
	if (mdp4_kms->pclk)
		clk_prepare_enable(mdp4_kms->pclk);
	clk_prepare_enable(mdp4_kms->lut_clk);
	if (mdp4_kms->axi_clk)
		clk_prepare_enable(mdp4_kms->axi_clk);

	return 0;
}

static struct device_node *mdp4_detect_lcdc_panel(struct drm_device *dev)
{
	struct device_node *endpoint, *panel_node;
	struct device_node *np = dev->dev->of_node;

	/*
	 * LVDS/LCDC is the first port described in the list of ports in the
	 * MDP4 DT node.
	 */
	endpoint = of_graph_get_endpoint_by_regs(np, 0, -1);
	if (!endpoint) {
		DBG("no LVDS remote endpoint\n");
		return NULL;
	}

	panel_node = of_graph_get_remote_port_parent(endpoint);
	if (!panel_node) {
		DBG("no valid panel node in LVDS endpoint\n");
		of_node_put(endpoint);
		return NULL;
	}

	of_node_put(endpoint);

	return panel_node;
}

static int mdp4_modeset_init_intf(struct mdp4_kms *mdp4_kms,
				  int intf_type)
{
	struct drm_device *dev = mdp4_kms->dev;
	struct msm_drm_private *priv = dev->dev_private;
	struct drm_encoder *encoder;
	struct drm_connector *connector;
	struct device_node *panel_node;
	struct drm_encoder *dsi_encs[MSM_DSI_ENCODER_NUM];
	int i, dsi_id;
	int ret;

	switch (intf_type) {
	case DRM_MODE_ENCODER_LVDS:
		/*
		 * bail out early if there is no panel node (no need to
		 * initialize LCDC encoder and LVDS connector)
		 */
		panel_node = mdp4_detect_lcdc_panel(dev);
		if (!panel_node)
			return 0;

		encoder = mdp4_lcdc_encoder_init(dev, panel_node);
		if (IS_ERR(encoder)) {
			dev_err(dev->dev, "failed to construct LCDC encoder\n");
			return PTR_ERR(encoder);
		}

		/* LCDC can be hooked to DMA_P (TODO: Add DMA_S later?) */
		encoder->possible_crtcs = 1 << DMA_P;

		connector = mdp4_lvds_connector_init(dev, panel_node, encoder);
		if (IS_ERR(connector)) {
			dev_err(dev->dev, "failed to initialize LVDS connector\n");
			return PTR_ERR(connector);
		}

		priv->encoders[priv->num_encoders++] = encoder;
		priv->connectors[priv->num_connectors++] = connector;

		break;
	case DRM_MODE_ENCODER_TMDS:
		encoder = mdp4_dtv_encoder_init(dev);
		if (IS_ERR(encoder)) {
			dev_err(dev->dev, "failed to construct DTV encoder\n");
			return PTR_ERR(encoder);
		}

		/* DTV can be hooked to DMA_E: */
		encoder->possible_crtcs = 1 << 1;

		if (priv->hdmi) {
			/* Construct bridge/connector for HDMI: */
			ret = msm_hdmi_modeset_init(priv->hdmi, dev, encoder);
			if (ret) {
				dev_err(dev->dev, "failed to initialize HDMI: %d\n", ret);
				return ret;
			}
		}

		priv->encoders[priv->num_encoders++] = encoder;

		break;
	case DRM_MODE_ENCODER_DSI:
		/* only DSI1 supported for now */
		dsi_id = 0;

		if (!priv->dsi[dsi_id])
			break;

		for (i = 0; i < MSM_DSI_ENCODER_NUM; i++) {
			dsi_encs[i] = mdp4_dsi_encoder_init(dev);
			if (IS_ERR(dsi_encs[i])) {
				ret = PTR_ERR(dsi_encs[i]);
				dev_err(dev->dev,
					"failed to construct DSI encoder: %d\n",
					ret);
				return ret;
			}

			/* TODO: Add DMA_S later? */
			dsi_encs[i]->possible_crtcs = 1 << DMA_P;
			priv->encoders[priv->num_encoders++] = dsi_encs[i];
		}

		ret = msm_dsi_modeset_init(priv->dsi[dsi_id], dev, dsi_encs);
		if (ret) {
			dev_err(dev->dev, "failed to initialize DSI: %d\n",
				ret);
			return ret;
		}

		break;
	default:
		dev_err(dev->dev, "Invalid or unsupported interface\n");
		return -EINVAL;
	}

	return 0;
}

static int modeset_init(struct mdp4_kms *mdp4_kms)
{
	struct drm_device *dev = mdp4_kms->dev;
	struct msm_drm_private *priv = dev->dev_private;
	struct drm_plane *plane;
	struct drm_crtc *crtc;
	int i, ret;
	static const enum mdp4_pipe rgb_planes[] = {
		RGB1, RGB2,
	};
	static const enum mdp4_pipe vg_planes[] = {
		VG1, VG2,
	};
	static const enum mdp4_dma mdp4_crtcs[] = {
		DMA_P, DMA_E,
	};
	static const char * const mdp4_crtc_names[] = {
		"DMA_P", "DMA_E",
	};
	static const int mdp4_intfs[] = {
		DRM_MODE_ENCODER_LVDS,
		DRM_MODE_ENCODER_DSI,
		DRM_MODE_ENCODER_TMDS,
	};

	/* construct non-private planes: */
	for (i = 0; i < ARRAY_SIZE(vg_planes); i++) {
		plane = mdp4_plane_init(dev, vg_planes[i], false);
		if (IS_ERR(plane)) {
			dev_err(dev->dev,
				"failed to construct plane for VG%d\n", i + 1);
			ret = PTR_ERR(plane);
			goto fail;
		}
		priv->planes[priv->num_planes++] = plane;
	}

	for (i = 0; i < ARRAY_SIZE(mdp4_crtcs); i++) {
		plane = mdp4_plane_init(dev, rgb_planes[i], true);
		if (IS_ERR(plane)) {
			dev_err(dev->dev,
				"failed to construct plane for RGB%d\n", i + 1);
			ret = PTR_ERR(plane);
			goto fail;
		}

		crtc  = mdp4_crtc_init(dev, plane, priv->num_crtcs, i,
				mdp4_crtcs[i]);
		if (IS_ERR(crtc)) {
			dev_err(dev->dev, "failed to construct crtc for %s\n",
				mdp4_crtc_names[i]);
			ret = PTR_ERR(crtc);
			goto fail;
		}

		priv->crtcs[priv->num_crtcs++] = crtc;
	}

	/*
	 * we currently set up two relatively fixed paths:
	 *
	 * LCDC/LVDS path: RGB1 -> DMA_P -> LCDC -> LVDS
	 *			or
	 * DSI path: RGB1 -> DMA_P -> DSI1 -> DSI Panel
	 *
	 * DTV/HDMI path: RGB2 -> DMA_E -> DTV -> HDMI
	 */

	for (i = 0; i < ARRAY_SIZE(mdp4_intfs); i++) {
		ret = mdp4_modeset_init_intf(mdp4_kms, mdp4_intfs[i]);
		if (ret) {
			dev_err(dev->dev, "failed to initialize intf: %d, %d\n",
				i, ret);
			goto fail;
		}
	}

	return 0;

fail:
	return ret;
}

struct msm_kms *mdp4_kms_init(struct drm_device *dev)
{
	struct platform_device *pdev = dev->platformdev;
	struct mdp4_platform_config *config = mdp4_get_config(pdev);
	struct mdp4_kms *mdp4_kms;
	struct msm_kms *kms = NULL;
	struct msm_gem_address_space *aspace;
	int irq, ret;

	mdp4_kms = kzalloc(sizeof(*mdp4_kms), GFP_KERNEL);
	if (!mdp4_kms) {
		dev_err(dev->dev, "failed to allocate kms\n");
		ret = -ENOMEM;
		goto fail;
	}

	mdp_kms_init(&mdp4_kms->base, &kms_funcs);

	kms = &mdp4_kms->base.base;

	mdp4_kms->dev = dev;

	mdp4_kms->mmio = msm_ioremap(pdev, NULL, "MDP4");
	if (IS_ERR(mdp4_kms->mmio)) {
		ret = PTR_ERR(mdp4_kms->mmio);
		goto fail;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = irq;
		dev_err(dev->dev, "failed to get irq: %d\n", ret);
		goto fail;
	}

	kms->irq = irq;

	/* NOTE: driver for this regulator still missing upstream.. use
	 * _get_exclusive() and ignore the error if it does not exist
	 * (and hope that the bootloader left it on for us)
	 */
	mdp4_kms->vdd = devm_regulator_get_exclusive(&pdev->dev, "vdd");
	if (IS_ERR(mdp4_kms->vdd))
		mdp4_kms->vdd = NULL;

	if (mdp4_kms->vdd) {
		ret = regulator_enable(mdp4_kms->vdd);
		if (ret) {
			dev_err(dev->dev, "failed to enable regulator vdd: %d\n", ret);
			goto fail;
		}
	}

	mdp4_kms->clk = devm_clk_get(&pdev->dev, "core_clk");
	if (IS_ERR(mdp4_kms->clk)) {
		dev_err(dev->dev, "failed to get core_clk\n");
		ret = PTR_ERR(mdp4_kms->clk);
		goto fail;
	}

	mdp4_kms->pclk = devm_clk_get(&pdev->dev, "iface_clk");
	if (IS_ERR(mdp4_kms->pclk))
		mdp4_kms->pclk = NULL;

	// XXX if (rev >= MDP_REV_42) { ???
	mdp4_kms->lut_clk = devm_clk_get(&pdev->dev, "lut_clk");
	if (IS_ERR(mdp4_kms->lut_clk)) {
		dev_err(dev->dev, "failed to get lut_clk\n");
		ret = PTR_ERR(mdp4_kms->lut_clk);
		goto fail;
	}

	mdp4_kms->axi_clk = devm_clk_get(&pdev->dev, "bus_clk");
	if (IS_ERR(mdp4_kms->axi_clk)) {
		dev_err(dev->dev, "failed to get axi_clk\n");
		ret = PTR_ERR(mdp4_kms->axi_clk);
		goto fail;
	}

	clk_set_rate(mdp4_kms->clk, config->max_clk);
	clk_set_rate(mdp4_kms->lut_clk, config->max_clk);

	pm_runtime_enable(dev->dev);
	mdp4_kms->rpm_enabled = true;

	/* make sure things are off before attaching iommu (bootloader could
	 * have left things on, in which case we'll start getting faults if
	 * we don't disable):
	 */
	mdp4_enable(mdp4_kms);
	mdp4_write(mdp4_kms, REG_MDP4_DTV_ENABLE, 0);
	mdp4_write(mdp4_kms, REG_MDP4_LCDC_ENABLE, 0);
	mdp4_write(mdp4_kms, REG_MDP4_DSI_ENABLE, 0);
	mdp4_disable(mdp4_kms);
	mdelay(16);

	if (config->iommu) {
		aspace = msm_gem_address_space_create(&pdev->dev,
				config->iommu, "mdp4");
		if (IS_ERR(aspace)) {
			ret = PTR_ERR(aspace);
			goto fail;
		}

		mdp4_kms->aspace = aspace;

		ret = aspace->mmu->funcs->attach(aspace->mmu, iommu_ports,
				ARRAY_SIZE(iommu_ports));
		if (ret)
			goto fail;
	} else {
		dev_info(dev->dev, "no iommu, fallback to phys "
				"contig buffers for scanout\n");
		aspace = NULL;
	}

	mdp4_kms->id = msm_register_address_space(dev, aspace);
	if (mdp4_kms->id < 0) {
		ret = mdp4_kms->id;
		dev_err(dev->dev, "failed to register mdp4 iommu: %d\n", ret);
		goto fail;
	}

	ret = modeset_init(mdp4_kms);
	if (ret) {
		dev_err(dev->dev, "modeset_init failed: %d\n", ret);
		goto fail;
	}

	mutex_lock(&dev->struct_mutex);
	mdp4_kms->blank_cursor_bo = msm_gem_new(dev, SZ_16K, MSM_BO_WC);
	mutex_unlock(&dev->struct_mutex);
	if (IS_ERR(mdp4_kms->blank_cursor_bo)) {
		ret = PTR_ERR(mdp4_kms->blank_cursor_bo);
		dev_err(dev->dev, "could not allocate blank-cursor bo: %d\n", ret);
		mdp4_kms->blank_cursor_bo = NULL;
		goto fail;
	}

	ret = msm_gem_get_iova(mdp4_kms->blank_cursor_bo, mdp4_kms->id,
			&mdp4_kms->blank_cursor_iova);
	if (ret) {
		dev_err(dev->dev, "could not pin blank-cursor bo: %d\n", ret);
		goto fail;
	}

	dev->mode_config.min_width = 0;
	dev->mode_config.min_height = 0;
	dev->mode_config.max_width = 2048;
	dev->mode_config.max_height = 2048;

	return kms;

fail:
	if (kms)
		mdp4_destroy(kms);
	return ERR_PTR(ret);
}

static struct mdp4_platform_config *mdp4_get_config(struct platform_device *dev)
{
	static struct mdp4_platform_config config = {};

	/* TODO: Chips that aren't apq8064 have a 200 Mhz max_clk */
	config.max_clk = 266667000;
	config.iommu = iommu_domain_alloc(&platform_bus_type);
	if (config.iommu) {
		config.iommu->geometry.aperture_start = 0x1000;
		config.iommu->geometry.aperture_end = 0xffffffff;
	}

	return &config;
}